JPS59147966A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59147966A
JPS59147966A JP2419383A JP2419383A JPS59147966A JP S59147966 A JPS59147966 A JP S59147966A JP 2419383 A JP2419383 A JP 2419383A JP 2419383 A JP2419383 A JP 2419383A JP S59147966 A JPS59147966 A JP S59147966A
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
cycle
coil
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2419383A
Other languages
Japanese (ja)
Inventor
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2419383A priority Critical patent/JPS59147966A/en
Publication of JPS59147966A publication Critical patent/JPS59147966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷房及び除湿機能を荷する空気調和機に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner having cooling and dehumidifying functions.

従来用いられている冷房・除湿本川の空気嘔1和機の概
要全第1図に示す。冷房サイクル時は、圧縮機(1)よ
り吐出された冷媒は冷媒回路を切換える四方切換弁(以
下四方弁と云う> (2) e通って凝縮器(8)へ入
ジ、冷却水イ、口と熱交換し凝縮液化する。この液冷媒
は第2逆止弁(7)全通って絞り装置(6)で減圧され
、冷却コイ/l/ (4)に入いる。低圧液化冷媒は室
内空気Aと熱交換して蒸発し圧縮機(1)に戻る。そし
て、室内空気Aは冷却減湿され室内に吹出される。その
際、吹出空気(σ再熱コイ/l/ (3) f通遍する
が熱の受授は行われない。それは再熱コイ/L/ (3
)の一端には第1逆止弁(5)が設けられ冷媒の流入が
1且止されているので熱交換器として作用しないからで
ある。尚、この時、杓解きコイIV (3)の他端は四
方弁(2)を介し圧縮機(1)の吸入口と連通している
Figure 1 shows a complete overview of a conventionally used air conditioning/dehumidifying air conditioner by Honkawa. During the cooling cycle, the refrigerant discharged from the compressor (1) passes through a four-way switching valve (hereinafter referred to as the four-way valve) that switches the refrigerant circuit (2) e, enters the condenser (8), and coolant water enters the condenser (8). The liquid refrigerant passes through the second check valve (7), is depressurized by the throttling device (6), and enters the cooling coil (4).The low-pressure liquefied refrigerant flows through the indoor air It exchanges heat with A, evaporates, and returns to the compressor (1).Then, the indoor air A is cooled, dehumidified, and blown into the room. It spreads, but no heat is received.It is a reheat carp /L/ (3
This is because the first check valve (5) is provided at one end of ), and the inflow of refrigerant is stopped at one end, so that it does not function as a heat exchanger. At this time, the other end of the unladled carp IV (3) is in communication with the suction port of the compressor (1) via the four-way valve (2).

一方、除湿サイクル時は、四方弁(2)が切換えられ1
図示破線の回路を形成する。従って圧縮機(1)から吐
出された冷媒に四方弁(2) f i山って再熱コイ/
l/ (a)へ流入する。ここで、冷却コイl′V(4
)により冷却域′湿された室内空気Bと熱交換し凝縮液
化すムそして、室内空気Bは加熱され相対湿度が低下し
室内空気Cとして空白に吹出される。液冷媒は第1逆止
弁(5)を通って絞り装置(6)で減圧され冷却コイル
(4)で室内空KAと熱交換し、蒸発して圧縮機(1)
に戻る。この時、凝縮器(8)は四方弁(2)k介し圧
縮機(1)の吸入口と連面している。
On the other hand, during the dehumidification cycle, the four-way valve (2) is switched to 1.
The circuit indicated by the broken line in the figure is formed. Therefore, the refrigerant discharged from the compressor (1) is heated by the four-way valve (2).
l/ flows into (a). Here, the cooling coil l′V(4
), the indoor air B exchanges heat with the humidified indoor air B, condenses and liquefies it, and the indoor air B is heated, its relative humidity decreases, and is blown out into space as indoor air C. The liquid refrigerant passes through the first check valve (5), is depressurized by the throttling device (6), exchanges heat with the indoor air KA in the cooling coil (4), evaporates, and returns to the compressor (1).
Return to At this time, the condenser (8) communicates with the suction port of the compressor (1) via the four-way valve (2)k.

