WO2019189748A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2019189748A1
WO2019189748A1 PCT/JP2019/013970 JP2019013970W WO2019189748A1 WO 2019189748 A1 WO2019189748 A1 WO 2019189748A1 JP 2019013970 W JP2019013970 W JP 2019013970W WO 2019189748 A1 WO2019189748 A1 WO 2019189748A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
compressor
pressure
channel
Prior art date
Application number
PCT/JP2019/013970
Other languages
French (fr)
Japanese (ja)
Inventor
竹上 雅章
明敏 上野
堀田 卓也
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019189748A1 publication Critical patent/WO2019189748A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • This disclosure relates to a refrigeration apparatus.
  • This refrigeration apparatus includes a first use heat exchanger for refrigeration (refrigeration equipment) having a low evaporation temperature, and a second use heat exchanger for air conditioning whose evaporation temperature is higher than that of the first use heat exchanger.
  • Respective compressors first compressor and second compressor
  • first compressor and second compressor are connected to the respective heat exchangers, and the refrigerant evaporated in the first heat exchanger is sucked into the first compressor and second heat used.
  • the refrigerant evaporated in the exchanger is sucked into the second compressor whose suction pressure is lower than that of the first compressor.
  • the suction pipe of the first compressor and the suction pipe of the second compressor may be connected by a suction communication pipe, and a pressure control valve may be provided in the suction communication pipe.
  • the refrigeration apparatus of Patent Document 1 is also configured as such.
  • the second compressor has a higher suction pressure than the first compressor, when the cooling capacity of the second heat exchanger is insufficient, the shortage of the capacity is regarded as one of the refrigerant of the first heat exchanger. It was not possible to make up with the part.
  • An object of the present disclosure is to provide a refrigeration apparatus having a refrigerant circuit in which a plurality of heat exchangers having different evaporation temperatures are connected to a common heat source heat exchanger, and the cooling capacity of the heat exchanger having a high evaporation temperature is insufficient. In addition, it is to make up for the lack of ability.
  • the first aspect of the present disclosure is: A compression section (30), a heat source heat exchanger (22), and a plurality of utilization heat exchangers (83, 93) are provided, and the plurality of utilization heat exchangers (83, 93) are shared heat source heat exchangers (22 ) And a control unit (100) for controlling the operation of the refrigerant circuit (11).
  • the plurality of utilization heat exchangers (83, 93) includes a first utilization heat exchanger (83) and a second utilization heat exchanger (93),
  • the compressor (30) is connected to the first compressor (31) having a suction part connected to the first heat exchanger (83) and to the second heat exchanger (93).
  • the refrigerant circuit (11) includes a first auxiliary heat exchanger (110) having a first high-pressure channel (111) and a first low-pressure channel (112), and a refrigerant in the first low-pressure channel (112).
  • the first auxiliary heat exchanger (110) has the first high-pressure channel (111) connected to a first liquid channel (63) communicating with the first utilization heat exchanger (83),
  • the first low-pressure channel (112) is connected to a first branch channel (115) branched from the first liquid channel (63) and provided with a first pressure reducing mechanism (116).
  • the refrigerant flowing through the high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) are configured to exchange heat,
  • the evaporating temperature of the refrigerant in the first use heat exchanger (83) is lower than the evaporating temperature of the refrigerant in the second use heat exchanger (93).
  • the first utilization heat exchanger (83) flows if the first auxiliary heat exchanger (110) is not provided. A part of the refrigerant evaporates in the first low-pressure channel (112), and is sucked into the second compressor (41) through the first auxiliary suction channel (118). As a result, the amount of refrigerant sucked into the second compressor (41) can be increased to increase the amount of refrigerant circulating in the second heat exchanger (93) having a high evaporation temperature, so that the second heat exchanger (93) can be cooled. Increases ability.
  • a refrigeration apparatus comprising:
  • the cooling capacity of the first usage heat exchanger (83) when the cooling capacity of the first usage heat exchanger (83) is insufficient, a part of the refrigerant sucked from the second usage heat exchanger (93) to the second compressor (41) is removed.
  • the first compressor (31) can perform the operation of reducing the pressure by the pressure control valve (V5) of the suction communication channel (50).
  • V5 the pressure control valve of the suction communication channel (50)
  • the controller (100) includes a first refrigeration cycle for sucking the refrigerant evaporated in the first use heat exchanger (83) through the first compressor (31), and the second use heat exchanger (93).
  • the first The opening of the first pressure reducing mechanism (116) is adjusted so that the refrigerant pressure in the one low-pressure channel (112) becomes the suction pressure or intermediate pressure of the second compressor (41), and the first liquid channel A part of the refrigerant flowing through (63) is supplied from the first branch flow path (115) to the second compressor (41) to assist the cooling capacity of the second utilization heat exchanger (93). It is configured to perform auxiliary operation.
  • the first auxiliary operation is performed to increase the intake refrigerant amount of the second compressor (41) and evaporate. Since the refrigerant circulation amount of the second use heat exchanger (93) having a high temperature can be increased, the cooling capacity of the second use heat exchanger (93) can be increased.
  • the refrigerant circuit (11) includes a second auxiliary heat exchanger (120) having a second high-pressure channel (121) and a second low-pressure channel (122), and a refrigerant in the second low-pressure channel (122).
  • the first auxiliary heat exchanger (110) has the second high-pressure channel (121) connected to a second liquid channel (65) communicating with the second utilization heat exchanger (93),
  • the second low-pressure channel (122) branches from the second liquid channel (65) and is connected to a second branch channel (125) provided with a second pressure reducing mechanism (126).
  • the refrigerant flowing through the high-pressure channel (121) and the refrigerant flowing through the second low-pressure channel (122) are configured to exchange heat.
  • the cooling capacity of the 1st utilization heat exchanger (83) is insufficient, if the 2nd auxiliary heat exchanger (120) is not provided, it will flow to the 2nd utilization heat exchanger (93).
  • a part of the refrigerant evaporates in the second low pressure channel (122), and is sucked into the first compressor (31) through the second auxiliary suction channel (128).
  • the amount of refrigerant sucked into the first compressor (31) can be increased to increase the refrigerant flow rate of the first use heat exchanger (83) having a low evaporation temperature, so that the cooling capacity of the first use heat exchanger (83) Can be enhanced.
  • the controller (100) includes a first refrigeration cycle for sucking the refrigerant evaporated in the first use heat exchanger (83) through the first compressor (31), and the second use heat exchanger (93).
  • the opening of the second pressure reducing mechanism (126) is adjusted so that the refrigerant pressure in the low-pressure channel (122) becomes the suction pressure or intermediate pressure of the first compressor (31), and the second liquid channel (2) supplying a part of the refrigerant flowing through (65) to the first compressor (31) from the second branch flow path (125) to assist the cooling capacity of the first heat exchanger (83). It is configured to perform auxiliary operation.
