JPS59155148A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59155148A
JPS59155148A JP2972283A JP2972283A JPS59155148A JP S59155148 A JPS59155148 A JP S59155148A JP 2972283 A JP2972283 A JP 2972283A JP 2972283 A JP2972283 A JP 2972283A JP S59155148 A JPS59155148 A JP S59155148A
Authority
JP
Japan
Prior art keywords
wiring layer
contact hole
wiring
semiconductor device
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2972283A
Other languages
Japanese (ja)
Inventor
Junichi Ono
淳一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2972283A priority Critical patent/JPS59155148A/en
Publication of JPS59155148A publication Critical patent/JPS59155148A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce fraction defective by forming a conductor layer pattern, size thereof is larger than a contact hole and which has selective etching capability to first and second wiring layers, to the contact hole section for connecting said wiring layers. CONSTITUTION:A field oxide film 12 is formed on the surface of a semiconductor substrate 11, an element is formed in an element region surrounded by the oxide film 12, and an Al film is evaporated on the whole surface and patterned to form a first wiring layer 13. A CVD oxide film 14 is deposited on the whole surface. A contact hole 15 is bored to the oxide film 14, and an impurity doped polycrystalline silicon film is deposited on the whole surface and patterned to form a polycrystalline silicon film pattern 16 connected to the first wiring layer 13 through the contact hole 15. Al is evaporated, and a second wiring layer 17 connnected to the pattern 16 is formed. The size of the pattern 16 is larger than that of the contact hole 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特に多層配線構
造の半導体装置の配線の接続方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for connecting wiring in a semiconductor device having a multilayer wiring structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の多層配線構成の半導体装置の製造方法を第1図(
a)及び(b)を参照して説明する。
A conventional method for manufacturing a semiconductor device with a multilayer wiring structure is shown in Figure 1 (
This will be explained with reference to a) and (b).

まず、半導体基板1表面にフィールド酸化膜2を形成し
、このフィールド酸化膜2により囲まれた図示しない素
子領域に素子を形成した後、全面K例えばU膜を蒸着し
、パターニングして第1の配線層3を形成する。次に、
全面に例えばCVD酸化膜4を堆積した後、コンタクト
ホール5を開孔する。つづいて、全面に例えばAtmを
蒸着した後、バターニングして前記コンタクトホール5
を介して前記第1の配線層3と接続する第2の配線層6
を形成する。
First, a field oxide film 2 is formed on the surface of a semiconductor substrate 1, and an element is formed in an element region (not shown) surrounded by this field oxide film 2. After that, a film K, for example, a U film, is deposited on the entire surface and patterned to form a first film. A wiring layer 3 is formed. next,
After depositing, for example, a CVD oxide film 4 over the entire surface, a contact hole 5 is opened. Subsequently, after depositing, for example, Atm on the entire surface, patterning is performed to form the contact hole 5.
a second wiring layer 6 connected to the first wiring layer 3 via
form.

なお、上述した方法により多層配線構造の半導体装置を
製造しようとすると、コンタクトホール5を開孔した後
、第2の配線層6を形成する前に、エッチャント等の影
響でAtからなる第1の配線層3の表面が酸化されて形
成されたAt20.その他の予期しない化合物が残存し
、第1の配線層3と第2の配線層6との接触抵抗が大き
くなるおそれがあるので、これを防ぐために第2図(a
)〜(c)に示すような方法も採用されている。
Note that when attempting to manufacture a semiconductor device with a multilayer wiring structure using the above-described method, after the contact hole 5 is opened and before the second wiring layer 6 is formed, the first layer made of At is removed due to the influence of an etchant or the like. At20. which is formed by oxidizing the surface of the wiring layer 3. There is a risk that other unexpected compounds may remain and the contact resistance between the first wiring layer 3 and the second wiring layer 6 may increase.
) to (c) have also been adopted.

まず、半導体基板1表面のフィールド酸化膜2上に例え
ばAtからなる第1の配線層3を形成した後、全面に例
えば単結晶もしくは多結晶シリコン膜又は金属シリサイ
ド膜を堆積し、パターニングして酸化に対する保護膜パ
ターン7を形成する。次に、全面に例えばCVD酸化膜
4を堆積する(同図(a)図示)。
First, a first wiring layer 3 made of At, for example, is formed on the field oxide film 2 on the surface of the semiconductor substrate 1, and then, for example, a single crystal or polycrystalline silicon film or a metal silicide film is deposited on the entire surface, and then patterned and oxidized. A protective film pattern 7 is then formed. Next, a CVD oxide film 4, for example, is deposited on the entire surface (as shown in FIG. 2(a)).

