JPS59150421A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59150421A
JPS59150421A JP2059383A JP2059383A JPS59150421A JP S59150421 A JPS59150421 A JP S59150421A JP 2059383 A JP2059383 A JP 2059383A JP 2059383 A JP2059383 A JP 2059383A JP S59150421 A JPS59150421 A JP S59150421A
Authority
JP
Japan
Prior art keywords
film
titanium
metal
substrate
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2059383A
Other languages
Japanese (ja)
Other versions
JPH0150098B2 (en
Inventor
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2059383A priority Critical patent/JPS59150421A/en
Publication of JPS59150421A publication Critical patent/JPS59150421A/en
Publication of JPH0150098B2 publication Critical patent/JPH0150098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form metal silicide separately in each domain, in which the resistance should be low, of a polycrystalline silicon film and the like formed on a diffusion layer or a substrate by an easy means and improve the yield and increase the speed by a method wherein a metal film in which metal silicide is to be formed is adhered tightly on a flat part of the substrate and adhered abnormally on a part of difference in level and the abnormally adhered metal film is removed and the substrate is subjected to thermal treatment. CONSTITUTION:A diffusion layer 13 is formed in a partial domain of a substrate 11 and at the same time a field oxide film 12F, a gate oxide film 12G and a polycrystalline silicon film 14 are formed as upper films. When a titanium film 15 is deposited on the top surface of the substrate, a rough and abnormal growth of the deposited metal is produced at the part of steep difference in level and an abnormal growth part A is formed. Then the deposited titanium film 15 is etched. The substrate 11 is subjected to thermal treatment and the titanium films 15 on the diffusion layer 13 and the polycrystalline silicon film 14 are turned into silicide and the separated titanium silicide films 16 are formed on the diffusion layer 13 and the polycrystalline silicon film 14.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体基板の拡散層或いは:′1″導体基
板上の」二部膜とし・C形成された半導体層の低抵抗化
を図るために半導体部上に金属シリサイドが形成された
半導体」・ν置の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention aims to reduce the resistance of a diffusion layer of a semiconductor substrate or a two-part film formed on a conductor substrate. This invention relates to a method for manufacturing a semiconductor in which metal silicide is formed on a semiconductor portion.

〔発明の技術的背景〕[Technical background of the invention]

近年の半導体装置の高集積化、性能の高度化に伴って装
置の高速化が要求され、半導体基板に形成された拡散層
やポリシリコン(多結晶シリコン)膜などの°°シート
抵抗を低減させることが必要となっている。
In recent years, as semiconductor devices have become more highly integrated and their performance has become more sophisticated, higher speed devices are required, and the sheet resistance of diffusion layers and polysilicon (polycrystalline silicon) films formed on semiconductor substrates has been reduced. It has become necessary.

このような要請に対処するため、拡散層−や上部膜とし
てのポリシリコン膜上に高融点金属のシリサイドを形成
させる手段がいくつか従業されている。
In order to meet these demands, several methods have been used to form silicide of a high melting point metal on a polysilicon film serving as a diffusion layer or an upper film.

その中の代表的な手段の概略は次のようなものである。An outline of the representative means is as follows.

まず半導体(シリコン)基板上にフィールド酸化膜およ
びゲート酸化膜を形成すると共に基板内に所定の拡散層
を形成し、ゲート酸化膜−Lにはゲート電極としてポリ
シリコン配線を形成する。続いてこのような半導体基板
上にチタン膜を被着する。その後、この半導体基板に5
00℃〜600℃で熱処理を施すと、ブ・タン膜中のチ
タンとチタン膜゛丁に1妾触しているシリコンとが反応
し、ポリシリコン配線上および拡散fiM−,)−にチ
タンシリサイド層が形成される。また、酸化シリコンと
チタンとは反応しないため、酸化膜と接している部位の
チタン膜はブタンシリサイドにはならずにグータン月q
として夕(る。
First, a field oxide film and a gate oxide film are formed on a semiconductor (silicon) substrate, a predetermined diffusion layer is formed in the substrate, and a polysilicon wiring is formed as a gate electrode on the gate oxide film -L. Subsequently, a titanium film is deposited on such a semiconductor substrate. After that, 5
When heat treatment is performed at 00°C to 600°C, the titanium in the titanium film reacts with the silicon that is in contact with the titanium film, forming titanium silicide on the polysilicon wiring and on the diffused fiM-,)-. A layer is formed. In addition, since silicon oxide and titanium do not react, the titanium film in the area in contact with the oxide film does not become butane silicide, but instead becomes silicide.
As the evening falls.