  • the second auxiliary operation is performed to increase the intake refrigerant amount of the first compressor (31) and evaporate. Since the refrigerant circulation amount of the first use heat exchanger (83) having a low temperature can be increased, the cooling capacity of the first use heat exchanger (83) can be increased.
  • FIG. 1 is a piping system diagram of the refrigeration apparatus according to the first embodiment.
  • FIG. 2 is a table comparing operation modes.
  • FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling operation.
  • FIG. 4 is a view corresponding to FIG. 1 and showing the flow of the refrigerant in the cooling operation.
  • FIG. 5 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling / cooling operation.
  • FIG. 6 is a view corresponding to FIG. 1 illustrating the flow of the refrigerant in the heating operation.
  • FIG. 7 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the heating / cooling operation.
  • FIG. 8 is a diagram corresponding to FIG.
  • FIG. 10 is a flowchart showing the operation of the air conditioning capability assist operation.
  • FIG. 11 is a piping system diagram of the refrigeration apparatus according to the second embodiment.
  • FIG. 12 is a flowchart showing the operation of the cooling capacity assist operation.
  • FIG. 13 is a piping system diagram of the refrigeration apparatus according to the third embodiment.
  • Embodiment 1 The first embodiment will be described.
  • the refrigeration apparatus (10) is a refrigerator, freezer, showcase and other refrigeration equipment and refrigeration equipment (hereinafter collectively referred to as refrigeration) mainly used for business, Perform indoor air conditioning at the same time.
  • the refrigeration apparatus (10) includes an outdoor unit (20) installed outdoors, a cooling unit (80) for cooling the air in the cabinet, and an indoor unit (90 for performing indoor air conditioning) ) And a controller (100).
  • the number of refrigeration units (80) and indoor units (90) is not limited to one, and may be two or more.
  • These units (20, 80, 90) are connected to each other by four connecting pipes (12, 13, 14, 15) to constitute the refrigerant circuit (11).
  • a refrigeration cycle is performed by circulating the refrigerant.
  • the refrigerant in the refrigerant circuit (11) of the present embodiment is carbon dioxide.
  • a cooling heat exchanger (first utilization heat exchanger) (83) and an indoor heat exchanger (second utilization heat exchanger) (a plurality of utilization heat exchangers having different evaporation temperatures) ( 93) is connected in parallel to the outdoor heat exchanger (22), which is a common heat source heat exchanger.
  • the evaporating temperature of the refrigerant in the refrigeration cycle in the refrigerated heat exchanger (83) is lower than the evaporating temperature of the refrigerant in the indoor heat exchanger (93).
  • the outdoor unit (20) is installed outdoors.
  • the outdoor unit (20) is provided with an outdoor circuit (21).
  • the outdoor circuit (21) includes a first compressor (31), a second compressor (41), an outdoor heat exchanger (22), an outdoor expansion valve (23), a receiver (24), A cooling heat exchanger (25) is connected.
  • the first compressor (31) and the second compressor (41) constitute a compression unit (30) that compresses the refrigerant.
  • the first compressor (31) and the second compressor (41) are each configured in a two-stage compression type.
  • a 1st compressor (31) and a 2nd compressor (41) are comprised by the variable capacity type
  • the first compressor (31) has a first low-stage compression mechanism (31a) and a first high-stage compression mechanism (31b).
  • the refrigerant compressed by the first low stage compression mechanism (31a) is further compressed by the first high stage compression mechanism (31b).
  • the first compressor (31) includes a first suction pipe (first suction flow path) (32), a first relay pipe (33), a first discharge pipe (34), and a first oil return pipe (35). Is connected.
  • the first suction pipe (32) communicates with the suction port of the first low-stage compression mechanism (31a).
  • the inflow end of the first relay pipe (33) communicates with the discharge port of the first low-stage compression mechanism (31a).
  • the outflow end of the first relay pipe (33) communicates with the suction port of the first high-stage compression mechanism (31b).
  • the first discharge pipe (34) communicates with the discharge port of the first high-stage compression mechanism (31b).
  • a first intercooler (36) is connected to the first relay pipe (33).
  • Connected to the first oil return pipe (35) is a first flow rate control valve (37) having a variable opening.
  • the second compressor (41) has a second low-stage compression mechanism (41a) and a second high-stage compression mechanism (41b).
  • the refrigerant compressed by the second low stage compression mechanism (41a) is further compressed by the second high stage compression mechanism (41b).
  • the second compressor (41) includes a second suction pipe (second suction flow path) (42), a second relay pipe (43), a second discharge pipe (44), and a second oil return pipe (45). Is connected.
  • the second suction pipe (42) communicates with the suction port of the second low-stage compression mechanism (41a).
  • the inflow end of the second relay pipe (43) communicates with the discharge port of the second low-stage compression mechanism (41a).
  • the outflow end of the second relay pipe (43) communicates with the suction port of the second high-stage compression mechanism (41b).
  • the second discharge pipe (44) communicates with the discharge port of the second high-stage compression mechanism (41b).
  • a second intercooler (46) is connected to the second relay pipe (43).
  • a second flow rate control valve (47) having a variable opening is connected to the second oil return pipe (45).
  • the first oil separator (38) is connected to the first discharge pipe (34).
  • a second oil separator (48) is connected to the second discharge pipe (44).
  • the oil separated by the first oil separator (38) and the oil separated by the second oil separator (48) are cooled by the oil cooler (39).
  • the oil cooled by the oil cooler (39) is returned to the first compressor (31) via the first oil return pipe (35).
  • the oil cooled by the oil cooler (39) is returned to the second compressor (41) via the second oil return pipe (45).
  • the suction communication pipe (suction communication flow path) (50) is connected to the first suction pipe (32) and the second suction pipe (42).
  • the suction communication pipe (50) is provided with a pressure control valve (V5) having a variable opening.
  • V5 a pressure control valve having a variable opening.
  • the outflow end of the first discharge pipe (34) and the outflow end of the second discharge pipe (44) are connected to the merged discharge pipe (52).
  • the bridge circuit (70) constitutes a flow path switching mechanism.
  • the bridge circuit (70) can open and close the first to fourth flow paths (71, 72, 73, 74) connected in a bridge shape and the respective flow paths (71, 72, 73, 74).
  • the first flow path (71) has a first valve (V1)
  • the second flow path (72) has a second valve (V2)
  • the third flow path (73) has a third valve (V3).
  • the fourth valve (V4) is connected to the fourth flow path (74).
  • all of the four valves (V1, V2, V3, V4) are constituted by flow rate control valves whose opening degrees are variable.
  • valves (V1, V2, V3, V4) have a backflow prevention mechanism. Specifically, the valves (V1, V2, V3, V4) allow the refrigerant to flow in the directions indicated by the arrows in FIG. 1, and prohibit the refrigerant in the opposite direction.
  • the bridge circuit (70) has four connection points (C1, C2, C3, C4) from the first to the fourth.
  • the first connection point (C1) connects the inflow portion of the first flow path (71) and the inflow portion of the second flow path (72).
