JPS59147965A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59147965A
JPS59147965A JP2419283A JP2419283A JPS59147965A JP S59147965 A JPS59147965 A JP S59147965A JP 2419283 A JP2419283 A JP 2419283A JP 2419283 A JP2419283 A JP 2419283A JP S59147965 A JPS59147965 A JP S59147965A
Authority
JP
Japan
Prior art keywords
cooling
coil
refrigerant
compressor
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2419283A
Other languages
Japanese (ja)
Inventor
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2419283A priority Critical patent/JPS59147965A/en
Publication of JPS59147965A publication Critical patent/JPS59147965A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷房及び除湿機能を有する空気調和機に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner having cooling and dehumidifying functions.

従来用いられている冷房、除湿兼用の空気調和機の概要
を第1図に示す。冷房サイクル時は、圧縮機(1)よシ
吐出された冷媒は冷媒回路を切換える四方切換弁(以下
四方弁と云う)(2)を通って凝縮器(8)へ入り、冷
却水イ、口と熱交換し凝縮液化する。この液冷媒は第2
逆止弁(7)ヲ通って絞り装置(6)で減圧され、冷却
コイlしく4)に入いる。低圧液化冷媒は室内空気Aと
熱交換して蒸発し圧縮機(1)に戻る。そして、室内空
気Aは冷却減湿され室内に吹出される。その際、吹出空
気は再熱コイ71’ (3) ’(r通過するが熱の受
授は行われない。それは再熱コイル(3)の一端には第
I逆止弁(5)が設けられ、冷媒の流入が阻止されてい
るので熱交換器として作用しないからである。尚、この
時、再熱コイ/L/(3)の他端は四方弁(2)ヲ介し
圧縮機(1)の吸入口と連通している。
Figure 1 shows an overview of a conventionally used air conditioner for both cooling and dehumidification. During the cooling cycle, the refrigerant discharged from the compressor (1) passes through the four-way switching valve (hereinafter referred to as four-way valve) (2) that switches the refrigerant circuit, enters the condenser (8), and enters the condenser (8). It exchanges heat with and condenses into liquid. This liquid refrigerant
It passes through the check valve (7), is depressurized by the throttle device (6), and enters the cooling coil (4). The low-pressure liquefied refrigerant exchanges heat with indoor air A, evaporates, and returns to the compressor (1). Then, the indoor air A is cooled, dehumidified, and blown into the room. At that time, the blown air passes through the reheating coil 71' (3) '(r, but no heat is received. This is because a No. I check valve (5) is installed at one end of the reheating coil (3). This is because the inflow of refrigerant is blocked, so it does not function as a heat exchanger.At this time, the other end of the reheat coil/L/(3) is connected to the compressor (1) via the four-way valve (2). ) communicates with the inlet.

一方、除湿サイクル時は、四方弁(2)が切換えられ、
図示破線の回路を形成する。従って圧縮m (1)から
吐出された冷媒は四方弁(2)を通って再熱コイyv 
(3)へ流入する。ここで、冷却コイtv (4)によ
り冷却、減湿された室内空気Bと熱交換し凝縮液化すも
そして、室内空気Bは加熱され相対湿度が低下し室内空
気Oとして室内に吹出される。液冷媒は第1逆止弁(f
i) ’r aつて絞り装置(6)で減圧され冷却コイ
/l/(4)で室内空気Aと熱交換し、蒸発して圧縮機
(1)に戻る。この時、凝縮器(8)は四方弁(2)ヲ
介し圧縮機(1)の吸入口と連通している。
On the other hand, during the dehumidification cycle, the four-way valve (2) is switched,
The circuit indicated by the broken line in the figure is formed. Therefore, the refrigerant discharged from the compressor m (1) passes through the four-way valve (2) and reheats the coil yv
Flows into (3). Here, the indoor air B is condensed and liquefied by exchanging heat with the indoor air B that has been cooled and dehumidified by the cooling coil tv (4).Then, the indoor air B is heated, its relative humidity is reduced, and it is blown into the room as indoor air O. The liquid refrigerant flows through the first check valve (f
i) The air is depressurized by the expansion device (6), exchanges heat with indoor air A by the cooling coil (4), evaporates, and returns to the compressor (1). At this time, the condenser (8) communicates with the suction port of the compressor (1) via the four-way valve (2).