以上の回路−に於いて、冷房サイクル時、室内熱交神器
である再熱コイ1lJ(3)が冷凍サイクル上、活用さ
れていなり。また、冷房サイクルから除湿サイクルに切
換えた時には、それまで凝縮液化作用をしていた凝縮4
(8)と圧縮機(1)の吸入口が連通され除湿サイクル
から冷房サイクルに切換えた時にはそれまで凝、縮液化
作用をしていた再熱コイ7しく3)と圧縮機(1)の吸
入口が連通されるため、横w3器(8)あるいは再熱コ
イル(3)の内にあった高圧の液冷媒が圧力差によって
急激に移動し圧縮機(1)に流入すム即ち、運転サイケ
/L’を切換えたときいずれの場合にも急激な液バツク
を生じ圧縮機(1)を損傷する恐れがある。
In the above circuit, during the cooling cycle, the reheating coil 1lJ (3), which is the sacred treasure of indoor heat exchange, is not utilized in the refrigeration cycle. In addition, when switching from the cooling cycle to the dehumidification cycle, the condensation 4 that had been condensing and liquefying
(8) and the suction port of the compressor (1) are communicated, and when switching from the dehumidification cycle to the cooling cycle, the reheating coil 7, which had been performing condensation and liquefaction, and the suction port of the compressor (1) Because the ports are communicated, the high-pressure liquid refrigerant that was in the horizontal unit (8) or reheating coil (3) moves rapidly due to the pressure difference and flows into the compressor (1). /L', in either case, a sudden liquid back up may occur and damage the compressor (1).

この発明は上記欠点を改善するため提案されたもので、
冷房サイクル時は再熱コイ/l/(3)’に冷却器とし
て活用することにより、性能の向上を計ると共に、除湿
サイクルに切換えた時には凝縮器と冷却コイルの入口と
を連通させることにより、凝縮器内の液冷媒を冷却コイ
Iしに鮨、ひき、ここで蒸発させてから圧縮機へ吸引さ
せ、液バツクを防上すると共に冷房、除湿いずれのサイ
ケlしでも適正な冷媒量で良好な運転を行なう空気へ周
和機を提供するものである。
This invention was proposed to improve the above drawbacks.
During the cooling cycle, the reheating coil /l/(3)' is used as a cooler to improve performance, and when switching to the dehumidification cycle, the condenser and the cooling coil inlet are communicated. The liquid refrigerant in the condenser is ground into a cooling coil, where it is evaporated and then sucked into the compressor, which prevents the liquid from building up and is suitable for both cooling and dehumidification with an appropriate amount of refrigerant. It provides a circulator for the air that performs proper operation.

以下、この発明の一実施例を第2図(冷房運転時)、第
3図(除湿運転時)によって説明する。
An embodiment of the present invention will be described below with reference to FIG. 2 (during cooling operation) and FIG. 3 (during dehumidifying operation).

図中、第1図と同一符号は同一または相当部分を示I7
、(11)は凝縮器(8)と再熱コイ/l/ (3)の
入口を連通する第1の管路で、途中に第1絞ジ装置シ0
)と逆止弁翰11とが設けられている。Ozは凝縮器(
8)と第1の管路(11)とを側路し、四方弁(2)と
再熱コイA/ (3)を連面する第2の管路である。(
13)は再熱コイ/l/’(3)と冷却コイル(4)の
間に設けられた第2絞り11zを側路する第3の管路で
、途中に電磁弁開が&′けられている。この′畦磁弁轍
は冷房サイクル時に開路し、除湿サイクル時に閉路する
。(14)は四方弁(2)と冷却コイ71/(4)の入
口とを連通する第4の管路で、四方弁(2)が冷房サイ
ク/l/i形成しているときは四方弁(2)を介し、第
2の管路Q2)と連面し、除湿サイクルを形成している
時は四方弁(2)を介し凝縮器(8)と連通ずる。尚、
第4の管路θ4)途中ては第3絞り装置(241が設け
られている。(2θは再熱コイル(3)の出口部と第3
の管路時及び第2絞り装置@との間に設けた容器である
。次いで作用を説明する。
In the figure, the same reference numerals as in Figure 1 indicate the same or corresponding parts.I7
, (11) is a first pipe line that communicates the inlet of the condenser (8) and the reheating coil/l/ (3), with a first throttling device installed on the way.
) and a check valve holder 11 are provided. Oz is the condenser (
8) and the first pipe line (11), and is a second pipe line that connects the four-way valve (2) and the reheating coil A/ (3). (
13) is the third conduit that bypasses the second throttle 11z provided between the reheating coil /l/' (3) and the cooling coil (4), and the solenoid valve is opened &' cut in the middle. ing. This ridge valve track opens during the cooling cycle and closes during the dehumidification cycle. (14) is a fourth conduit that communicates the four-way valve (2) with the inlet of the cooling coil 71/(4), and when the four-way valve (2) forms a cooling cycle/l/i, the four-way valve (2), it communicates with the second conduit Q2), and when forming a dehumidification cycle, it communicates with the condenser (8) via the four-way valve (2). still,
A third throttling device (241) is provided in the middle of the fourth pipe line θ4.
This is a container provided between the pipe line and the second throttle device @. Next, the action will be explained.