次いで拡散化およびポリシリ:1ン配線層上のブータン
シリサイド、膜が分1i11#するように化学エツチン
グ法グどにより半導体基板」−に残った未反応のチタン
膜を除去する。このようにしてそれぞれ拡散層」二およ
びポリシリコン配線層上に、f−タンシリザイド膜を形
成し、これら拡散層およびポリシリコン配線層のシート
抵抗を低減せしめるO 〔背最技術の問題点〕 従来のこのような金属シリサイド膜による素子高速化対
策には次のような問題点があった。
Next, the unreacted titanium film remaining on the semiconductor substrate is removed by diffusion and chemical etching so that the butane silicide film on the polysilicon wiring layer is reduced to 1×11×. In this way, an f-tansilicide film is formed on the diffusion layer and the polysilicon wiring layer, respectively, and the sheet resistance of these diffusion layers and the polysilicon wiring layer is reduced. Measures to increase device speed using such a metal silicide film have the following problems.

すなわち、第1図(a)に示すように半導体基板11に
形成された拡散層13に一部重なるようにゲート酸化膜
12Gとポリシリコン層14とが積層形成されているも
のにチタン膜15を被着した後熱処理を行なうと、ゲー
ト酸化膜12Gが極めて薄いためゲート酸化膜12Gの
側面に被着した側壁チタン膜15aに拡散層13および
ポリシリコン膜14からシリコンが拡散してしまう。そ
して、このシリコンと側壁チタン膜15aとが反応し°
Cチタンシリサイド膜となり、その後未反応チタンの除
去工程を行なっても除去できずに残り、結果的にポリシ
リコン膜14と拡散層13とが電気的に短絡してしまう
確率が罹めて高いものであった。
That is, as shown in FIG. 1(a), a titanium film 15 is deposited on a gate oxide film 12G and a polysilicon layer 14 that are stacked so as to partially overlap a diffusion layer 13 formed on a semiconductor substrate 11. When heat treatment is performed after deposition, silicon diffuses from diffusion layer 13 and polysilicon film 14 into sidewall titanium film 15a deposited on the side surface of gate oxide film 12G since gate oxide film 12G is extremely thin. Then, this silicon and the sidewall titanium film 15a react with each other.
It becomes a C titanium silicide film, which remains unremoved even after the unreacted titanium removal step, and there is a high probability that the polysilicon film 14 and the diffusion layer 13 will be electrically short-circuited as a result. Met.

また、熱処理中に拡散層13中のシリコンがフィールド
酸化膜12Fの段差部に被着した側壁チタン膜15bを
経てフィールド酸化膜72F上のチタン膜15にまで拡
散し続け、拡散層13中のシリコンが不足し°C第1図
(b)の13aに示すようについにはチタンシリサイド
がこの拡散層13を一つき抜は拡散、@13のPN接合
を破壊してしまう喝合があった。
Furthermore, during the heat treatment, the silicon in the diffusion layer 13 continues to diffuse into the titanium film 15 on the field oxide film 72F through the sidewall titanium film 15b deposited on the stepped portion of the field oxide film 12F, and the silicon in the diffusion layer 13 continues to diffuse into the titanium film 15 on the field oxide film 72F. As a result, as shown at 13a in FIG. 1(b), the titanium silicide eventually penetrated this diffusion layer 13 and diffused, destroying the PN junction @13.