以上の回路に於いて、冷房サイクル時、室内熱交換器で
ある再熱コイ7しく3)が冷凍サイケIし上、活用され
ていない。また、冷房サイクルから除湿サイクルに切換
えた時には、それまで凝縮液化作用をしていた凝縮器(
8)と圧縮機(1)の吸入口が連通され、除湿サイクル
から冷房サイクルに切換えた時には、それまで凝縮液化
作用をしていた再熱コイrv (3)と圧縮m (1)
の吸入口が連通されるため、凝縮器(8)するいは再熱
コイμ(3)の内にあった高圧の液冷媒が圧力差によっ
て急激に移動し圧縮機(1)に流入する。即ち、運転サ
イクIvf切換えたときいずれの場合にも急激な液パツ
クを生じ圧縮機(1)を損傷する恐れがある。
In the above circuit, during the cooling cycle, the reheat coil 7 (3), which is an indoor heat exchanger, is not utilized because it is refrigerated. In addition, when switching from the cooling cycle to the dehumidification cycle, the condenser that had previously performed the condensation and liquefaction function (
8) and the suction port of the compressor (1) are communicated, and when switching from the dehumidification cycle to the cooling cycle, the reheating coil RV (3) and compressor m (1), which had been condensing and liquefying, are connected.
Since the suction ports of the refrigerant refrigerant are communicated with each other, the high-pressure liquid refrigerant in the condenser (8) or the reheat coil μ(3) is rapidly moved by the pressure difference and flows into the compressor (1). That is, in either case, when the operating cycle Ivf is changed, a sudden liquid buildup may occur, which may damage the compressor (1).

この発明は上記欠点全改善するため提案されたもので、
冷房サイクル時は再熱コイtvf冷却器として活用する
ことにより、性能の向上を計ると共に、除湿サイクルに
切換えた時には凝縮器と冷却コイルの入口とを連通させ
ることにより、凝縮器内の液冷媒全冷却コイルに導ひき
、ここで蒸発させてから圧縮機へ吸引させ、液パツクを
防止す−ると共に冷房、除湿いずれの場合にも適正な冷
媒量で良好な運転を行なう空気調和機を提供するもので
ある。
This invention was proposed to improve all of the above drawbacks.
During the cooling cycle, the coil is used as a reheating coil TVF cooler to improve performance, and when switching to the dehumidification cycle, the condenser and cooling coil inlet are communicated, so that all of the liquid refrigerant in the condenser is removed. To provide an air conditioner which prevents liquid build-up by guiding the refrigerant to a cooling coil, evaporating it there, and then sucking it into a compressor, and which performs good operation with an appropriate amount of refrigerant in both cooling and dehumidification. It is something.

以下、この発明の実施例を第2図(冷房運転時)第3図
(除湿運転時)によって説明する。(2)中、第1図と
同一符号は同一または相当部分を示し、(11)は凝縮
器(8)と再熱コイ/l/ (3)の入口を連通する第
1の管路で、途中に第1絞り装置i f201と逆止弁
Ql)とが設けられている。(121は凝縮器(8)と
第1の管路(11)とを側路し、四方弁(2)と再熱コ
イIしく3)を連通する第2の管路である。0りは再熱
コイル(3)と冷却コイ/L/(4)の間に設けられた
第2絞りHfft e22を側路する第3の管路で、途
中に電磁弁(転))が設けられている。
Embodiments of the present invention will be described below with reference to FIG. 2 (during cooling operation) and FIG. 3 (during dehumidifying operation). In (2), the same reference numerals as in FIG. 1 indicate the same or corresponding parts, and (11) is a first pipe line that communicates the condenser (8) with the inlet of the reheating coil/l/ (3); A first throttle device i f201 and a check valve Ql) are provided in the middle. (121 is a second pipe line that bypasses the condenser (8) and the first pipe line (11), and communicates with the four-way valve (2) and the reheat coil 3). 0 is the third conduit that bypasses the second throttle Hfft e22 provided between the reheating coil (3) and the cooling coil (L/4), and a solenoid valve is installed in the middle. It is being

