JPS5916361A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5916361A
JPS5916361A JP12642182A JP12642182A JPS5916361A JP S5916361 A JPS5916361 A JP S5916361A JP 12642182 A JP12642182 A JP 12642182A JP 12642182 A JP12642182 A JP 12642182A JP S5916361 A JPS5916361 A JP S5916361A
Authority
JP
Japan
Prior art keywords
high temperature
film
heat treatment
polycrystalline
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12642182A
Other languages
Japanese (ja)
Inventor
Takamichi Takebayashi
竹林 孝路
「あ」田 正勝
Masakatsu Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP12642182A priority Critical patent/JPS5916361A/en
Publication of JPS5916361A publication Critical patent/JPS5916361A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Abstract

PURPOSE:To contrive to make the specific resistance uniform by preventing the evaporation and re-distribution of the impurity doped by high temperature heat treatment by a method wherein the grain diameter of a polycrystalline Si film is increased and thus made uniform, and thereafter the polycrystalline Si film is doped with the impurity. CONSTITUTION:The polycrystalline Si film is grown at a low temperature of approx. 620 deg.C by using pressure reduction CVD method (B1). Next, heat treatment is performed at a high temperature of 1,000 deg.C or more for approx. 30min (B2). Then the ion implantation of phosphorus ion is performed to a gate electrode region, and that of arsenic ion to a load resistance element region (B3). After the ion implantation, annealing for approx. 30min in N2 gas is performed at a high temperature of 900 deg.C (B4). The gate electrode of an MOS transistor and a high resistant load element are formed by photoetching method (B5). The condition of high temperature heat treatment is preferable at a high temperature for a short time. The annealing for 2sec-100sec, for example enables to increase the temperature up to 1,200 deg.C-1,400 deg.C and decrease the re-distribution of impurity in an Si substrate.

Description

【発明の詳細な説明】 本発明は、抵抗負荷MO3半導体集積回路装置に適した
高抵抗で、かつ、抵抗値の均一な抵抗を含む半導体装置
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device including a resistor with high resistance and uniform resistance value suitable for a resistive load MO3 semiconductor integrated circuit device.

従来、MO3半導体集積回路(MOS・IC)とくに、
高抵抗負荷をそなえたMOS、LSIにおいては、素子
面積が小さく、動作速度が速い利点があり広く利用され
ている。しかし、その負荷抵抗には、均一な抵抗値が要
求され、LSIの形成において問題となっていた。すな
わち、問題点を詳しく言えば、従来のMOS、LSIで
用いられる高抵抗体は、7リコン基板の表面に5IO2
を形成し、この上に多結晶ンリコン膜を、たとえばCV
D法等により成長し、イオン注入により不純物を注入し
て、アニールにより注入した不純物を活性化させ抵抗値
を定める方法により形成されていた。
Conventionally, MO3 semiconductor integrated circuits (MOS/IC), especially
MOS and LSI devices with high resistance loads have the advantage of small element area and high operating speed, and are widely used. However, the load resistance is required to have a uniform resistance value, which has been a problem in forming LSIs. In other words, to explain the problem in detail, the high resistance element used in conventional MOS and LSI is
is formed, and a polycrystalline silicon film is formed thereon, for example by CV
It was formed by a method of growing by the D method or the like, implanting impurities by ion implantation, activating the implanted impurities by annealing, and determining the resistance value.

このようにして形成された高抵抗は、Sio2膜の表面
に形成する多結晶ンリコン膜の粒径により、後の工程で
所定不純物を注入しても一定の抵抗値を得ることが困難
であり、たとえば、粒径か0.17zm−0,2pmの
範囲て、同一の不純物注入を行っても抵抗値が6〜6倍
の変動を示していた。
The high resistance formed in this way is due to the grain size of the polycrystalline silicon film formed on the surface of the Sio2 film, making it difficult to obtain a constant resistance value even if certain impurities are implanted in a later process. For example, even if the same impurity was implanted in the grain size range of 0.17 zm-0.2 pm, the resistance value varied by 6 to 6 times.

第1図はMOS)ランジスタとその回路構成としての負
荷抵抗体とを一体形成した半導体装置の断面図である。
FIG. 1 is a sectional view of a semiconductor device in which a MOS transistor and a load resistor as its circuit structure are integrally formed.