〔を発明の目的〕[Purpose of the invention]

この発明は上記のような点に舊みなさ肌たもので、その
目的とするところは拡散層や半導体基板上に形成さ叔た
ポリシリコン膜などへ簡易/、6手段によりそ)1ぞれ
低抵抗化を図るべ、き領域ごとに金属シリサイドを分離
して形成でき、歩留りの向−1−と装@り高速化とを両
立できる半導体装置の製造方法を提供しようとするもの
である。
This invention has been made in consideration of the points mentioned above, and its purpose is to provide a simple method for forming polysilicon films formed on diffusion layers and semiconductor substrates by six means. The object of the present invention is to provide a method for manufacturing a semiconductor device in which metal silicide can be formed separately for each region in order to increase the resistance, thereby achieving both improved yield and faster mounting speed.

〔発明の概−探〕[Summary of the invention]

すなわちこの発明に係る半導体装置の製造方法では、急
:唆々段差部あるいは逆テーパ状の段差部に金属膜な蒸
着形成すると段差部面の蒸着粒−7がいわゆる斜め2G
着といわれるよう(m粗Vζ堆積したり、蒸着粒9の付
着しないいわゆる異常に蒸着し、た部分力、:でき、こ
の異常に蒸着した部夕の金属膜のエツチング速度が平坦
部に蒸着した金属膜よりも速くなる現象を利用してあら
かじめこの部分の金属を除去するものである。
That is, in the method for manufacturing a semiconductor device according to the present invention, when a metal film is vapor-deposited on a steeply stepped portion or a reversely tapered step portion, the vapor deposited grains -7 on the surface of the stepped portion form a so-called diagonal 2G.
It is said that the etching rate of the metal film in the abnormally deposited area is lower than that of the metal film deposited on the flat part. The metal in this area is removed in advance by taking advantage of the phenomenon that the removal speed is faster than that of the metal film.

すなわち、まずフィールド酸化膜やポリシリコン膜など
の上部膜をRIE(反応性イオンエツチング)法やスパ
ッタ法などの急峻な段差が得られるエツチング法により
エツチングした半導体基板上に、金属シリサイドとt「
り得る例えばチタン、モリブデンなどの金属膜を形成す
る。
That is, first, metal silicide and T' are etched onto a semiconductor substrate where an upper film such as a field oxide film or a polysilicon film is etched using an etching method such as an RIE (reactive ion etching) method or a sputtering method that can obtain a steep step.
For example, a metal film of titanium, molybdenum, or the like is formed.

続いて上記金属膜を例えばウェットエツチングにエリ段
差部における金属膜が除去されるまでエツチングし、上
記金属膜を基板表面の段差部に沿ってそれぞれ独立した
金属膜に分割する。
Subsequently, the metal film is etched, for example, by wet etching until the metal film at the edge step portion is removed, and the metal film is divided into independent metal films along the step portions on the surface of the substrate.

この後熱処理を行ない拡散層或いはポリシリコン膜上な
どシリコンーヒに形成された金属膜をシリサイド化した
後適宜シリサイド化されなかった金属膜を除去するもの
である。
Thereafter, a heat treatment is performed to silicide the metal film formed on the diffusion layer or the silicon film, such as on the polysilicon film, and then the metal film that has not been silicided is appropriately removed.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例を説明する。第
2図において半導体基板11の一部領域に接合深さが約
0.2μmの拡散層13を形成すると共に、半導体基板
11上には上部膜とjt影形成る。こ」1らの複数の上
部膜のパターニングは急峻f′、C段差が得られるよう
に例えばRIE法を用いる。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, a diffusion layer 13 with a junction depth of approximately 0.2 μm is formed in a partial region of the semiconductor substrate 11, and a shadow with an upper film is formed on the semiconductor substrate 11. For example, RIE method is used to pattern these plural upper films so as to obtain steep steps f' and C.

i:cお、現在では集積回路装置におけるパターニング
は、装置の高集積化、微細化を図るためRIE法やスパ
ッタ法などエツチング工程が略琺直にエツチング誉き横
方向エツチングの殆んど生じン1い異方性エツチングが
広く用いられている。
i:c: Nowadays, patterning in integrated circuit devices involves etching processes such as RIE and sputtering that are almost straight etching, but most of the lateral etching occurs in order to achieve higher integration and miniaturization of devices. Anisotropic etching is widely used.