との電磁弁(篩は冷房サイクμ時に開路し、除湿サイク
シ時に閉路する。θ4)は四方弁(2)と冷却コイル(
4)の入口とを連通する第4の管路で、四方弁(2)が
冷房サイケ/l/’(H形成しているとき(は四方弁(
2)を介し、第2の管路(121と連部し、除湿サイク
/I/全形成している時は四方弁(2)を介し凝縮器(
8)と連通すム尚、第4のii’ @ Q41途中には
第3絞り装置動)が設けられている。弼は容器で、冷却
コイ/L/ (4)と再熱コイ/l/ (3)の間の風
路に設置&f、され室内空気Bと熱交換する。そして第
5の管路0υによって再熱コイlしく3)の入口部に連
通している。
The solenoid valve (the sieve opens during the cooling cycle μ and closes during the dehumidification cycle. θ4) connects the four-way valve (2) and the cooling coil (
4), when the four-way valve (2) is in the cooling psyche /l/' (H formation), the four-way valve (
2), it is connected to the second pipe line (121), and when the dehumidification cycle/I/full is being formed, it is connected to the condenser (121) via the four-way valve (2).
In addition, a third diaphragm device is provided in the middle of the fourth ii' @ Q41 which communicates with 8).弼 is a container that is installed in the air path between the cooling carp /L/ (4) and the reheating carp /L/ (3) and exchanges heat with indoor air B. The fifth pipe 0υ communicates with the inlet of the reheating coil 3).

次いで作用を説明する。Next, the action will be explained.

冷房運転時(第21図)では四方弁(2)は切換えられ
図示のように冷房サイクiv全形成する。従って圧縮機
(1)から吐出された冷媒は四方弁(2)全通シ凝縮器
(8)へ入り、冷却水イロと熱交換して凝縮液化する。
During cooling operation (FIG. 21), the four-way valve (2) is switched to complete the cooling cycle iv as shown. Therefore, the refrigerant discharged from the compressor (1) enters the condenser (8) through the four-way valve (2), exchanges heat with the cooling water, and is condensed and liquefied.

液化冷媒に第1の管路(11)を通り、第1絞り装置(
5)で減圧される。この低圧液化冷媒は電磁弁−が開路
しているので、冷却コイル(4)と同じ圧力になってい
る再熱コイ1v(3)へ流入し、冷却コイル(4)で冷
却減湿された室内空気Bと熱交換して、その一部が蒸発
する。室内空気Bは、さらに冷却減湿され、室内空気C
として室内へ吹出される。再熱コイtV (a)でその
一部が蒸発した冷媒は電磁弁(転))を通って冷却コイ
ル(4)へ入り、ここで室内空気Aと熱交換して蒸発し
圧縮機(1)に戻る。そして室内空気Aは冷却減湿され
前述の室内空気Bとなる。
The liquefied refrigerant passes through the first pipe line (11) and is connected to the first throttle device (
5) The pressure is reduced. Since the solenoid valve is open, this low-pressure liquefied refrigerant flows into the reheating coil 1v (3), which has the same pressure as the cooling coil (4), and the room is cooled and dehumidified by the cooling coil (4). It exchanges heat with air B and some of it evaporates. Indoor air B is further cooled and dehumidified to become indoor air C.
It is blown out into the room. The refrigerant that has partially evaporated in the reheating coil tV (a) passes through the solenoid valve (transmission) and enters the cooling coil (4), where it exchanges heat with indoor air A and evaporates, leading to the compressor (1). Return to Indoor air A is then cooled and dehumidified to become indoor air B described above.

この冷房サイクシに於いて、四方弁(2)ヲ介し、第2
の管路(121と第4の管路Q4)が連通しているが、
第4の管路Iには第3絞ジ装ff1f (24)が設け
られているので、第1絞り装置−)で減圧された冷媒の
大半は前述のように再熱コイ/l/(3)へ流入する。
In this cooling system, the second
The pipe line (121 and the fourth pipe Q4) is in communication, but
Since the fourth conduit I is provided with the third throttling device ff1f (24), most of the refrigerant depressurized by the first throttling device -) is reheated by the reheat coil/l/(3 ).