冷房運転時(第2図)では四方弁(2)は切換えられ1
図示のように冷房サイクルを形成する。圧縮機(1)か
ら吐出された冷媒は四方弁(2)を面り凝縮器(8)へ
入り、冷却水イ、口と熱交換してda液化する。液化冷
媒は第1の管路(Illを通り、第1絞り装置−で減圧
される。この低圧液化冷媒は電磁弁(23)が開路して
いるので、冷却コイlしく4)と同じ圧力になっている
再熱コイ/L/ (3)へ流入し、冷却コイ/l/(4
)で冷却減湿された室内空気Bと外交換して、その一部
が蒸発すS0室内空気Bは、さらに冷却減湿され、室内
空気Cとして室内へ吹出される。−11f熱コイル(3
)でその一部が蒸発した冷媒は容器(26刀・ら電磁弁
(231を通って冷却コイlしく4)へ入り、ここで室
内空気Aと熱交換して蒸発した圧縮機(1)に戻る。
During cooling operation (Fig. 2), the four-way valve (2) is switched to 1.
Form a cooling cycle as shown. The refrigerant discharged from the compressor (1) passes through the four-way valve (2) and enters the condenser (8), where it exchanges heat with the cooling water and is liquefied. The liquefied refrigerant passes through the first pipe (Ill) and is depressurized by the first throttle device. Since the solenoid valve (23) is open, this low-pressure liquefied refrigerant reaches the same pressure as the cooling coil (4). The reheating carp /L/ (3) flows into the cooling carp /L/ (4
), the SO indoor air B, of which a portion evaporates, is further cooled and dehumidified and blown into the room as indoor air C. -11f heating coil (3
), the refrigerant that has partially evaporated enters the container (passing through the solenoid valve (231) and the cooling coil 4), where it exchanges heat with indoor air A and is evaporated into the compressor (1). return.

そして、室内空気Aは冷却減湿され前述の室内空気Bと
なる。この冷房サイクルに於いて、四方弁(2)を介し
、第2の管路θ2)と第4の管路時が連通しているが、
第4の管路(!すには第3叙り装置(2(転)が設けら
れているので、第1絞り装置内)で減圧された冷媒の大
半は前述のように再熱コイル(3)へ流入する。ごく一
部の冷媒は第2の管路(12)、四方弁(2)及び第4
の管路(14)を通って冷却コイル(4)へ流入するが
、冷却コイ/L/ (4)にて室内空気Aとの熱交換に
寄与するので損失にはならない。
Then, the indoor air A is cooled and dehumidified to become the above-mentioned indoor air B. In this cooling cycle, the second conduit θ2) and the fourth conduit are in communication via the four-way valve (2),
Most of the refrigerant depressurized in the fourth conduit (!) is provided with the third expansion device (2 (transition), so inside the first throttling device), as described above, the reheating coil (! ).A small portion of the refrigerant flows into the second pipe (12), the four-way valve (2) and the fourth pipe.
Although it flows into the cooling coil (4) through the pipe line (14), it does not result in a loss because it contributes to heat exchange with the indoor air A at the cooling coil (4).

一方、除湿運転時(第3図)に(・プ四1方弁(2)(
ケリ換えられ1図示のように除湿サイケ)’を形成する
On the other hand, during dehumidification operation (Fig. 3), (1-way valve (2)
The area is changed to form a dehumidifying chamber (1) as shown in the figure.