続いて、この基板11の上表M1に、基板11の温度を
10℃−15℃に冷却した状態でチタン膜15を膜厚が
およそ1sooxとなるように蒸箔する。この除にチタ
ンの蒸着粒子ができるだけ基板表inに垂直に入射する
ようにするOこのように、基板1ノをlO℃〜15℃に
冷却し蒸着粒子を基板表1111に平均して略垂直に飛
ばして蒸着を行なうと、急峻な段差部面においていわゆ
る斜め蒸着と言われるように蒸着金属が粗く異常成長し
、異常成長部Aが形成される。
Subsequently, a titanium film 15 is vapor-foiled onto the upper surface M1 of this substrate 11 to a thickness of about 1 soox while the temperature of the substrate 11 is cooled to 10° C. to 15° C. In this way, the titanium vapor deposited particles should be incident perpendicularly to the substrate surface as much as possible.In this way, the substrate 1 is cooled to 10°C to 15°C, and the vapor deposited particles are averaged to be approximately perpendicular to the substrate surface 1111. If the vapor deposition is performed in a skip, the vapor-deposited metal will coarsely and abnormally grow on the surface of the steep stepped portion, so-called oblique vapor deposition, and an abnormal growth portion A will be formed.

次いでこの蒸着されたブータン膜15をエチレン・ジア
ミンテトラアセティツク・アシッド(E D T A 
)を主成分としたエッチャントで約500人エツチング
する。
Next, this vapor-deposited butane film 15 is treated with ethylene diamine tetraacetic acid (EDTA).
) was used as the main ingredient to etch about 500 people.

ここで、上記異常成長部Aは正常に密に形成されたチタ
ン膜15に比らべ約5倍・310倍のエツチング速度で
エレチングされろ。
Here, the abnormally grown portion A is etched at an etching speed approximately 5 times and 310 times that of the normally densely formed titanium film 15.

従つ゛C1エッチくグ後は第2図(b) ((示すよう
に前記異常成長部Aが完全に除去さil、フィールド酸
化膜12F上、拡散層13−ヒお工びポリシリコン膜1
4上のそれぞil、に形成されたブータン膜15が分割
さJtた状態で残る。
Therefore, after C1 etch, as shown in FIG. 2(b) ((As shown, the abnormal growth part A is completely removed.
The butan film 15 formed on each of il and 4 remains in a divided state.

続いて400℃〜500℃で上記半導体基板IIを熱処
理し、拡散層13J−およびポリシリコン膜14上のチ
タン膜15をシリサイド化させ、第2図(C)に示すよ
うに拡散層13およびポリシリコン膜14上のそJtぞ
」′1.にチタンシリサイド膜16を形成する。ここで
、段差部にはブータン膜が残存していないため、拡散層
13上とポリシリコン膜I4上のチタンシリサイド膜1
6との連結や、拡散層13中のシリコンがフィールド酸
化、膜12F上のチタン膜15に拡散する現象は生じ/
工い。また、フィールド酸化膜12F」−のチタン膜1
5はシリコンと接しCいないため、シリサイ−主反応を
起こさない。
Subsequently, the semiconductor substrate II is heat-treated at 400°C to 500°C to silicide the titanium film 15 on the diffusion layer 13J- and the polysilicon film 14, and as shown in FIG. It's on the silicon film 14.'1. A titanium silicide film 16 is then formed. Here, since no butane film remains in the stepped portion, the titanium silicide film 1 on the diffusion layer 13 and on the polysilicon film I4
6 and the phenomenon that silicon in the diffusion layer 13 diffuses into the titanium film 15 on the film 12F due to field oxidation occurs.
Work. In addition, the titanium film 1 of the field oxide film 12F"
Since 5 is not in contact with silicon and C does not occur, the silicate main reaction does not occur.