ごく一部の冷媒は、第2の管路02)%四方弁(2)及
び第4の管路α41を通って冷却コイV(4)へ流入す
るが、冷却コイル(4)にて室内空気Aとの熱交換に寄
与するので損失にはならない。また、容器□□□は室内
空気Bと熱交換するが、室内空気Bの温度は蒸発温度よ
フは高い。つまり、容器酋の内部圧力の飽和温度は室内
空気Bの温度よりも高い。従って、容器(イ)の内部に
は低圧の退勢ガスが溜っている。一方、除湿運転時(第
3図)には四方弁(2)は切換えられ図示のように除湿
サイケlしを形成する。圧縮機(1)から吐出された冷
媒は四方弁(2)ヲ通り凝縮器(8)及び第1の・管路
(11)を側路して第2の管路(121から再熱コイv
(3)へ流入する。ここで冷媒は冷却コイv (4)で
冷評減湿された空白空気Bと熱交換し凝縮液化する。そ
して、室内空気Bは加熱され相対湿度が低下し、室内空
気Cとして室内に吹出される。また再熱コイtv (3
)の高圧液化冷媒は°d磁弁(231が閉路しているの
で、第2絞り装置−全通り、ここで減圧される。この低
圧液化冷媒は冷却コイ/l/(4)へ入ジ室内空気Aと
熱交換し蒸発して圧縮機(1)へ戻り、室内空気Aは冷
却減湿され室内空気Bとなる。この除湿サイケ/l/に
於いて、第1の管路(11)及び凝縮器(8)と第4の
管路θ4)とが四方弁(2)を介し連通されるが、第1
の管路(11)に設けられた逆止弁嬶1により高圧冷媒
は凝m器(8)へは流れない。但し、冷房サイケμから
除湿サイケμへ切換えた直後は、凝縮器(8)内に高圧
液冷媒が存在して象り、これが四方弁(2)から第4の
管路(14)全曲って低圧側へ移動するが、この高圧液
冷媒は第3絞り装置(241で減圧され低圧液冷媒にな
って冷却コイIV (4)へ入ジ、蒸発する。
A small portion of the refrigerant flows into the cooling coil V (4) through the second pipe line 02)% four-way valve (2) and the fourth pipe line α41, but in the cooling coil (4) it flows into the indoor air. Since it contributes to heat exchange with A, there is no loss. Further, the container □□□ exchanges heat with the indoor air B, but the temperature of the indoor air B is higher than the evaporation temperature. In other words, the saturation temperature of the internal pressure of the container is higher than the temperature of the indoor air B. Therefore, low-pressure deactivated gas is stored inside the container (a). On the other hand, during dehumidification operation (FIG. 3), the four-way valve (2) is switched to form a dehumidification cycle as shown. The refrigerant discharged from the compressor (1) passes through the four-way valve (2), bypasses the condenser (8) and the first pipe (11), and then flows from the second pipe (121) to the reheating coil v.
Flows into (3). Here, the refrigerant exchanges heat with the blank air B which has been cooled and dehumidified by the cooling coil v (4), and is condensed and liquefied. Then, the indoor air B is heated, its relative humidity is reduced, and is blown into the room as indoor air C. Also reheat carp tv (3
) The high-pressure liquefied refrigerant is depressurized here through the second throttling device because the °d solenoid valve (231) is closed. This low-pressure liquefied refrigerant enters the cooling coil/l/(4) and enters the chamber. It exchanges heat with air A, evaporates, and returns to the compressor (1), and indoor air A is cooled, dehumidified, and becomes indoor air B. In this dehumidifying psych/l/, the first pipe line (11) and The condenser (8) and the fourth conduit θ4) communicate with each other via the four-way valve (2).
The high pressure refrigerant does not flow to the condenser (8) due to the check valve 1 provided in the conduit (11). However, immediately after switching from cooling Psycheμ to dehumidifying Psycheμ, high-pressure liquid refrigerant exists in the condenser (8), and this flows from the four-way valve (2) to the fourth pipe line (14). The high-pressure liquid refrigerant moves to the low-pressure side, but the pressure is reduced by the third throttle device (241), and it becomes a low-pressure liquid refrigerant, enters the cooling coil IV (4), and evaporates.

従って、サイクル切換え直後の急檄な液/<ツクを生じ
ない。そして、凝縮器(8)内の高圧液冷媒を室内空気
Aの冷却に利用できる。
Therefore, sudden liquid/<tsuku> does not occur immediately after cycle switching. The high-pressure liquid refrigerant in the condenser (8) can then be used to cool the indoor air A.

尚、除湿サイクル時、容器り181は間圧側圧力になっ
ており、かつ室内空気Bによって冷却される。
Note that during the dehumidification cycle, the container 181 is at the pressure side and is cooled by the indoor air B.

従って、48■0内に1は高圧液冷媒が溜る。除湿サイ
ケμ時は凝縮器(6)が低圧側に連通されるので、その
内部には、低圧の過熱ガスしか存在しない。
Therefore, high-pressure liquid refrigerant accumulates in 48 cm. Since the condenser (6) is connected to the low pressure side during dehumidification psyche μ, only low pressure superheated gas exists inside the condenser (6).