次いで、CVD酸化膜4及び保膜膜パタ・−ン7の一部
を順次選択的にエツチングしてコンタクトホール5を開
孔する(同図(b)図示)。この際、第1の配線層3の
コンタクト部の表面νま保護膜パターン7により覆われ
ていたので、保護膜パターン7をエツチングすれば、第
1の配線層3上に予期しない化合物が残存することはな
い0 つづいて、全面に例えばAt膜を蒸着した後、パターニ
ングして前記ls1の配線層3と接続する第2の配線層
6を形成する(同図(C)図示)0なお、上記保護膜パ
ターン7は絶縁膜からなるものでもよい。
Next, a contact hole 5 is formed by selectively etching a portion of the CVD oxide film 4 and a portion of the film-retaining film pattern 7 (as shown in FIG. 2B). At this time, since the surface ν of the contact portion of the first wiring layer 3 was covered with the protective film pattern 7, if the protective film pattern 7 was etched, unexpected compounds would remain on the first wiring layer 3. 0 Subsequently, after depositing, for example, an At film on the entire surface, it is patterned to form a second wiring layer 6 that connects to the wiring layer 3 of the ls1 (as shown in FIG. 3(C)). The protective film pattern 7 may be made of an insulating film.

ところで、上述した2つの製造方法のいずれにおいても
、第1の配線層3の形成時に不良、例えばM蒸着の際の
被覆状態(ステップカッ(レージ)の不良あるいはパタ
ーニングの際の配線層の切断(以下、オープン不良とい
う)や隣りあう配線層相互間の接触(以下、ショート不
良という)が生じた場合には、第1の配線層13を塩酸
、過酸化水素及び水の混合液に工り溶解させ、再度M膜
の蒸着及びパターニングを行なうことが多々ある。
By the way, in both of the above-mentioned two manufacturing methods, defects may occur during the formation of the first wiring layer 3, such as defects in the covering condition (step cottage) during M vapor deposition or cutting of the wiring layer during patterning. If contact between adjacent wiring layers (hereinafter referred to as an open defect) or contact between adjacent wiring layers (hereinafter referred to as a short defect) occurs, the first wiring layer 13 is dissolved in a mixture of hydrochloric acid, hydrogen peroxide, and water. After that, the M film is often deposited and patterned again.

しかしながら、第2の配線層6について上述したような
種々の不良が生じた場合、第2の配線層6を形成しなお
すために第2の配線層6を溶解しようとすると、第3図
に示す如く、その下の第1の配線層3も同時に溶解され
、第1の配線層3のパターンを再現することが不可能と
なる。したがって、こうした第2の配線層6の再形成は
行なうことができず、不良率が高い原因となっている。
However, when various defects as described above occur in the second wiring layer 6, when trying to dissolve the second wiring layer 6 in order to re-form the second wiring layer 6, the problem shown in FIG. As such, the underlying first wiring layer 3 is also dissolved at the same time, making it impossible to reproduce the pattern of the first wiring layer 3. Therefore, such re-formation of the second wiring layer 6 cannot be performed, which causes a high defect rate.

そこで、第2の配線層6のオーブン不良やショート不良
を防止し、不良率を低下させるために、第1図<a)に
示す第2の配線層60幅り、を第1の配線層3の幅り、
エリ大きくするとともに隣り合う第2の配線層6相互間
の距離も大きくするという対策がなされているが、素子
の微細化が進んでいる現状では不良率を低下させるのに
有効であるとはいえない。
Therefore, in order to prevent oven defects and short-circuit defects in the second wiring layer 6 and to reduce the defective rate, the width of the second wiring layer 60 shown in FIG. width,
Countermeasures have been taken to increase the area and also increase the distance between adjacent second wiring layers 6, but this is not effective in reducing the defective rate in the current situation where device miniaturization is progressing. do not have.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであり、第2の
配線層に不良が生じた場合に、この第2の配線層を形成
しなおすことができるようにし、不良率を低下して歩留
りを向上し得る半導体装置の製造方法を提供しようとす
るものである。
The present invention has been made in view of the above circumstances, and it is possible to re-form the second wiring layer when a defect occurs in the second wiring layer, thereby reducing the defective rate and increasing the yield. The present invention aims to provide a method for manufacturing a semiconductor device that can improve the performance of semiconductor devices.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は第1の配線層と第2の
配線層とを接続するためのコンタクトホール部ニ、コン
タクトホールより寸法が大きく、前記第1及び第2の配
線層に対して選択エツチング性を有する導体層パターン
を形成することを骨子とするものである。
In the method for manufacturing a semiconductor device according to the present invention, a contact hole portion for connecting a first wiring layer and a second wiring layer is larger in size than the contact hole, and is connected to the first wiring layer and the second wiring layer. The main idea is to form a conductor layer pattern that has selective etching properties.