圧縮機(1)から吐出された冷媒は四方弁(2)を通り
凝縮器(8)及び第1.の管路(Illを側路して第2
の管路α2から再熱コイ/L/ (3)へ流入する。こ
こで冷媒は冷却コイ/l/ (4)で冷却減湿された室
内空気Bと熱交換し凝縮液化する。そして、室内空気B
は加熱され相対湿度が低下し、室内空%Cとして室内に
吹出される。また再熱コイ/1/ (3)の高圧液化冷
媒は容器陵へ流入し、電磁弁(23)が閉路しているの
で、第2絞カ装置t2’l−通り、ここで減圧される。
The refrigerant discharged from the compressor (1) passes through the four-way valve (2), the condenser (8) and the first. pipe (Ill is bypassed and the second
The reheated carp /L/ flows into (3) from the pipe α2. Here, the refrigerant exchanges heat with the indoor air B which has been cooled and dehumidified by the cooling coil/l/ (4) and is condensed and liquefied. And indoor air B
is heated, its relative humidity decreases, and it is blown into the room as indoor air %C. Further, the high-pressure liquefied refrigerant of the reheating carp/1/ (3) flows into the container ridge, and since the solenoid valve (23) is closed, it passes through the second throttle device t2'l-, where it is depressurized.

この低圧液化冷媒は冷却コイル(4)へ入り、室内空気
Aと熱交換し蒸発して圧縮機(1)へ戻り、室内空気A
は冷却減湿され室内空気Bとなる。この除湿サイクルに
於いて、第1の管路(11)及び凝縮器(8)と第4の
管路(14)とが四方弁(2)ヲ介して連通されるが、
第1の管路(l11に設けられた逆止弁因)により高圧
冷媒は凝縮器(8)へは流れない。但し2冷房サイクμ
から除湿サイケμへ切換えた直後は、凝縮器(8)内に
高圧液冷奴が存在しており、これが四方弁(2)から第
4の管路(I4)を通って低圧側へ移動するが、この高
圧液冷媒は第3絞り装@伐褐で減圧され、低圧液冷媒に
なって冷却コイA/(4)へ入り、蒸発する。従って、
サイクル切換え直後の急激な液バツクを生じなへそして
、凝縮器(8)内の高圧液冷媒を室内空気Aの冷却に活
用できる。
This low-pressure liquefied refrigerant enters the cooling coil (4), exchanges heat with the indoor air A, evaporates, returns to the compressor (1), and returns to the indoor air A.
is cooled and dehumidified and becomes indoor air B. In this dehumidification cycle, the first pipe line (11) and the condenser (8) are communicated with the fourth pipe line (14) via the four-way valve (2),
The high pressure refrigerant does not flow to the condenser (8) due to the first pipe line (due to the check valve provided in l11). However, 2 cooling cycle μ
Immediately after switching from to dehumidifying Psycheμ, there is a high-pressure liquid cooler in the condenser (8), which moves from the four-way valve (2) to the low-pressure side through the fourth pipe (I4). , this high-pressure liquid refrigerant is depressurized in the third throttling device, becomes a low-pressure liquid refrigerant, enters the cooling coil A/(4), and evaporates. Therefore,
The high-pressure liquid refrigerant in the condenser (8) can be used to cool the indoor air A without causing a sudden liquid back up immediately after the cycle is changed.

ところで、冷房サイクル時には、凝縮器(8)内に凝縮
液冷媒が存在し、かつ再熱コイ7しく3)内にも低圧の
気液混合冷媒が存在するのに対し、除湿サイケ7し時に
は、再熱コイ/しく3)内に凝縮液冷媒が存在するが、
凝縮器(8)内には低圧の過熱ガスしが存在しない。従
って、サイクルによって必要論fs量が異なり冷房サイ
ケlし峙の方が多くの冷媒量を必要とするが、この聖戦
調和機では、容器(251が設えられており、冷房サイ
クル時には、その内部に(は低圧の気液混合冷媒が収容
され、除湿サイクル時には高圧の液冷媒が収容される。
By the way, during the cooling cycle, condensed liquid refrigerant exists in the condenser (8), and low-pressure gas-liquid mixed refrigerant also exists in the reheating coil 7 (3), whereas during the dehumidifying cycle 7, There is condensate refrigerant in the reheat coil/work 3),
There is no low pressure superheated gas in the condenser (8). Therefore, the necessary amount of fs differs depending on the cycle, and cooling cycle requires a larger amount of refrigerant, but this holy war harmonizer is equipped with a container (251), and during the cooling cycle, there is a container (251) inside. (contains a low-pressure gas-liquid mixed refrigerant, and stores a high-pressure liquid refrigerant during the dehumidification cycle.