これに対し、冷房サイケ7し時には、凝縮器(8)内(
(凝縮液冷媒が存在し、かつ再熱コイyv (3)内に
もイ氏圧の気液混合冷媒が存在する。従って、冷房サイ
クμ時の方が多くの冷媒量を必要とするので、これに合
わせて冷媒を封入すると、除湿サイケμ時に冷゛媒量が
過剰になるが、容器−によって、この余剰冷媒が吸収さ
れる。即ち、多くの冷媒量を必要とする冷房サイクル時
には、その内部に低圧の過熱ガスが頻り、冷媒が過剰に
なる除湿サイクル時には、その内部VC&圧の液冷媒が
溜ると云う容器−の冷媒量調節機能によって、冷房文び
除湿いずれの運転も良好な性能が得られる。
On the other hand, when cooling the air conditioner 7, the inside of the condenser (8) (
(There is a condensate refrigerant, and there is also a gas-liquid mixed refrigerant at I degree pressure in the reheat coil yv (3). Therefore, a larger amount of refrigerant is required during the cooling cycle μ. If refrigerant is sealed accordingly, the amount of refrigerant will be excessive during dehumidification, but this excess refrigerant will be absorbed by the container.In other words, during the cooling cycle, which requires a large amount of refrigerant, During the dehumidification cycle, when low-pressure superheated gas frequently occurs inside and there is an excess of refrigerant, the container's refrigerant amount adjustment function allows the liquid refrigerant at the internal VC and pressure to accumulate, ensuring good performance in both cooling and dehumidification operations. can get.

以上のように、この発明によれば、冷房サイクル時には
、冷却コイjしく4)に加えて再熱コイ7しが冷却器と
して作用するので、性能が向上する。
As described above, according to the present invention, during the cooling cycle, the reheating coil 7 acts as a cooler in addition to the cooling coil 4), so that performance is improved.

また、冷房と除湿のサイクル切換え時に、非作用管路内
の液冷媒は冷却コイルで蒸発させられるので、サイケl
し切換え直後の圧縮機への8.徴な液パツクが生じず、
圧縮機全損傷する恐れが無くなると共に、高圧液冷媒全
室内空気の冷却に有効利用できる。
In addition, when switching between cooling and dehumidification cycles, the liquid refrigerant in the non-active pipes is evaporated by the cooling coil, so the cycle time is reduced.
8. To the compressor immediately after switching. No characteristic liquid spots are formed,
There is no risk of damage to the compressor, and the high-pressure liquid refrigerant can be effectively used to cool all room air.