  • the second connection point (C2) connects the outflow portion of the first flow path (71) and the inflow portion of the third flow path (73).
  • the third connection point (C3) connects the outflow portion of the second flow path (72) and the inflow portion of the fourth flow path (74).
  • the fourth connection point (C4) connects the outflow portion of the third flow path (73) and the outflow portion of the fourth flow path (74).
  • the first connection point (C1) is connected to the first discharge pipe (34) and the second discharge pipe (44) (the discharge section of the compression section (30)) via the merging discharge pipe (52).
  • the second connection point (C2) is connected to the gas side end of the outdoor heat exchanger (22) (heat source heat exchanger).
  • a 3rd connection point (C3) is connected with the gas side edge part of an indoor heat exchanger (93) (2nd utilization heat exchanger).
  • the fourth connection point (C4) is connected to the second suction pipe (42) (the suction part of the compression part (30)) via the suction relay pipe (58).
  • the outdoor heat exchanger (22) constitutes a heat source heat exchanger.
  • the outdoor heat exchanger (22) is a fin-and-tube heat exchanger.
  • An outdoor fan (22a) is provided in the vicinity of the outdoor heat exchanger (22).
  • the refrigerant flowing through the outdoor heat exchanger (22) and the air blown by the outdoor fan (22a) exchange heat.
  • the first intercooler (36), the second intercooler (46), the oil cooler (39), and the outdoor heat exchanger (22) are adjacent to each other so as to share an outdoor fan (22a) and fins (not shown). Arranged.
  • the first pipe (61) is connected between the outdoor heat exchanger (22) and the receiver (24).
  • An outdoor expansion valve (23) is connected to the first pipe (61).
  • the outdoor expansion valve (23) is an electronic expansion valve having a variable opening.
  • the receiver (24) constitutes a container for storing the refrigerant.
  • the supercooling heat exchanger (25) has a high pressure side channel (25a) and a low pressure side channel (25b). In the supercooling heat exchanger (25), the refrigerant flowing through the high-pressure channel (25a) and the refrigerant flowing through the low-pressure channel (25b) exchange heat.
  • the second pipe (62) is connected between the receiver (24) and the high pressure side flow path (25a) of the supercooling heat exchanger (25).
  • the outflow part of the high-pressure side flow path (25a) of the supercooling heat exchanger (25) is a liquid pipe (first liquid pipe (first liquid flow path)) on the cold heat exchanger (83) side.
  • One end of the three pipes (63) is connected.
  • the first liquid branch pipe (63a) and the second liquid branch pipe (63b) are connected to the other end of the third pipe (63).
  • the first liquid branch pipe (63a) is connected to the liquid side end of the chilled heat exchanger (83) via the first liquid communication pipe (12).
  • the second liquid branch pipe (63b) is connected to the liquid side end of the indoor heat exchanger (93) via the second liquid communication pipe (14).
  • One end of the introduction pipe (53) is connected to the third pipe (63).
  • the pressure reducing valve (54) and the high-pressure side flow path (25a) are connected.
  • the pressure reducing valve (54) has a backflow prevention mechanism.
  • the pressure reducing valve (54) allows the refrigerant to flow in the direction indicated by the arrow in FIG. 1 and prohibits the refrigerant from flowing in the opposite direction.
  • the other end of the introduction pipe (53) is connected to the inflow end of the first introduction branch pipe (53a) and the inflow end of the second introduction branch pipe (53b).
  • the outflow end of the first introduction branch pipe (53a) is connected to the first relay pipe (33).
  • the outflow end of the second introduction branch pipe (53b) is connected to the second relay pipe (43).
  • a third flow rate control valve (55) having a variable opening is connected to the first introduction branch pipe (53a).
  • a fourth flow rate control valve (56) having a variable opening is connected to the second introduction branch pipe (53b).
  • the fourth pipe (64) is connected between the first pipe (61) and the third pipe (63).
  • a fifth pipe (65) which is a liquid pipe (second liquid pipe) on the indoor heat exchanger (93) side is connected between the first pipe (61) and the second liquid communication pipe (14). .
  • a second liquid branch pipe (63b) is connected to the fifth pipe (65).
  • One end of a gas vent pipe (67) is connected to the top of the receiver (24). The other end of the gas vent pipe (67) is connected to the introduction pipe (53) downstream of the pressure reducing valve (54).
  • a gas vent valve (68) is connected to the gas vent pipe (67).
  • the gas vent valve (68) is an expansion valve having a variable opening.
  • a check valve (CV) is provided for each.
  • Each check valve (CV) allows the refrigerant to flow in the direction indicated by each arrow in FIG. 1 and prohibits the refrigerant from flowing in the opposite direction.
  • the refrigeration unit (80) is installed in, for example, a refrigerated warehouse.
  • the refrigeration unit (80) is provided with a refrigeration circuit (81).
  • a first liquid communication pipe (12) is connected to the liquid side end of the refrigeration circuit (81).
  • a first gas communication pipe (13) is connected to the gas side end of the refrigeration circuit (81).
  • the chilling circuit (81) is provided with a chilling expansion valve (82) and a chilling heat exchanger (83) in order from the liquid side end.
  • the cold expansion valve (82) is an electronic expansion valve having a variable opening.
  • the chilled heat exchanger (83) constitutes a first use heat exchanger.
  • the refrigerated heat exchanger (83) is a fin-and-tube heat exchanger.
  • An internal fan (83a) is provided in the vicinity of the refrigerated heat exchanger (83).
  • the refrigerant flowing through the chilled heat exchanger (83) exchanges heat with the air blown by the internal fan (83a).
  • the gas side end of the chilled heat exchanger (83) is connected to the first suction pipe (32) of the first compressor (31) via the first gas communication pipe (13).
  • the indoor unit (90) is installed indoors.
  • the indoor unit (90) is provided with an indoor circuit (91).
  • a second gas communication pipe (15) is connected to the gas side end of the indoor circuit (91).
  • a second liquid communication pipe (14) is connected to the liquid side end of the indoor circuit (91).
  • the indoor circuit (91) is provided with an indoor expansion valve (92) and an indoor heat exchanger (93) in order from the liquid side end.
  • the indoor expansion valve (92) is an electronic expansion valve having a variable opening.
  • the indoor heat exchanger (93) constitutes a second utilization heat exchanger.
  • the indoor heat exchanger (93) is a fin-and-tube heat exchanger.
  • An indoor fan (93a) is provided in the vicinity of the indoor heat exchanger (93).
  • the refrigerant flowing through the indoor heat exchanger (93) and the air blown by the indoor fan (93a) exchange heat.
  • the gas side end of the indoor heat exchanger (93) is connected to the second gas communication pipe (15), the fourth flow path (74) of the bridge circuit (70), and the suction relay pipe (58) via the second gas communication pipe (15). It connects with the 2nd suction pipe (42) of a compressor (41).
  • the compression unit (30) of the outdoor unit (20) is sucked into the chilled heat exchanger (83) having a low evaporation temperature of the refrigeration cycle among the plurality of heat exchangers (83, 93).