この装置の概要は、P型ンリコン基板1の表面部を厚い
絶縁膜2で分離し、その一方に耐摩の領域3,4を形成
し、これら両領域間の薄い絶縁膜6を介して、多結晶シ
リコン導電層よりなるゲート電極6を設けてなるMO8
+−ランジスタ部と、表面の厚い絶縁膜2で分離された
他方の位置に形成されたN 型領域7に一端か接し、他
端がフィールド絶縁膜と称される厚い絶縁膜2′ 上に
存する多結晶シリコン層8よりなる抵抗体部とをそなえ
、これらの各要部が最前部の安定化被膜9で覆われ、同
安定化被膜9の開口を通じて電極配線層10に接触され
て外部回路結線を可能にしたものである。なお、外部型
1極端子S。
The outline of this device is that the surface of a P-type silicon substrate 1 is separated by a thick insulating film 2, wear-resistant regions 3 and 4 are formed on one side, and a thin insulating film 6 is interposed between these two regions to separate the surface of the P-type silicon substrate 1. MO8 provided with a gate electrode 6 made of a crystalline silicon conductive layer
One end is in contact with an N-type region 7 formed at the other position separated from the +- transistor part by a thick insulating film 2 on the surface, and the other end is on a thick insulating film 2' called a field insulating film. Each of these essential parts is covered with a stabilizing film 9 at the forefront, and is brought into contact with an electrode wiring layer 10 through an opening in the stabilizing film 9 for external circuit connection. This is what made it possible. In addition, external type single pole terminal S.

D、Gはそれぞれ、ソース・トレイン・ゲートであり同
じくR1,R2は抵抗体の両端子を表わしている。
D and G are the source, train, and gate, respectively, and similarly, R1 and R2 represent both terminals of the resistor.

ところで、前記抵抗体部は、通常、厚さ0.27zm〜
○。6μm、シート抵抗107〜109Ω/1−の多結
晶シリコン層8で形成されるが、これが前記MOj。
By the way, the resistor part usually has a thickness of 0.27 zm to
○. The MOj is formed of a polycrystalline silicon layer 8 having a thickness of 6 μm and a sheet resistance of 10 7 to 10 9 Ω/1−.

トランジスタ部と回路結合されて負荷抵抗体として用い
られるとき、その抵抗値は10MΩ〜1x副の高抵抗が
要求される。かかる抵抗体の形成方法は、従来、第2図
に工程を示したように、減圧CVD法と称される化学的
気相反応法で、たとえば、620°C程度の低温で多結
晶シリコン層を生成しくA1)、これに1乃以下の不純
物をイオン注入法で正確に打込み(A2)、アニール処
理して(A3)、これをフォトエツチングでパターン形
成して(A4)所定の抵抗値を得ようとしていた。しか
しながら、従来方法では、比較的低温で生成された多結
晶シリコンが、粒径0.1〜0.2μm程度の微粒子で
あるうえに、そのばらつきも太きいものであるため、こ
れにイオン注入法で不純物導入を制御しても、抵抗値か
均一にならず、大幅にばらつくという難点があった。
When used as a load resistor by circuit-coupling with a transistor section, a high resistance value of 10 MΩ to 1x is required. The conventional method for forming such a resistor is to form a polycrystalline silicon layer at a low temperature of about 620°C using a chemical vapor phase reaction method called low pressure CVD method, as shown in the steps shown in FIG. A1), impurity of 1 or less is accurately implanted into this using ion implantation method (A2), annealed (A3), and patterned by photoetching (A4) to obtain a predetermined resistance value. I was trying. However, in the conventional method, the polycrystalline silicon produced at a relatively low temperature is fine particles with a grain size of about 0.1 to 0.2 μm, and the variation is wide, so ion implantation method Even if the introduction of impurities was controlled, the resistance value was not uniform and varied widely.

本発明は抵抗値の変動が少ない高抵抗素子を含む半導体
装置の製造方法を提供するものである。
The present invention provides a method for manufacturing a semiconductor device including a high resistance element with little variation in resistance value.

すなわち、本発明は、多結晶シリコン膜の粒径を増大し
て均一化しこの後多結晶シリコン膜に対する不純物のド
ープを行うことにより、高温熱処理によるトープされた
不純物の蒸発、再分布を防止して比抵抗の均一化を図ら
んとするものである。
That is, the present invention prevents evaporation and redistribution of doped impurities caused by high-temperature heat treatment by increasing the grain size of the polycrystalline silicon film to make it uniform and then doping the polycrystalline silicon film with impurities. The purpose is to make the specific resistance uniform.