このようにコンタクトホールより寸法が大きく、第1及
び第2の配線層に対して選択エツチング性を有する導体
層パターンを形成することにより、第2の配線層に不良
が生じても形成しなおすことができ、不良率を低下する
ことができる。
By forming a conductor layer pattern that is larger in size than the contact hole and has selective etching properties for the first and second wiring layers, it is possible to re-form even if a defect occurs in the second wiring layer. can reduce the defective rate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第4図(a)、(b)、第5図
及び第6図を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 4(a) and 4(b), FIGS. 5 and 6.

まず、半導体基板11表面にフィールド酸化膜12を形
成し、このフィールド酸化膜12により囲まれた図示し
ない素子領域に素子を形成した後、全面にM膜を蒸着し
、パターニングして第1の配線層13を形成した。次に
、全面にCVD酸化膜14を堆積した(第4図(a)図
示)Cつづいて、CVD酸化膜14にコンタクトホール
15を開孔した後、全面に不純物ドープ多結晶シリコン
膜を堆積し、パターニングして前記コンタクトホール1
5を介して前記第1の配線層13と接続する多結晶シリ
コン膜パターン16を形成した。この多結晶シリコン膜
パターン16は第5図に示す如く、その各辺の長さW、
がコンタクトホール15の各辺の長さW。
First, a field oxide film 12 is formed on the surface of the semiconductor substrate 11, and an element is formed in an element region (not shown) surrounded by this field oxide film 12. After that, an M film is deposited on the entire surface and patterned to form a first wiring. Layer 13 was formed. Next, a CVD oxide film 14 was deposited on the entire surface (as shown in FIG. 4(a)).Continuously, after opening a contact hole 15 in the CVD oxide film 14, an impurity-doped polycrystalline silicon film was deposited on the entire surface. , patterning the contact hole 1
A polycrystalline silicon film pattern 16 was formed to be connected to the first wiring layer 13 via a polycrystalline silicon film pattern 16. As shown in FIG. 5, this polycrystalline silicon film pattern 16 has a length W of each side,
is the length W of each side of the contact hole 15.

よりも長く、コンタクトホール15よりも寸法が大きい
。つづいて、全面にA/=膜を蒸着した後、パターニン
グして前記多結晶シリコン膜パターン16と接続する第
2の配線層17を形成し、多層′配線構造の半導体装置
を製造した(第4図(b)図示)。
, and larger in size than the contact hole 15. Subsequently, after depositing an A/= film on the entire surface, it was patterned to form a second wiring layer 17 connected to the polycrystalline silicon film pattern 16, and a semiconductor device with a multilayer wiring structure was manufactured. Figure (b) shown).

しかして、上記方法によれば第4図(b)図示の工程で
Mからなる第1の配線層13とMからなる第2の配線層
12との間に、これらに対して選択エツチング性を有し
、かつコンタクトホール15よりも寸法の大きい多結晶
シリコン膜パターン16が形成されるので、第2の配線
層17に不良が生じた場合には、第6図に示す如く多結
晶シリコン膜パターン16がエツチングに対するバリア
となり、第1の配線層13を溶解することなく、第2の
配線層17のみを溶解して除去することができる。した
がって、第2の配線層17を形成しなおすことにエリ不
良を解消することができ、不良率を大福に低減し、歩留
りを向上することができる。
According to the above method, selective etching is performed between the first wiring layer 13 made of M and the second wiring layer 12 made of M in the step shown in FIG. 4(b). Since a polycrystalline silicon film pattern 16 with a larger size than the contact hole 15 is formed, if a defect occurs in the second wiring layer 17, the polycrystalline silicon film pattern 16 is removed as shown in FIG. 16 acts as a barrier against etching, and only the second wiring layer 17 can be dissolved and removed without dissolving the first wiring layer 13. Therefore, by re-forming the second wiring layer 17, edge defects can be eliminated, the defective rate can be significantly reduced, and the yield can be improved.

なお、上記実施例の方法に限らず、第7図(&)。Note that the method of FIG. 7(&) is not limited to the method of the above embodiment.