  • the suction part (suction port) was connected to the first compressor (31) to which the part (suction port) was connected and the indoor heat exchanger (93) having a higher evaporation temperature than the cold heat exchanger (83) A second compressor (41).
  • the outdoor unit (20) is provided with the first auxiliary heat exchanger ( 110). That is, the first auxiliary heat exchanger (110) is a heat exchanger for assisting the capabilities of the second compressor (41) and the indoor heat exchanger (93).
  • the first auxiliary heat exchanger (110) has a first high-pressure channel (111) and a first low-pressure channel (112).
  • the first high-pressure channel (111) is connected to the third pipe (first liquid pipe) (63).
  • the refrigerant inflow end is connected to the first branch pipe (first branch channel) (115) branched from the third pipe (first liquid pipe) (63).
  • the first branch pipe (115) is provided with a first expansion valve as a first pressure reducing valve (first pressure reducing mechanism) (116).
  • first auxiliary heat exchanger (110) the refrigerant flowing through the first high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) exchange heat.
  • a first auxiliary suction pipe (first auxiliary suction flow path) (118) is connected to the refrigerant outflow end of the first low pressure flow path (112).
  • the first auxiliary suction pipe (118) is connected to the suction port of the second low-stage compression mechanism (41a), which is the suction part of the second compressor (41), via a suction relay pipe (58).
  • the first auxiliary suction pipe (118) may be connected to the suction port of the second high-stage compression mechanism (41b).
  • indices detected by these sensors include the temperature / pressure of the high-pressure refrigerant in the refrigerant circuit (11), the temperature / pressure of the low-pressure refrigerant, the temperature / pressure of the intermediate-pressure refrigerant, and the temperature of the refrigerant in the outdoor heat exchanger (22). , The temperature of the refrigerant in the cold heat exchanger (83), the temperature of the refrigerant in the indoor heat exchanger (93), the degree of suction superheat of each compressor (31, 41), the discharge superheat of each compressor (31, 41) Temperature, outdoor air temperature, internal air temperature, and indoor air temperature.
  • the controller (100) that is a control unit includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the controller (100) controls each device of the refrigeration apparatus (1) based on the operation command and the detection signal of the sensor. The operation of the refrigeration apparatus (1) is switched by the control of each device by the controller (100).
  • the controller (100) also controls the air conditioning capability auxiliary operation when the air conditioning capability is insufficient.
  • the operation of the refrigeration system includes a cooling operation, a cooling operation, a cooling / cooling operation, a heating operation, a heating / cooling operation, a heating / cooling heat recovery operation, a heating / cooling residual heat operation, And defrost operation.
  • the cooling unit (80) In the cooling operation, the cooling unit (80) is operated and the indoor unit (90) is stopped. In the cooling operation, the cooling unit (80) stops and the indoor unit (90) performs cooling. In the cooling / cooling operation, the cooling unit (80) is operated, and the indoor unit (90) performs cooling. In the heating operation, the cooling unit (80) stops and the indoor unit (90) performs heating. In any of the heating / cooling operation, the heating / cooling heat recovery operation, and the heating / cooling residual heat operation, the cooling unit (80) is operated, and the indoor unit (90) performs heating. In the defrost operation, the cooling unit (80) is operated, and an operation of melting frost on the surface of the outdoor heat exchanger (22) is performed.
  • the heating / cooling operation is executed under the condition that the required heating capacity of the indoor unit (90) is relatively large, and the insufficient amount of heat is taken in from the outside.
  • the heating / cooling residual heat operation is executed under the condition that the required heating capacity of the indoor unit (90) is relatively small, and an excessive amount of heat is released to the outside.
  • Heating / cooling heat recovery operation is performed under the condition that the required heating capacity of the indoor unit (90) is between heating / cooling operation and heating / cooling residual heat operation (conditions where cooling and heating are balanced). Executed.
  • each operation one or both of the first compressor (31) and the second compressor (41) are operated.
  • the pressure control valve (V5) is closed.
  • the pressure control valve (V5) is opened.
  • the first compressor (31) and the second compressor (41) are operated, the pressure control valve (V5) is opened except for the cooling / cooling operation and the heating / cooling operation.
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the first flow path (71) of the bridge circuit (70), and the outdoor heat exchanger (22 ).
  • the outdoor heat exchanger (22) the heat of the refrigerant is released to the outdoor air.
  • the refrigerant radiated by the outdoor heat exchanger (22) flows through the chilled heat exchanger (83) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25).
  • the refrigerated heat exchanger (83) the internal air is cooled by the evaporated refrigerant.
  • the refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) and the second compressor (41).
  • the refrigerant cooling operation for cooling the intermediate pressure refrigerant is appropriately performed as follows. At least a part of the refrigerant compressed by the first low-stage compression mechanism (31a) of the first compressor (31) flows through the first intercooler (36) via the first relay pipe (33). In the first intercooler (36), the heat of the refrigerant is released to the outdoor air. The refrigerant cooled by the first intercooler (36) is further compressed by the first higher stage compression mechanism (31b) of the first compressor (31). Similarly, at least a part of the refrigerant compressed by the second low-stage compression mechanism (41a) of the second compressor (41) passes through the second intercooler (46) via the second relay pipe (43). Flowing. In the second intercooler (46), the heat of the refrigerant is released to the outdoor air. The refrigerant cooled by the second intercooler (46) is further compressed by the second higher stage compression mechanism (41b) of the second compressor (41).
  • an injection operation for introducing the refrigerant that has flowed through the low pressure side flow path (25b) of the supercooling heat exchanger (25) into each compressor (31, 41) is appropriately performed.
  • the flow of the refrigerant during the injection operation is not shown.
  • Part of the refrigerant in the second pipe (62) flows into the introduction pipe (53).
  • the gas refrigerant in the receiver (24) flows into the introduction pipe (53) via the gas vent pipe (67).
  • the refrigerant flowing into the introduction pipe (53) is depressurized by the pressure reducing valve (54) and then flows through the low pressure side flow path (25b).
  • the heat of the refrigerant flowing through the high-pressure channel (25a) is imparted to the refrigerant flowing through the low-pressure channel (25b).
  • the refrigerant that has flowed out of the low-pressure channel (25b) is divided into the first introduction branch pipe (53a) and the second introduction branch pipe (53b).
  • the refrigerant in the first introduction branch pipe (53a) is introduced into the first high-stage compression mechanism (31b) of the first compressor (31) via the first relay pipe (33).
  • the refrigerant in the second introduction branch pipe (53b) is introduced into the second high-stage compression mechanism (41b) of the second compressor (41) via the second relay pipe (43).
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the first flow path (71) of the bridge circuit (70), and the outdoor heat exchanger (22 ).
  • the heat of the refrigerant is released to the outdoor air.
  • the refrigerant radiated by the outdoor heat exchanger (22) flows through the indoor heat exchanger (93) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25).
  • the indoor heat exchanger (93) the indoor air is cooled by the evaporating refrigerant.