本発明は、多結晶シリコン生成後に高温熱処理工程を付
加して、粒径を大きくするもので、これにより、粒径の
ばらつき比が小さくなり、同−口7)内の抵抗値の最大
値と最小値の比が1〜3倍程度となり従来の%以下にす
ることができ安定した素子特性を得ることができる。
The present invention adds a high-temperature heat treatment process after polycrystalline silicon is formed to increase the grain size, thereby reducing the variation ratio of the grain size and making it the same as the maximum value of the resistance value in the opening 7). The ratio of the minimum value becomes about 1 to 3 times, which is less than % of the conventional value, and stable device characteristics can be obtained.

以下本発明の方法による実施例を第3図に示す。An example of the method of the present invention is shown in FIG. 3 below.

1ず、減圧CVD法を用いて、約620’Cの低温で厚
さ約0.571mの多結晶シリコン膜を成長させる(B
1)。次に、1000°C以上の高温で約30分間熱処
理を行なう(B2)。
1. First, a polycrystalline silicon film with a thickness of about 0.571 m is grown at a low temperature of about 620'C using the low pressure CVD method (B
1). Next, heat treatment is performed at a high temperature of 1000° C. or higher for about 30 minutes (B2).

尚、ここで1000°C以上の高温で熱処理することに
より粒径0.37zm以上の多結晶シリコンか得られる
。次に、ゲート電極領域には燐イオンを加速エネルギー
40KeV、、注入量1×1015〜1×1016イV
Cな2程度、負荷抵抗素子領域には、砒素イオンを加速
エネルギー100 KeV、注入量1X1013〜1×
1o 個/cm、程度のイオン注入を行う(B3)イオ
ン注入後、900°Cの温度でN2 ガス中約30分間
のアニールを行う(B4)。次に、フォトエツチング法
により、MOSトランジスターのゲー 上電極、および
高抵抗負荷素子が形成する(B5)。
Here, polycrystalline silicon having a grain size of 0.37 zm or more can be obtained by heat treatment at a high temperature of 1000° C. or more. Next, phosphorus ions were implanted into the gate electrode region at an acceleration energy of 40 KeV and a dose of 1×1015 to 1×1016 IV.
Arsenic ions are implanted at an acceleration energy of 100 KeV and an implantation amount of 1×1013 to 1× in the load resistance element region.
Ions are implanted at a rate of about 10 ions/cm (B3). After the ion implantation, annealing is performed in N2 gas at a temperature of 900° C. for about 30 minutes (B4). Next, a gate electrode of a MOS transistor and a high resistance load element are formed by photoetching (B5).

この実施例では、高抵抗負荷領域形成に砒素イオンを用
いているが、燐のイオン注入でドープしてもよい。その
場合の注入条件は加速エネルギー40 KeV 、iJ
i〜1 Qi ”個//cn12程度である。
In this embodiment, arsenic ions are used to form the high resistance load region, but doping may also be performed by phosphorus ion implantation. In that case, the implantation conditions are acceleration energy 40 KeV, iJ
i~1Qi'' pieces//cn12.

なお本発明の実施例において多結晶シリコンの粒径をで
きるだけ大きく、抵抗値を安定化さぜるだめには、多結
晶堆積工程(B1)で形成温度をできるだけ低温とする
こと、および高温熱処理工程(B2)においてできるた
け高い温度で熱処理を行うことが望捷しい。多結晶シリ
コンの粒径は1000°C以上て温度の増加とともに増
大する。しかし高温で長時間の熱処理を行った場合、/
リコン基板の高濃度ドーピング領域の不純物の再分布あ
るいは、トランジスターのゲート電極4よりの不純物が
ゲート酸化膜を拡散により通り抜はシリコン基板濃度を
変化させる等不都合を生じる。したがって高温熱処理条
件は、高温で短時間が望ましい。
In the embodiments of the present invention, in order to make the grain size of polycrystalline silicon as large as possible and stabilize the resistance value, the formation temperature in the polycrystalline deposition step (B1) must be as low as possible, and the high-temperature heat treatment step ( It is desirable to carry out the heat treatment in B2) at as high a temperature as possible. The grain size of polycrystalline silicon increases with increasing temperature above 1000°C. However, when heat treatment is performed at high temperature for a long time, /
Redistribution of impurities in the highly doped region of the silicon substrate or impurities from the gate electrode 4 of the transistor passing through the gate oxide film by diffusion causes problems such as changes in the concentration of the silicon substrate. Therefore, the high temperature heat treatment conditions are preferably high temperature and short time.