続いて、フィールド酸化膜12F−にの未反応のチタン
膜15を化学的に除去rれば、拡散層13やポリシリコ
ン層14などの半導体部上にチタンシリサイド膜16が
、半導体基板上の段差部に沿って分割された状態で形成
される。
Subsequently, by chemically removing the unreacted titanium film 15 on the field oxide film 12F-, a titanium silicide film 16 is formed on the semiconductor parts such as the diffusion layer 13 and the polysilicon layer 14, forming a step on the semiconductor substrate. It is formed in a state where it is divided along the section.

以上のように例えば拡散層13およびポリシリコン嘩1
4は互いにショートす己ことなくシート砥抗i班を著し
く低減さfl、ノ、=ものとな乙。
As mentioned above, for example, the diffusion layer 13 and the polysilicon layer 1
4 significantly reduces the sheet grinding resistance without shorting each other.

ここで、−上記実施例では段差部においてチタン膜15
を斜め蒸着させ平坦部ではチタン粒子が密に蒸着する。
Here, - in the above embodiment, the titanium film 15 is
is deposited obliquely, and titanium particles are densely deposited on flat areas.

Cうにさせ、軽いエツチング1てより段差部に月着した
チタン膜15のみを選択的に除去する。また拡散層13
或いはポリシリコン膜14は、所定のパターンの拡ik
k層13の領域やポリシリコン膜14となるように酸化
膜やポリシリコン層をパターニングして形成するため必
ず上記拡散層13やポリシリコンH@14のパターンに
沿って段差が形成される。従つC1十記チタン膜15の
異常成長部Aのエツチング工程において、マスクパタ、
−ンなどを必要とせずに丁度上記拡散層13セポリシリ
コン膜14のパターンに沿いセルファラインでチタン膜
15が各領域ごとに分割され乙。
Then, only the titanium film 15 deposited on the stepped portion is selectively removed by light etching 1. Also, the diffusion layer 13
Alternatively, the polysilicon film 14 can be used to expand a predetermined pattern.
Since the oxide film or the polysilicon layer is patterned to form the region of the k layer 13 or the polysilicon film 14, a step is necessarily formed along the pattern of the diffusion layer 13 or the polysilicon H@14. Accordingly, in the etching process of the abnormal growth part A of the C10 titanium film 15, the mask pattern,
The titanium film 15 is divided into regions by self-aligning lines exactly along the pattern of the diffusion layer 13 and the polysilicon film 14 without the need for a conductor or the like.

なお、−上記実施例では拡散j膏13やポリシリコン膜
14と金属シリサイドを形成さ〜する金属としてチタン
を用いる場合につき述べたが、これはブータンの代り1
でモリブデン、タングステン。
In the above embodiment, titanium is used as the metal for forming the metal silicide with the diffusion paste 13 and the polysilicon film 14, but titanium is used instead of butane.
with molybdenum and tungsten.

タンタル、白金、コバルト、アルミ、ニウムなとシリコ
ンと反応1−金属シリーリ・・fドを形成するものであ
Jtば他のものでも良い。
Other materials may be used, such as tantalum, platinum, cobalt, aluminum, and nium, which react with silicon to form 1-metallic silicon.