  • the refrigerant evaporated in the indoor heat exchanger (93) passes through the fourth flow path (74) and the suction relay pipe (58) of the bridge circuit (70), and the first compressor (31) and the second compressor ( 41) Inhaled.
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the first flow path (71) of the bridge circuit (70), and the outdoor heat exchanger (22 ).
  • the outdoor heat exchanger (22) the heat of the refrigerant is released to the outdoor air.
  • the refrigerant dissipated in the outdoor heat exchanger (22) passes through the receiver (24), the high-pressure side flow path (25a) of the supercooling heat exchanger (25), and the cold heat exchanger (83) and the indoor heat exchange. Flows through the vessel (93).
  • the refrigerated heat exchanger (83) the internal air is cooled by the evaporated refrigerant.
  • the refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) through the first gas communication pipe (13).
  • the refrigerant evaporated in the indoor heat exchanger (93) is sucked into the second compressor (41) via the fourth flow path (74) and the suction relay pipe (58) of the bridge circuit (70).
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the second flow path (72) and the second gas connection pipe (15) of the bridge circuit (70). It flows through the indoor heat exchanger (93). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant.
  • the refrigerant radiated by the indoor heat exchanger (93) flows through the outdoor heat exchanger (22) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25).
  • the refrigerant absorbs heat from the room air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (22) passes through the third flow path (73) and the suction relay pipe (58) of the bridge circuit (70), and the first compressor (31) and the second compressor ( 41) Inhaled.
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the second flow path (72) and the second gas connection pipe (15) of the bridge circuit (70). It flows through the indoor heat exchanger (93). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant.
  • the refrigerant that dissipated heat in the indoor heat exchanger (93) passes through the receiver (24) and the high-pressure side flow path (25a) of the supercooling heat exchanger (25), and the cold heat exchange is performed in the outdoor heat exchanger (22). Flows through the vessel (83). In the outdoor heat exchanger (22), the refrigerant absorbs heat from the room air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (22) is sucked into the second compressor (41) via the third flow path (73) and the suction relay pipe (58) of the bridge circuit (70).
  • the internal air is cooled by the evaporated refrigerant.
  • the refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) through the first gas communication pipe (13).
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the second flow path (72) and the second gas connection pipe (15) of the bridge circuit (70). It flows through the indoor heat exchanger (93).
  • the indoor heat exchanger (93) the indoor air is heated by the radiating refrigerant.
  • the refrigerant radiated by the indoor heat exchanger (93) flows through the chilled heat exchanger (83) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25).
  • the refrigerated heat exchanger (83) the internal air is cooled by the evaporated refrigerant.
  • the refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) and the second compressor (41) via the first gas communication pipe (13).
  • the refrigerant compressed by the first compressor (31) and the second compressor (41) is divided into the first flow path (71) and the second flow path (72) of the bridge circuit (70). To do.
  • the refrigerant that has flowed out of the first flow path (71) flows through the outdoor heat exchanger (22). In the outdoor heat exchanger (22), the heat of the refrigerant is released to the outdoor air.
  • the refrigerant that has flowed out of the second flow path (72) flows through the indoor heat exchanger (93) via the second gas communication pipe (15). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant.
  • the refrigerant dissipated by the indoor heat exchanger (93) merges with the refrigerant dissipated by the outdoor heat exchanger (22), and passes through the high-pressure channel (25a) of the receiver (24) and supercooling heat exchanger (25). It flows through a chilled heat exchanger (83) via.
  • the refrigerated heat exchanger (83) the internal air is cooled by the evaporated refrigerant.
  • the refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) and the second compressor (41) via the first gas communication pipe (13).
  • the refrigerant flow in the defrost operation is the same as that in the cooling operation shown in FIG. That is, the refrigerant compressed by the first compressor (31) and the second compressor (41) dissipates heat in the outdoor heat exchanger (22). Thereby, it melts with frost on the surface of the outdoor heat exchanger (22). The refrigerant used for defrosting the outdoor heat exchanger (22) evaporates in the indoor heat exchanger (93), and is then sucked into the first compressor (31) and the second compressor (41).
  • the first refrigeration cycle for sucking the refrigerant evaporated in the cold heat exchanger (83) with the first compressor (31), and the refrigerant evaporated in the indoor heat exchanger (93) with the second compressor If the cooling capacity of the indoor heat exchanger (93) is insufficient in the operation state (the state of the cooling / cooling operation in FIG. 5) in which the second refrigeration cycle sucked in (41) is performed, air conditioning is performed according to the flowchart in FIG. Ability-assisted operation is performed.
  • the controller (100) in step ST11, (1) the second compressor for air conditioning (41) has the maximum frequency, and (2) there is a request for increasing the air conditioning capacity. (3) It is determined whether or not all three conditions that the first compressor for cooling (31) is not at the maximum frequency or air-conditioning priority is satisfied. If these three conditions are satisfied, the cooling capacity of the indoor heat exchanger (93) is insufficient even though the second compressor (41) is at the maximum capacity, and the indoor heat exchanger (93) The cooling capacity is below the cooling load.
  • the process proceeds to step ST12, and if the first auxiliary heat exchanger (110) is not provided, a part of the refrigerant that will flow to the cold heat exchanger (83) is changed to the first branch.
  • the first pressure reducing valve (116) of the pipe (115) (in the figure, the first pressure reducing valve is indicated as an air conditioning auxiliary expansion valve) is depressurized and evaporated in the first low pressure channel (112), and the first auxiliary suction pipe ( 118) is sucked into the second compressor (41) through the suction relay pipe (58).
  • the opening of the first pressure reducing valve (116) is adjusted so that the refrigerant pressure in the first low-pressure channel (112) becomes the suction pressure of the second compressor (41).
  • the first pressure reducing valve (116) is a refrigerant in the first low-pressure channel (112). The opening degree is adjusted so that the pressure becomes an intermediate pressure of the second compressor (41).
  • step ST11 the air conditioning capability assisting operation (assuming the cooling capability of the indoor heat exchanger (93) using a part of the refrigerant flowing through the first liquid pipe (63) ( First auxiliary operation) is performed. During this operation, the refrigerant is supercooled in the first high-pressure flow path (111), so that a reduction in the capacity of the chilled heat exchanger (83) is suppressed.
  • step ST11 When the condition of step ST11 is not satisfied, the operation for increasing the cooling capacity of the indoor heat exchanger (93) is not required, or the cooling capacity of the indoor heat exchanger (93) is set to the operation of the second compressor (41). There is room to increase the frequency. Therefore, in this case, the air conditioning capability auxiliary operation (first auxiliary operation) using the one auxiliary heat exchanger (110) is not performed. Therefore, in this case, the first pressure reducing valve (116) is fully closed in step ST13.