つまり、冷房時より除湿サイクル時の方がよ、!lll
多くの冷媒が容器t%に収容される。即ち、除湿サイク
ル時の余剰冷媒が茶器伐がで吸収されるので、余剰冷媒
が再熱コイ/L/(3)内に溜まって、熱交換能力を低
下させることがない。と云うことは、多くの冷媒量を必
要とする冷房サイクル時には容器侃θから冷媒が補充さ
れると云うことでもある。
In other words, it's better during the dehumidification cycle than during the cooling cycle! lll
Much refrigerant is accommodated in the container t%. That is, since the surplus refrigerant during the dehumidification cycle is absorbed by the tea set, the surplus refrigerant does not accumulate in the reheating carp/L/(3) and reduce the heat exchange capacity. This also means that during a cooling cycle that requires a large amount of refrigerant, refrigerant is replenished from the container side θ.

以上のように、この発明によれば、冷房サイクル時には
、冷却コイlしく4)に加えて再熱コイlしが冷却器と
して作用するので、性能が向上する。
As described above, according to the present invention, the reheating coil 1 acts as a cooler in addition to the cooling coil 4) during the cooling cycle, so that performance is improved.

また、冷房と除湿のサイクル切換え時に、非作用管路内
の液冷媒は冷却コイルで蒸発させられるので、サイケル
切換え直後の圧縮機への急激な液バツクが生じず、圧+
a機を損傷する恐れが無くなると共に、高圧液冷媒′f
c室内空気の冷却に有効利用できる。
In addition, when switching between cooling and dehumidification cycles, the liquid refrigerant in the non-operating pipes is evaporated by the cooling coil, so there is no sudden liquid backflow to the compressor immediately after the cycle is switched, and the pressure increases.
There is no risk of damaging the machine a, and high pressure liquid refrigerant 'f
cCan be effectively used to cool indoor air.

1だ史に、従来の冷房・除湿兼用空気調和機では、いず
れのサイクルに於いても、どちらかの逆止弁から冷媒が
漏れる恐れがあり、シかも漏れた冷媒は、そのまま圧縮
機(1)へ吸引されるので、性能がその分だけ低下する
が、この発明に於いては冷房サイクル時には上述のよう
な冷媒漏れによる性能低下が生じない。
Historically, in conventional air conditioners that combine cooling and dehumidification, there is a risk of refrigerant leaking from one of the check valves in any cycle, and the leaked refrigerant is directly transferred to the compressor (1). ), the performance is reduced accordingly, but in the present invention, the above-mentioned performance reduction due to refrigerant leakage does not occur during the cooling cycle.