(b)に示す如く、第4図(a)の工程に対応する工程
で、第1の配線層13を形成した後、この第1の配線層
13上に多結晶シリコン膜パターン18を形成し、次い
でこの多結晶シリコン膜ノくターン18より寸法の小さ
いコンタクトホール15を開孔し、更に第2の配線層1
7を形成する方法でもよい。
As shown in FIG. 4B, after forming the first wiring layer 13 in a step corresponding to the step in FIG. 4A, a polycrystalline silicon film pattern 18 is formed on the first wiring layer 13. Next, a contact hole 15 smaller in size than the polycrystalline silicon film notch 18 is formed, and a second wiring layer 1 is formed.
7 may also be used.

この方法でも第8図に示す如く、第2の配線層17に不
良が生じた場合でも、第2の配線層17のみを溶解し、
形成しなおすことができる。
Even with this method, as shown in FIG. 8, even if a defect occurs in the second wiring layer 17, only the second wiring layer 17 is dissolved;
Can be reshaped.

また、第1及び第2の配線層13.17としては1記実
施例で用いたMに限らず、アルミニウムシリコン等のア
ルミニウム合金でもよく、両者は同一でも異なっていて
もよい0また、これら配線層間に形成される導体層パタ
ーンは上記実施例で用いた多結晶シリコンに限らず、白
金、モリブデン、タングステ−ン等のアルミニウムを除
く金属あるいはモリブデンシリサイド等のアルミニウム
合金を除く合金でもよいが、第1及び第2の配線層との
密着性がよく、抵抗の小さいことが望ましい。
Further, the first and second wiring layers 13.17 are not limited to M used in the first embodiment, but may be an aluminum alloy such as aluminum silicon, and they may be the same or different. The conductive layer pattern formed between the layers is not limited to the polycrystalline silicon used in the above embodiments, but may also be metals other than aluminum such as platinum, molybdenum, and tungsten, or alloys other than aluminum alloys such as molybdenum silicide. It is desirable that it has good adhesion to the first and second wiring layers and has low resistance.