  • Embodiment 1 in a refrigeration apparatus having a refrigerant circuit (11) in which a plurality of heat exchangers (83, 93) having different evaporation temperatures are connected in parallel to a common heat source heat exchanger (22), the evaporation temperature
  • the first compressor (31) connected to the cold heat exchanger (83) having a low temperature and the second compressor connected to the indoor heat exchanger (93) having a higher evaporation temperature than the first compressor (31)
  • the machine (41) constitutes a compression section (30).
  • first high-pressure channel (111) and the first low-pressure channel (112) are provided, and the refrigerant flowing through the first high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) are heated.
  • a first auxiliary heat exchanger (110) for exchanging is provided, and the refrigerant outflow side of the first low-pressure channel (112) and the suction portion of the second compressor (41) are connected by the first auxiliary suction pipe (118). is doing.
  • the cooling capacity of the indoor heat exchanger (93) is below the cooling load and the cooling capacity is insufficient in the cooling / cooling operation state where the second refrigeration cycle that sucks in the second compressor (41) is performed.
  • the air conditioning capability auxiliary operation (first auxiliary operation) can be performed.
  • the first auxiliary heat exchanger (110) if the first auxiliary heat exchanger (110) is not provided, a part of the refrigerant flowing to the cold heat exchanger (83) is the first low-pressure channel.
  • the refrigerant is diverted to (112) and evaporated by exchanging heat with the refrigerant in the first high-pressure channel (111).
  • the evaporated refrigerant is sucked into the second compressor (41) through the first auxiliary suction pipe (118).
  • the amount of refrigerant sucked into the second compressor (41) can be increased to increase the amount of refrigerant circulating in the indoor heat exchanger (93) having a high evaporation temperature, so that the cooling capacity of the indoor heat exchanger (93) can be increased. .
  • the cooling capacity of the indoor heat exchanger (93) cannot be increased.
  • the cooling capacity of the indoor heat exchanger (93) can be increased. Therefore, it becomes possible to cope with a wider range of operating conditions.
  • a pressure control valve (V5) whose opening degree can be adjusted between the first suction pipe (32) of the first compressor (31) and the second suction pipe (42) of the second compressor (41).
  • the suction communication pipe (50) provided with is connected.
  • the cooling capacity of the indoor heat exchanger (93) is increased, but also part of the refrigerant flowing out of the indoor heat exchanger (93) is reduced in pressure by the pressure regulating valve (V5). Since the compressor (31) can be inhaled, the cooling capacity of the cold heat exchanger (83) can be increased by increasing the refrigerant circulation amount of the cold heat exchanger (83).
  • carbon dioxide is used as the refrigerant. For this reason, the influence of global warming can be mitigated.
  • Embodiment 2 ⁇ Embodiment 2 >> Embodiment 2 will be described.
  • Embodiment 2 is an example in which a second auxiliary heat exchanger (120) is further provided in the refrigeration apparatus (10) of Embodiment 1.
  • the second auxiliary heat exchanger (120) is provided in the outdoor unit (20) in order to compensate for the shortage of capacity of the first compressor (31) that sucks and compresses the refrigerant flowing through the cold heat exchanger (83). It has been. That is, the second auxiliary heat exchanger (110) is a heat exchanger for assisting the capacities of the first compressor (31) and the chilled heat exchanger (83).
  • the second auxiliary heat exchanger (120) has a second high-pressure channel (121) and a second low-pressure channel (122).
  • the second high-pressure channel (121) is connected to the fifth pipe (second liquid pipe) (65).
  • the second low-pressure channel (122) has a refrigerant inflow end connected to a second branch pipe (second branch channel) (125) branched from the third pipe (first liquid pipe) (63).
  • the second branch pipe (125) is provided with a second expansion valve as a second pressure reducing valve (second pressure reducing mechanism) (126).
  • heat is exchanged between the refrigerant flowing through the second high-pressure channel (121) and the refrigerant flowing through the second low-pressure channel (122).
  • a second auxiliary suction pipe (second auxiliary suction flow path) (128) is connected to the refrigerant outflow end of the second low pressure flow path (122).
  • the second auxiliary suction pipe (128) is connected to the suction port of the first low-stage compression mechanism (31a), which is the suction portion of the first compressor (31), via the first suction pipe (32). .
  • the second auxiliary suction pipe (128) may be connected to the suction port of the first high-stage compression mechanism (31b).
  • the refrigerant circuit (11) of the second embodiment is configured in the same manner as in the first embodiment except that a second auxiliary heat exchanger (120) is added.
  • the refrigeration apparatus (1) is similar to the first embodiment in the cooling operation, cooling operation, cooling / cooling operation, heating operation, heating / cooling operation, heating / cooling heat recovery operation. Heating / cooling preheating operation and defrosting operation can be performed.
  • the cooling capacity of the cooling heat exchanger (83) is also insufficient during the cooling / cooling operation of FIG. Can perform the cooling capacity assisting operation according to the flowchart of FIG.
  • step ST21 the controller (100) (1) the first compressor (31) for cooling is at the maximum frequency, and (2) the cooling capacity is increased. There is a request, and it is determined whether or not all the three conditions that (3) the second compressor (41) for air conditioning is not at the maximum frequency or the cooling priority is satisfied are satisfied. If these three conditions are satisfied, the cooling capacity of the chilled heat exchanger (83) is insufficient even though the first compressor (31) has the maximum capacity, and the chilled heat exchanger (83 ) Cooling capacity is below the cooling load.
  • the process proceeds to step ST22, and if the second auxiliary heat exchanger (120) is not provided, a part of the refrigerant that flows to the indoor heat exchanger (93) is removed from the second branch pipe.
  • the second pressure reducing valve (126) of (125) (in the figure, the second pressure reducing valve is indicated as a cooling auxiliary expansion valve) is depressurized and evaporated in the second low pressure flow path (122), and the second auxiliary suction pipe ( 128) to the first compressor (31) through the first suction pipe (32).
  • the opening of the second pressure reducing valve (126) is adjusted so that the refrigerant pressure in the second low-pressure channel (122) becomes the suction pressure of the first compressor (31).
  • the second pressure reducing valve (126) is a refrigerant in the second low-pressure channel (122). The opening degree is adjusted so that the pressure becomes an intermediate pressure of the first compressor (31).
  • step ST21 the cooling capacity assistance that assists the cooling capacity of the cooling heat exchanger (83) using a part of the refrigerant flowing through the second liquid pipe (65).
  • Operation (second auxiliary operation) is performed. During this operation, the refrigerant is supercooled in the second high-pressure channel (121), so that the capacity reduction of the indoor heat exchanger (93) is suppressed.
  • step ST21 When the condition of step ST21 is not satisfied, an operation for increasing the cooling capacity of the chilled heat exchanger (83) is not required, or the cooling capacity of the chilled heat exchanger (83) is set to the first compressor (31). There is room to increase the operating frequency of Therefore, in this case, the cooling capacity auxiliary operation (second auxiliary operation) using the second auxiliary heat exchanger (120) is not performed. Therefore, in this case, the second pressure reducing valve (126) is fully closed in step ST23.