その上、容器によって、サイクル内を循環する冷媒量が
調節されるので、冷房及び除湿サイケμともに良好な状
態で運転させることができる。
Furthermore, since the amount of refrigerant circulating in the cycle is regulated by the container, both the cooling and dehumidifying psychrometers μ can be operated in good conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷房・除湿兼用空気調和機のサイクル説
明図、第2図及び第3図はそれぞれこの発明の一実施例
を示す冷房運転及び除湿運転のサイケ/に’説明図でち
る。 図中、(1)は圧縮機、(2)は四方切換弁、(3)は
再熱コイ/し、(4)は冷却コイル、(8)は凝縮器、
(11)は第1の管路、(12+は第2の管路、(13
)は第3の管路、圓は第4の管路、(イ))は第1絞り
装置、シl)は逆止弁、し2は第2絞り装置、 123
1は電磁弁、(?θは容器である。 なお、同一符号は同一または相当部分を示す。 代理人 葛野信− 第1図 第2図
FIG. 1 is a cycle explanatory diagram of a conventional cooling/dehumidifying air conditioner, and FIGS. 2 and 3 are explanatory diagrams of a cooling operation and a dehumidifying operation, respectively, showing an embodiment of the present invention. In the figure, (1) is a compressor, (2) is a four-way switching valve, (3) is a reheating coil, (4) is a cooling coil, (8) is a condenser,
(11) is the first conduit, (12+ is the second conduit, (13)
) is the third pipe line, circle is the fourth pipe line, (a)) is the first throttle device, sil) is the check valve, and 2 is the second throttle device, 123
1 is a solenoid valve, (? θ is a container. The same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 圧縮機からの吐出冷媒を四方切換弁、凝縮器、第1絞装
置と第1逆止弁とが直列に設けられた第1の管路、再熱
コイル、途中に電磁弁が設けられた第3の管路及び冷却
コイIvを経て上記圧縮機へ吸入させる冷房サイクルと
、上記圧縮機からの吐出冷媒を上記四方切換弁、上記凝
縮器及び第1の管路を側路する@2の管路、上記再熱コ
イル、上記第3の管路を側路す。る第2絞り装置及び上
記冷却コイlしを経て上記圧縮機へ吸入させる除湿サイ
ケ/しと、上記冷房サイクV時は上記四方切換弁を介し
て上記第3のV Nと上記冷却コイル入口とを連通する
と共に、上記除湿サイクル時は上記四方切換弁を介して
上記凝縮器と上記冷却コイル入口とを連i山する第4の
管路と、上記再熱コイルの出口と上記第3の管路及び上
記第2絞り装置との間に設けた容器とを%fiえたこと
全特徴とする空気調和様。
The refrigerant discharged from the compressor is transferred through a four-way switching valve, a condenser, a first conduit in which a first throttling device and a first check valve are installed in series, a reheating coil, and a first conduit in which a solenoid valve is installed in the middle. a cooling cycle in which the refrigerant is sucked into the compressor via the pipe No. 3 and the cooling coil Iv, and a pipe @2 which bypasses the refrigerant discharged from the compressor through the four-way switching valve, the condenser and the first pipe. duct, the reheat coil, and the third conduit. The dehumidifying syringe/hydrogen is sucked into the compressor through the second throttling device and the cooling coil, and during the cooling cycle V, the air is connected to the third VN and the cooling coil inlet via the four-way switching valve. a fourth conduit connecting the condenser and the cooling coil inlet through the four-way switching valve during the dehumidification cycle, and a fourth conduit connecting the reheating coil outlet and the third conduit. %fi of the container provided between the channel and the second throttle device.
JP2419383A 1983-02-14 1983-02-14 Air conditioner Pending JPS59147966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419383A JPS59147966A (en) 1983-02-14 1983-02-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419383A JPS59147966A (en) 1983-02-14 1983-02-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS59147966A true JPS59147966A (en) 1984-08-24

Family

ID=12131484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419383A Pending JPS59147966A (en) 1983-02-14 1983-02-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59147966A (en)

Similar Documents

Publication Publication Date Title
JPH074794A (en) Air-conditioning equipment
JPS59147966A (en) Air conditioner
JPH0426847Y2 (en)
CN210832268U (en) Air conditioner indoor unit and air conditioner
JP3754272B2 (en) Air conditioner
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
JPH07151413A (en) Separate type air conditioner
JPH06257874A (en) Heat pump type air-conditioning machine
JPH09318178A (en) Air conditioner
JPH03170758A (en) Air conditioner
JPH02118365A (en) Air conditioner
JP2653749B2 (en) Heat pump package
JP2002156167A (en) Multi-chamber type air conditioner
JPH02247466A (en) Air conditioner
JPS59147965A (en) Air conditioner
JPS59147967A (en) Air conditioner
KR100243055B1 (en) Heating/cooling device of a separable air conditioner
CN112797496A (en) Air conditioner indoor unit, air conditioner and control method of air conditioner
JPH10141815A (en) Air conditioner
JPS59147963A (en) Air conditioner
KR20200121200A (en) An air conditioning apparatus
JPS632859Y2 (en)
JPS608291Y2 (en) Refrigeration cycle for air conditioners
CN112797497A (en) Air conditioner indoor unit and air conditioner
JPS5825232Y2 (en) Heat pump air conditioner