更に、従来の冷房、除湿兼用空気調和機では、いずれの
サイケlしに於いても、どちらかの逆止弁から冷媒が漏
れる恐れがあり、しかも漏れた冷媒は、そのまま圧縮機
(1)へ吸引されるので、性能がその分だけ低下するが
、この発明に於いては冷房サイクル時には上述のような
冷媒漏れによる性能低下が生じない。その上、再熱コイ
ルの入口部、または出口部に連通ずる容器によって、サ
イケ7し内を循環する冷媒蓋が調節されるので冷房サイ
クル及び除湿サイケIしが共に良好な状態で運転させる
ことができる。
Furthermore, in conventional air conditioning and dehumidification air conditioners, there is a risk that refrigerant may leak from either check valve in any cycle, and the leaked refrigerant is directly transferred to the compressor (1). Since the refrigerant is sucked in, the performance is reduced accordingly, but in the present invention, the above-mentioned performance reduction due to refrigerant leakage does not occur during the cooling cycle. Furthermore, since the refrigerant lid circulating within the psychrometer 7 is regulated by the container communicating with the inlet or outlet of the reheating coil, both the cooling cycle and the dehumidifying psychrometer 1 can be operated in good condition. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(は従来の冷房・除湿兼用空気調和機のサイケl
し説1明図、第2図及び第3図はそれぞれこの発明の一
実施例を示す冷房運転及び除湿運転のサイケ7し説明晩
である。 図中、(1)は圧縮機2(2)は四方切換弁、(3)は
再熱コイル、(4)は冷却コイル、(8)は凝縮器、 
(11)は第1の管路、021は第2の管路、(13)
は第3の管路、(14)は第4の管路%(1荀は第5の
管路、(イ)′1は第1紋り装置(21)は逆止弁、i
2zは第2絞り装置、1231 (r!、 ’rK、磁
弁、26)は容器である。 なお、同一符号は同一または相当部分を示す。 第1図 第2図
Figure 1 (shows the psyche of a conventional air conditioner with both cooling and dehumidifying functions)
Figure 1, Figure 2 and Figure 3 each illustrate a cooling operation and a dehumidification operation according to an embodiment of the present invention. In the figure, (1) is the compressor 2 (2) is the four-way switching valve, (3) is the reheating coil, (4) is the cooling coil, (8) is the condenser,
(11) is the first pipe line, 021 is the second pipe line, (13)
is the third pipe line, (14) is the fourth pipe line, (1) is the fifth pipe line, (a) '1 is the first check valve, i
2z is a second throttle device, and 1231 (r!, 'rK, magnetic valve, 26) is a container. Note that the same reference numerals indicate the same or equivalent parts. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 圧縮機からの吐出冷媒を四方切換弁、凝縮器、第1絞り
装置と第1逆止弁とが直列に設けられた第1の管路、再
熱コイM、途中に電磁弁が設けられた第3の管路、及び
冷却コイIVf経て上記圧縮機へ吸入させる冷房サイク
ルと、上記圧縮機からの吐出冷媒を上記四方切換弁、上
記凝縮器及び第1の管路を側路する第2の管路、上記再
熱コイル上記第3の管路全側路する第2絞り装置及び上
記冷却コイ/L/ヲ経て上記圧縮機へ吸入させる除湿サ
イクルと、上記冷房サイクル時は上2四方切換弁を介し
て上記第2の管路と上記冷却コイル入口とを連通ずると
共(C上記除湿サイクル時は上記四方切換弁を介して上
記凝縮器と上記冷却コイル入口とを連通する第4の管路
と、上記冷却コイルと上記再熱コイルとの間の風路に置
かれた容器と、この容器とL記再熱コイルの入口部また
は出口部とを連通する第5の管路とを備えたことを特徴
とする空気調和機。
The refrigerant discharged from the compressor is connected to a four-way switching valve, a condenser, a first conduit in which a first throttling device and a first check valve are installed in series, a reheating coil M, and a solenoid valve installed in the middle. a cooling cycle in which refrigerant is drawn into the compressor via a third pipe line and a cooling coil IVf; and a second pipe in which refrigerant discharged from the compressor is routed through the four-way switching valve, the condenser and the first pipe line A dehumidification cycle in which the air is sucked into the compressor through the conduit, the reheating coil, the second throttling device which is routed entirely through the third conduit, and the cooling coil /L/wo, and the upper two four-way switching valves during the cooling cycle. (a fourth pipe that communicates the condenser and the cooling coil inlet via the four-way switching valve during the dehumidification cycle). a container placed in the air path between the cooling coil and the reheating coil, and a fifth pipe communicating the container with the inlet or outlet of the reheating coil L. An air conditioner characterized by:
JP2419283A 1983-02-14 1983-02-14 Air conditioner Pending JPS59147965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419283A JPS59147965A (en) 1983-02-14 1983-02-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419283A JPS59147965A (en) 1983-02-14 1983-02-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS59147965A true JPS59147965A (en) 1984-08-24

Family

ID=12131460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419283A Pending JPS59147965A (en) 1983-02-14 1983-02-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59147965A (en)

Similar Documents

Publication Publication Date Title
JP4079184B1 (en) Refrigeration unit heat source unit and refrigeration unit
US6338254B1 (en) Refrigeration sub-cooler and air conditioning dehumidifier
KR20200114031A (en) An air conditioning apparatus
JP2944507B2 (en) Air conditioner
JPS59147965A (en) Air conditioner
JPH0651756U (en) Cooling system
JP2641058B2 (en) Three-tube water-cooled heat pump unit
CN109237645B (en) Air conditioning system and control method thereof
JP3754272B2 (en) Air conditioner
WO2019189838A1 (en) Refrigeration device
JPH07151413A (en) Separate type air conditioner
JPS59147963A (en) Air conditioner
CN218915106U (en) Air conditioner system
JPS59147967A (en) Air conditioner
JPH11325637A (en) Air conditioner
JPH02118365A (en) Air conditioner
JPS59147966A (en) Air conditioner
KR20200121200A (en) An air conditioning apparatus
JPH0719665A (en) Air conditioner for vehicle
JP3092212B2 (en) Air conditioner
JPH0350466A (en) Air conditioner
KR100243055B1 (en) Heating/cooling device of a separable air conditioner
WO2019189748A1 (en) Refrigeration device
JP2002089934A (en) Air conditioner
JP3301828B2 (en) Air conditioner