  • Embodiment 2 In this Embodiment 2, it has the 2nd high pressure channel (121) and the 2nd low pressure channel (122), and flows through the 2nd high pressure channel (121) and the 2nd low pressure channel (122).
  • a second auxiliary heat exchanger (120) for exchanging heat with the refrigerant is provided, and the refrigerant outlet side of the second low-pressure channel (122) and the suction portion of the first compressor (31) are connected to the first auxiliary suction pipe ( 118).
  • the cooling capability of the cooling heat exchanger (83) is reduced.
  • a cooling capacity auxiliary operation (second auxiliary operation) can be performed.
  • the cooling capacity auxiliary operation can be performed using the second auxiliary heat exchanger (120), so it is possible to cope with a wider range of operating conditions. become.
  • Embodiment 3 In the refrigeration apparatus (10), a heat exchanger (85) that exchanges heat between a heat medium such as water and a refrigerant may be used as the second heat exchanger.
  • a heat exchanger (85) for generating hot water and cold water is provided instead of the indoor heat exchanger (93) of Embodiment 1.
  • the heat exchanger (85) is connected to the outdoor circuit (21).
  • An expansion valve (86) that functions in the same manner as the indoor expansion valve (92) of the embodiment is connected to the liquid side of the heat exchanger (85).
  • the heat exchanger (85) has a refrigerant channel (85a) and a heat medium channel (85b). In the heat exchanger (85), the refrigerant and the heat medium (water) exchange heat.
  • the heat exchanger (85) When the heat exchanger (85) functions as a radiator, the water in the heat medium channel (85b) is heated by the refrigerant in the refrigerant channel (85a). This water is stored in the tank (87) as hot water.
  • the heat exchanger (85) When the heat exchanger (85) functions as an evaporator, the water in the heat medium flow path (85b) is cooled by the refrigerant in the refrigerant flow path (85a). This water is stored in the tank (87) as cold water. Hot water and cold water stored in the tank (87) are supplied to the object by a pump (88).
  • the first auxiliary heat exchanger (110) and the second auxiliary heat exchanger (120), which are connected to each other in the same manner as in the second embodiment, are provided. Therefore, since the air conditioning capability assist operation and the cooling capacity assist operation can be performed as in the second embodiment, the same effects as those of the embodiment 2 can be obtained with respect to the air conditioning capability assist and the cooling capacity assist.
  • the first branch pipe (115) is connected to the third pipe (63) (first liquid branch) on the downstream side of the first high-pressure channel (111) of the first auxiliary heat exchanger (110).
  • the pipe may be branched from the pipe (63a) and connected to the refrigerant inflow side of the first low-pressure channel (112) via the first pressure reducing mechanism (116).
  • a first auxiliary suction pipe (118) is connected to the refrigerant outflow side of the first low-pressure channel (112).
  • the second branch pipe (125) branches from the fifth pipe (65) on the downstream side of the second high-pressure channel (121) of the second auxiliary heat exchanger (120), and the second branch pipe (125)
  • coolant inflow side of a 2nd low pressure flow path (122) via a pressure reduction mechanism (126) may be sufficient.
  • a second auxiliary suction pipe (128) is connected to the refrigerant outflow side of the second low-pressure channel (122).
  • the first pressure reducing mechanism (116) provided in the first branch pipe (115) and the second pressure reducing mechanism (126) provided in the second branch pipe (125) are the first high pressure channel (111). Or on the upstream side or the downstream side of the second high-pressure channel (121).
  • the refrigerant in the refrigerant circuit (11) is not limited to carbon dioxide, and other refrigerants such as an HFC refrigerant may be used.
  • the refrigeration cycle may be a so-called critical cycle in which the refrigerant is compressed to a critical pressure or higher, or may be a so-called subcritical cycle in which the refrigerant is compressed to a pressure lower than the critical pressure.
  • the first compressor (31) and the second compressor (41) may be of a single stage type.
  • the 1st utilization heat exchanger may cool the inside of a freezer, and may be provided in the indoor unit only for cooling.
  • a flow path switching mechanism using a plurality of four-way switching valves or the like may be provided instead of the bridge circuit (70).
  • the present disclosure is useful for a refrigeration apparatus.
  • Refrigeration equipment 11 Refrigerant circuit 22 Outdoor heat exchanger (heat source heat exchanger) 30 Compressor 31 First compressor 32 First suction pipe (first suction flow path) 41 1st compressor 42 2nd suction pipe (2nd suction flow path) 50 Suction communication pipe (suction communication flow path) 63 Third pipe (first liquid pipe (first liquid flow path)) 83 Refrigerated heat exchanger (1st heat exchanger) 93 Indoor heat exchanger (second heat exchanger) 100 controller (control unit) 110 First auxiliary heat exchanger 111 First high-pressure channel 112 First low-pressure channel 115 First branch pipe (first branch channel) 116 First decompression mechanism 118 First auxiliary suction pipe (first auxiliary suction flow path) 120 Second auxiliary heat exchanger 121 Second high pressure flow path 122 Second low pressure flow path 125 Second branch pipe (second branch flow path) 126 Second decompression mechanism 128 Second auxiliary suction pipe (first auxiliary suction flow path) V5 pressure regulating valve

Abstract

A refrigeration device (10), having a refrigerant circuit (11) in which a cooling device heat exchanger (83) and an indoor heat exchanger (93) are connected to a common-use outdoor heat exchanger (22), is provided with a first auxiliary heat exchanger (110) having a first high-pressure flow channel (111) and a first low-pressure flow channel (112), wherein the first high-pressure flow channel (111) is connected to the cooling device heat exchanger (83) which has a lower evaporation temperature, while a refrigerant outflow side of the first low-pressure flow channel (112) and a refrigerant intake part of a second compressor (41) are connected to each other via a first auxiliary intake pipe (118).

Description

冷凍装置Refrigeration equipment
 本開示は、冷凍装置に関するものである。 This disclosure relates to a refrigeration apparatus.
 従来、複数の利用熱交換器と共用の熱源熱交換器を備え、各利用熱交換器で蒸発温度が異なる運転を行う冷凍装置がある(特許文献1参照)。この冷凍装置は、蒸発温度の低い冷設(冷凍設備)用の第1利用熱交換器と、第1利用熱交換器よりも蒸発温度が高い空調用の第2利用熱交換器とを備えている。各利用熱交換器にはそれぞれ対応する圧縮機(第1圧縮機,第2圧縮機)が接続され、第1利用熱交換器で蒸発した冷媒は第1圧縮機に吸入され、第2利用熱交換器で蒸発した冷媒は第1圧縮機よりも吸入圧力が低い第2圧縮機に吸入される。 Conventionally, there is a refrigeration apparatus that is provided with a heat source heat exchanger that is shared with a plurality of heat exchangers and that operates at different evaporation temperatures in each heat exchanger (see Patent Document 1). This refrigeration apparatus includes a first use heat exchanger for refrigeration (refrigeration equipment) having a low evaporation temperature, and a second use heat exchanger for air conditioning whose evaporation temperature is higher than that of the first use heat exchanger. Yes. Respective compressors (first compressor and second compressor) are connected to the respective heat exchangers, and the refrigerant evaporated in the first heat exchanger is sucked into the first compressor and second heat used. The refrigerant evaporated in the exchanger is sucked into the second compressor whose suction pressure is lower than that of the first compressor.