また、上記実梅例では段差部を急峻にし−C段差部側止
1のチタン膜I5を、plめ蒸着する部会につき述べた
が、例えば第3図に示すようにブータンシリサイド膜を
分離した状態で形成させるべき部位の段差部Bを逆テー
パ状にして以下前述と同様の手順で分離したチタンシリ
サイド膜を形成することができる。この場合には、チタ
ン膜15が図のように段切れを起こし易く、段差部Bの
側面にチタンが充分に被着しないため、前記実施例と同
様にチタンの軽いエツチングによって段差部B付近のチ
タン膜を完全に除去することができ、金属シリサイド膜
間のショートやPN接合部の接合破壊などの発生を防止
できる0 〔発明の効果〕 以上のようにこの発明によれば、金属シリサイドを形成
する金属の金属膜を半導体基板の平坦部において密に被
着させ、段差部において異常被着させて後、この異常被
着部の金属膜を除去し、熱処理を行なうこと、にエリ、
例えば拡散層やポリシリコン膜等の低抵抗化を図るべき
各領域ごとに分割された金属シリサイド膜をシリコンの
露出した半導体基板」−に形成することができ、簡易な
手段にエリ歩留り0向上と装f1の高速化とを両立でき
る≧16樽体装置の製造方法を提供gろことができる0
In addition, in the above practical example, the step part was made steep and the titanium film I5 of the side stop 1 of the step part was vapor-deposited by pl, but for example, as shown in Fig. 3, the butane silicide film was separated. The step portion B at the portion to be formed can be made into a reverse tapered shape, and a separated titanium silicide film can be formed by following the same procedure as described above. In this case, the titanium film 15 tends to break off as shown in the figure, and titanium is not sufficiently adhered to the side surfaces of the stepped portion B. Therefore, as in the previous embodiment, the area near the stepped portion B is etched by light etching of titanium. It is possible to completely remove the titanium film and prevent the occurrence of short circuits between metal silicide films and breakdown of the PN junction.0 [Effects of the Invention] As described above, according to the present invention, metal silicide is formed. The method involves densely depositing a metal film on the flat parts of a semiconductor substrate and abnormally depositing it on the stepped parts, and then removing the metal film in the abnormally deposited parts and performing heat treatment.
For example, it is possible to form a metal silicide film divided into regions such as a diffusion layer or a polysilicon film in which low resistance is to be achieved on a semiconductor substrate with exposed silicon, and this is a simple method that can improve the yield by zero. It is possible to provide a method for manufacturing a ≧16 barrel body device that can simultaneously increase the speed of mounting f1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法なnシコ明する断
面図、jF 2図はこの発明の一実施例1係る半導体装
置の製造方法を説明rる断面図、第3図はこの発明の他
の実施例を説明する断面図である。 11・・・半導体基板、72F・・フィールド酸化膜、
12G・・・ゲート酸化膜、I3・・・拡散層、14・
・ポリシリコン膜、15・・チタン膜、16・・・ブー
タンシリサイド膜、A・・異常成長部、B・・・段差部
。 出願人代理人 弁理士  鈴 出 武 彦第1図 第2図 (a)
FIG. 1 is a sectional view illustrating a conventional method for manufacturing a semiconductor device, FIG. 2 is a sectional view illustrating a method for manufacturing a semiconductor device according to Embodiment 1 of the present invention, and FIG. FIG. 7 is a sectional view illustrating another embodiment. 11...Semiconductor substrate, 72F...Field oxide film,
12G...gate oxide film, I3...diffusion layer, 14.
- Polysilicon film, 15... Titanium film, 16... Butane silicide film, A... Abnormal growth part, B... Step part. Applicant's representative Patent attorney Takehiko Suzu Figure 1 Figure 2 (a)

Claims (2)