更に、上記実施例では半導体基板上の第1層と第2層の
配線層間について説明したが、本発明方法は3層以上の
配線層を有する半導体装置における各配線層間の接続に
も同様に適用できることは勿論である。
Furthermore, in the above embodiments, the explanation was made regarding the connection between the first and second wiring layers on a semiconductor substrate, but the method of the present invention can be similarly applied to connections between each wiring layer in a semiconductor device having three or more wiring layers. Of course it can be done.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば配線層の不良を大幅
に低減し、歩留りを向上し得る半導体装置の製造方法を
提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a method of manufacturing a semiconductor device that can significantly reduce defects in wiring layers and improve yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来の多層配線構造の半導体装置の平面
図、同図(b)は同図(a)のB−B線に沿う断面図、
第2図(a)〜(C)は従来の他の多層配線構造の半導
体装置の製造方法を示す断面図、第3図は従来の半導体
装置において第2の配線層を溶解した状態を示す断面図
、第4図(a)及び(b)は本発明の実施例におけろ多
層配線構造の半導体装置の製造方法を示す断面図、第5
図は同半導体装置の平面図、第6図は同半導体装置の第
2の配線層を溶解した状態を示す断面図、第7図(a)
は本発明の他の実施例における方法にエリ製造された半
導体装置の平面図、同図(b)は同図(a)のB−B線
に沿う断面図、第8図は同半導体装慣の第2の配線層を
溶解した状態を示す断面図である。 11・・・半導体基板、12・・・フィールド酸化膜1
3・・・第1の配線層、14・・・CVD酸化膜、15
・・・コンタクトホール、16.18・・・多結晶シリ
コン膜パターン、17・・・第2の配線層。 出願人代理人 弁理士  鈴 江 武 彦第1図 第2図 第3図 第4図 第5図
FIG. 1(a) is a plan view of a conventional semiconductor device with a multilayer wiring structure, and FIG. 1(b) is a cross-sectional view taken along line B-B in FIG. 1(a).
FIGS. 2(a) to (C) are cross-sectional views showing another conventional method for manufacturing a semiconductor device with a multilayer wiring structure, and FIG. 3 is a cross-sectional view showing a state in which the second wiring layer is melted in the conventional semiconductor device. 4(a) and 4(b) are cross-sectional views showing a method for manufacturing a semiconductor device having a multilayer wiring structure in an embodiment of the present invention.
The figure is a plan view of the semiconductor device, FIG. 6 is a cross-sectional view showing the state in which the second wiring layer of the semiconductor device is dissolved, and FIG. 7(a)
8 is a plan view of a semiconductor device manufactured by a method according to another embodiment of the present invention, FIG. 8B is a sectional view taken along line B-B in FIG. FIG. 3 is a cross-sectional view showing a state in which the second wiring layer of FIG. 11... Semiconductor substrate, 12... Field oxide film 1
3... First wiring layer, 14... CVD oxide film, 15
. . . Contact hole, 16. 18 . . . Polycrystalline silicon film pattern, 17 . . . Second wiring layer. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)素子が形成された半導体基板上に第1の絶縁膜を
介して第1の配線層を形成する工程と、全面に第2の絶
縁膜を堆積し、コンタクトホールを開孔し、このコンタ
クトホール部に該コンタクトホールエリ寸法が大きく、
第1の配線層及び後記する第2の配線層に対して選択エ
ツチング性を有する導体層ノくターンを形成する工程と
、前記第2の絶縁膜上に該導体層パターンと接続する第
2の配線層を形成する工程とを具備したことを特徴とす
る半導体装置の製造方法。
(1) A step of forming a first wiring layer via a first insulating film on a semiconductor substrate on which an element is formed, depositing a second insulating film on the entire surface, opening a contact hole, and The contact hole area has a large contact hole area,
forming a conductor layer pattern having selective etching properties with respect to the first wiring layer and a second wiring layer to be described later; 1. A method for manufacturing a semiconductor device, comprising the step of forming a wiring layer.
(2)第1及び第2の配線層が同−又は異なる配線材料
からなることを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the first and second wiring layers are made of the same or different wiring materials.
(3)  第1及び第2の配線層がアルミニウム又はア
ルミニウム合金からなり、導体層パターンが多結晶シリ
コン、アルミニウムを除く金属又はアルミニウム合金を
除く金属シリサイドからなることを特徴とする特許請求
の範囲第1項又は第2項記載の半導体装置の製造方法。
(3) The first and second wiring layers are made of aluminum or an aluminum alloy, and the conductor layer pattern is made of polycrystalline silicon, a metal other than aluminum, or a metal silicide other than aluminum alloy. A method for manufacturing a semiconductor device according to item 1 or 2.
JP2972283A 1983-02-24 1983-02-24 Manufacture of semiconductor device Pending JPS59155148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2972283A JPS59155148A (en) 1983-02-24 1983-02-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2972283A JPS59155148A (en) 1983-02-24 1983-02-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59155148A true JPS59155148A (en) 1984-09-04

Family

ID=12283999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2972283A Pending JPS59155148A (en) 1983-02-24 1983-02-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59155148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442951A (en) * 1990-06-07 1992-02-13 Toshiba Corp Semiconductor device and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149990A (en) * 1976-06-09 1977-12-13 Hitachi Ltd Production of multilayer wirings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149990A (en) * 1976-06-09 1977-12-13 Hitachi Ltd Production of multilayer wirings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442951A (en) * 1990-06-07 1992-02-13 Toshiba Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US5656860A (en) Wiring structure for semiconductor device and fabrication method therefor
JP3271272B2 (en) Method for manufacturing semiconductor device
JPH04229618A (en) Integrated circuit device contact and formation method thereof
JPS59155148A (en) Manufacture of semiconductor device
JPS5842227A (en) Manufacture of semiconductor device
JPH04116953A (en) Semiconductor device provided with plated wiring layer and manufacture thereof
JP3208608B2 (en) Wiring formation method
JP2653672B2 (en) Method of forming scalable fuse link device
JPS62104138A (en) Semiconductor device
JPH0786209A (en) Manufacture of semiconductor device
JP2998454B2 (en) Method for manufacturing semiconductor device
JPS62117368A (en) Semiconductor device
JPS6262543A (en) Manufacture of semiconductor device
JPS6240743A (en) Manufacture of semiconductor device
JPH0917868A (en) Wiring connection structure of semiconductor integrated circuit device and its manufacturing method
JP3533022B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS63224342A (en) Semiconductor device and manufacture thereof
JPH08203899A (en) Fabrication of semiconductor device
JPH02111052A (en) Formation of multilayer interconnection
JPH0955474A (en) Semiconductor memory device and its manufacture
JPS59189657A (en) Manufacture of semiconductor device
JPH08213395A (en) Manufacture of semiconductor device
JPH06151427A (en) Semiconductor device and manufacture thereof
JPH04261025A (en) Semiconductor device production method
JPS61245551A (en) Semiconductor integrated circuit