これには例えば輻射加熱方式による2秒〜100秒程度
のアニールで(l−1:1200℃〜14o○0C程度
まで温度が高くできかつシリコン基板中の不純物再分布
が低くできる。
For example, annealing for about 2 seconds to 100 seconds using a radiation heating method can raise the temperature to about 1200 DEG C. to 14 DEG C. and reduce the redistribution of impurities in the silicon substrate.

以上の様に、本発明によれは粒径の大きな多結晶シリコ
ン膜を形成した後、不純物をイオン注入もすることによ
り、抵抗値のバラツキの少ない抵抗を有する半導体装置
を提供することが出来る。
As described above, according to the present invention, by forming a polycrystalline silicon film having a large grain size and then ion-implanting impurities, it is possible to provide a semiconductor device having a resistance with little variation in resistance value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抵抗負荷MO3半導体装置の断面図、第2図は
従来の抵抗形成方法を示す工程図、第3図は本発明の方
法による抵抗形成方法を示す工程図である。 1・・・・・・P型シリコン基板、2.2’・・・・・
分離用絶縁膜、6・・・・・・ゲート電極、8・・・・
・・多結晶シリコン層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 門05)ラシンスヲー       負拍ルKa、。 第3図
FIG. 1 is a sectional view of a resistive load MO3 semiconductor device, FIG. 2 is a process diagram showing a conventional resistor forming method, and FIG. 3 is a process diagram showing a resistor forming method according to the method of the present invention. 1...P-type silicon substrate, 2.2'...
Isolation insulating film, 6... Gate electrode, 8...
...Polycrystalline silicon layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Zumon 05) Rashinswo - Negative beat Ka. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 晶シリコNに不純物をドープすることを特徴とする半導
体装置の製造方法。
A method for manufacturing a semiconductor device, comprising doping crystalline silicon N with an impurity.
JP12642182A 1982-07-19 1982-07-19 Manufacture of semiconductor device Pending JPS5916361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12642182A JPS5916361A (en) 1982-07-19 1982-07-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12642182A JPS5916361A (en) 1982-07-19 1982-07-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5916361A true JPS5916361A (en) 1984-01-27

Family

ID=14934753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12642182A Pending JPS5916361A (en) 1982-07-19 1982-07-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5916361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277102A (en) * 1985-04-05 1986-12-08 マンヴイル コ−ポレ−シヨン Reflector
JPS6365664A (en) * 1986-09-05 1988-03-24 Nec Corp Manufacture of semiconductor integrated circuit
US6844228B2 (en) 2003-06-03 2005-01-18 Renesas Technology Corp. Manufacturing method of a semiconductor device capable of accurately setting a resistance value of a resistance element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277102A (en) * 1985-04-05 1986-12-08 マンヴイル コ−ポレ−シヨン Reflector
JPS6365664A (en) * 1986-09-05 1988-03-24 Nec Corp Manufacture of semiconductor integrated circuit
US6844228B2 (en) 2003-06-03 2005-01-18 Renesas Technology Corp. Manufacturing method of a semiconductor device capable of accurately setting a resistance value of a resistance element

Similar Documents

Publication Publication Date Title
JPS6072272A (en) Manufacture of semiconductor device
US5416352A (en) Gate electrode formed on a region ranging from a gate insulating film to a field insulating film
JPH06342914A (en) Manufacture of semiconductor device
JPH09283708A (en) Semiconductor device and its manufacture
JPS5916361A (en) Manufacture of semiconductor device
TW523875B (en) MOS transistor fabrication method
KR920009372B1 (en) Manufacturing method of semiconductor device
JPS58182873A (en) Manufacture of semiconductor device
JPH04715A (en) Manufacture of semiconductor device
JP2838315B2 (en) Semiconductor device and manufacturing method thereof
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPS59138363A (en) Semiconductor device and manufacture thereof
JPS61248476A (en) Manufacture of semiconductor device
JP2659798B2 (en) Semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS59108354A (en) Manufacture of semiconductor device
JPH0536902A (en) Semiconductor device
JPS6377143A (en) Manufacture of semiconductor device
JPH053146B2 (en)
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH06224419A (en) Manufacture of semiconductor device
JPH0737992A (en) Manufacture of semiconductor device
JPS60192363A (en) Manufacture of schottky barrier junction
JPS63144567A (en) Manufacture of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device