【特許請求の範囲】[Claims] (1)段差部を有する半導体基板表面に金属シリサイド
を形成する金属を上記半導体基板に対して略垂直に蒸着
させ、」―記半導体基板表面に上記金属から成る金属膜
を段差部において異常に、平坦部において密に形成させ
る工程と、」二記段差部に形成さJtた金属膜を除去す
る工程と、上記半導体基板を熱処理し上記平坦部に形成
された金属膜をシリサイド化させる工程とを具備するこ
とを特徴とする半導体装置の製造方法。
(1) Depositing a metal that forms metal silicide on the surface of a semiconductor substrate having a stepped portion substantially perpendicularly to the semiconductor substrate, and depositing a metal film made of the metal on the surface of the semiconductor substrate abnormally at the stepped portion. a step of forming the metal film densely on the flat portion; a step of removing the metal film formed on the stepped portion; and a step of heat-treating the semiconductor substrate to silicide the metal film formed on the flat portion. A method for manufacturing a semiconductor device, comprising:
(2)」−記金属シリサイドを形成′する金属としてモ
リフデン、タングステン、タンタル、コバルト、チタン
、白金、アルミニウムのいずれかを用いることを特徴と
する特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, characterized in that the metal forming the metal silicide is one of molyfdenum, tungsten, tantalum, cobalt, titanium, platinum, and aluminum.
JP2059383A 1983-02-10 1983-02-10 Manufacture of semiconductor device Granted JPS59150421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059383A JPS59150421A (en) 1983-02-10 1983-02-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059383A JPS59150421A (en) 1983-02-10 1983-02-10 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59150421A true JPS59150421A (en) 1984-08-28
JPH0150098B2 JPH0150098B2 (en) 1989-10-27

Family

ID=12031549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059383A Granted JPS59150421A (en) 1983-02-10 1983-02-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59150421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068612A (en) * 1983-09-26 1985-04-19 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS62235775A (en) * 1986-04-07 1987-10-15 Nippon Denso Co Ltd Semiconductor device and manufacture theeof
DE3908676A1 (en) * 1988-12-24 1990-06-28 Samsung Electronics Co Ltd Process for forming low-resistance contacts on at least two n<+>-/p<+>-type pre-ohmic zones of a large-scale integrated semiconductor circuit
JPH0590204A (en) * 1991-03-20 1993-04-09 Philips Gloeilampenfab:Nv Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068612A (en) * 1983-09-26 1985-04-19 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS62235775A (en) * 1986-04-07 1987-10-15 Nippon Denso Co Ltd Semiconductor device and manufacture theeof
DE3908676A1 (en) * 1988-12-24 1990-06-28 Samsung Electronics Co Ltd Process for forming low-resistance contacts on at least two n<+>-/p<+>-type pre-ohmic zones of a large-scale integrated semiconductor circuit
JPH0590204A (en) * 1991-03-20 1993-04-09 Philips Gloeilampenfab:Nv Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0150098B2 (en) 1989-10-27

Similar Documents

Publication Publication Date Title
JPS60201666A (en) Semiconductor device
EP0076105A2 (en) Method of producing a bipolar transistor
US4892845A (en) Method for forming contacts through a thick oxide layer on a semiconductive device
JP2809087B2 (en) Wiring formation method
KR100299386B1 (en) Gate electrode formation method of semiconductor device
JPS6123657B2 (en)
JPH0697297A (en) Semiconductor element provided with contact and its manufacture
JPS59150421A (en) Manufacture of semiconductor device
JP3191896B2 (en) Method for manufacturing semiconductor device
US4030952A (en) Method of MOS circuit fabrication
JP2001110782A (en) Method of manufacturing semiconductor device
JPS598356A (en) Fabrication of semiconductor integrated circuit device
JPH11288923A (en) Trench forming method and manufacture thereof
JPH0846044A (en) Manufacture of semiconductor device
JPS5951549A (en) Manufacture of integrated circuit device
JP3121777B2 (en) Method for manufacturing semiconductor device
JPS6347947A (en) Manufacture of semiconductor device
JP2991388B2 (en) Method for manufacturing semiconductor device
JPS6320383B2 (en)
JP2638285B2 (en) Method for manufacturing semiconductor device
JPH0682641B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS5947466B2 (en) Manufacturing method of semiconductor device
JPS5885529A (en) Manufacture of semiconductor device
JPH0629521A (en) Manufacture of mos field-effect transistor
JPH06151352A (en) Manufacture of semiconductor device