特開2014-070829号公報JP 2014-070829 A
 この種の冷凍装置では、第1圧縮機の吸入配管と第2圧縮機の吸入配管を吸入連通管で接続し、吸入連通管に圧力調節弁を設けることがある。特許文献1の冷凍装置もそのように構成されている。 In this type of refrigeration system, the suction pipe of the first compressor and the suction pipe of the second compressor may be connected by a suction communication pipe, and a pressure control valve may be provided in the suction communication pipe. The refrigeration apparatus of Patent Document 1 is also configured as such.
 このように構成すると、圧力調節弁を調節することにより、第2利用熱交換器から第2圧縮機へ吸入される冷媒の一部を減圧して、第1圧縮機で吸入する動作を行うことができる。したがって、蒸発温度の低い第1利用熱交換器の冷却能力が冷却負荷に対して不足しているときに、第2利用熱交換器の冷媒の一部が第1利用熱交換器に吸入されるので、冷却能力の不足が補われる。 If comprised in this way, by adjusting a pressure control valve, decompressing a part of refrigerant | coolant suck | inhaled from a 2nd utilization heat exchanger to a 2nd compressor, and performing the operation | movement suck | inhaled with a 1st compressor Can do. Therefore, when the cooling capacity of the first usage heat exchanger having a low evaporation temperature is insufficient with respect to the cooling load, a part of the refrigerant of the second usage heat exchanger is sucked into the first usage heat exchanger. Therefore, the lack of cooling capacity is compensated.
 しかしながら、第2圧縮機は第1圧縮機よりも吸入圧力が高いため、第2利用熱交換器の冷却能力が不足しているときは、その能力不足を第1利用熱交換器の冷媒の一部を用いて補うことはできなかった。 However, since the second compressor has a higher suction pressure than the first compressor, when the cooling capacity of the second heat exchanger is insufficient, the shortage of the capacity is regarded as one of the refrigerant of the first heat exchanger. It was not possible to make up with the part.
 本開示の目的は、蒸発温度が異なる複数の利用熱交換器が共用の熱源熱交換器に接続された冷媒回路を有する冷凍装置において、蒸発温度の高い利用熱交換器の冷却能力が不足するときに、その能力不足を補えるようにすることである。 An object of the present disclosure is to provide a refrigeration apparatus having a refrigerant circuit in which a plurality of heat exchangers having different evaporation temperatures are connected to a common heat source heat exchanger, and the cooling capacity of the heat exchanger having a high evaporation temperature is insufficient. In addition, it is to make up for the lack of ability.
 本開示の第1の態様は、
 圧縮部(30)と熱源熱交換器(22)と複数の利用熱交換器(83,93)とを備え、上記複数の利用熱交換器(83,93)が共用の熱源熱交換器(22)に並列に接続された冷媒回路(11)と、上記冷媒回路(11)の運転動作を制御する制御部(100)と、を有する冷凍装置を前提とする。
The first aspect of the present disclosure is:
A compression section (30), a heat source heat exchanger (22), and a plurality of utilization heat exchangers (83, 93) are provided, and the plurality of utilization heat exchangers (83, 93) are shared heat source heat exchangers (22 ) And a control unit (100) for controlling the operation of the refrigerant circuit (11).
 そして、この冷凍装置は、
 上記複数の利用熱交換器(83,93)が、第1利用熱交換器(83)と第2利用熱交換器(93)とを含み、
 上記圧縮部(30)が、上記第1利用熱交換器(83)に吸入部が接続された第1圧縮機(31)と、上記第2利用熱交換器(93)に吸入部が接続された第2圧縮機(41)とを備え、
 上記冷媒回路(11)が、第1高圧流路(111)と第1低圧流路(112)とを有する第1補助熱交換器(110)と、上記第1低圧流路(112)の冷媒流出側と上記第2圧縮機(41)の冷媒吸入部とに連通する第1補助吸入流路(118)とを備え、
 上記第1補助熱交換器(110)は、上記第1高圧流路(111)が、上記第1利用熱交換器(83)に連通する第1液流路(63)に接続されるとともに、上記第1低圧流路(112)が、上記第1液流路(63)から分岐し且つ第1減圧機構(116)が設けられた第1分岐流路(115)に接続され、上記第1高圧流路(111)を流れる冷媒と上記第1低圧流路(112)を流れる冷媒とが熱交換をするように構成され、
 上記第1利用熱交換器(83)における冷媒の蒸発温度が上記第2利用熱交換器(93)における冷媒の蒸発温度よりも低い
ことを特徴とする。
And this refrigeration equipment
The plurality of utilization heat exchangers (83, 93) includes a first utilization heat exchanger (83) and a second utilization heat exchanger (93),
The compressor (30) is connected to the first compressor (31) having a suction part connected to the first heat exchanger (83) and to the second heat exchanger (93). A second compressor (41),
The refrigerant circuit (11) includes a first auxiliary heat exchanger (110) having a first high-pressure channel (111) and a first low-pressure channel (112), and a refrigerant in the first low-pressure channel (112). A first auxiliary suction channel (118) communicating with the outflow side and the refrigerant suction part of the second compressor (41);
The first auxiliary heat exchanger (110) has the first high-pressure channel (111) connected to a first liquid channel (63) communicating with the first utilization heat exchanger (83), The first low-pressure channel (112) is connected to a first branch channel (115) branched from the first liquid channel (63) and provided with a first pressure reducing mechanism (116). The refrigerant flowing through the high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) are configured to exchange heat,
The evaporating temperature of the refrigerant in the first use heat exchanger (83) is lower than the evaporating temperature of the refrigerant in the second use heat exchanger (93).
 第1の態様では、第2利用熱交換器(93)の冷却能力が不足すると、第1補助熱交換器(110)が設けられていないと第1利用熱交換器(83)へ流れていく冷媒の一部が、第1低圧流路(112)で蒸発し、第1補助吸入流路(118)を通って第2圧縮機(41)に吸入される。その結果、第2圧縮機(41)の吸入冷媒量を増やして、蒸発温度が高い第2利用熱交換器(93)の冷媒循環量を増やせるので、第2利用熱交換器(93)の冷却能力を高められる。 In the first aspect, if the cooling capacity of the second utilization heat exchanger (93) is insufficient, the first utilization heat exchanger (83) flows if the first auxiliary heat exchanger (110) is not provided. A part of the refrigerant evaporates in the first low-pressure channel (112), and is sucked into the second compressor (41) through the first auxiliary suction channel (118). As a result, the amount of refrigerant sucked into the second compressor (41) can be increased to increase the amount of refrigerant circulating in the second heat exchanger (93) having a high evaporation temperature, so that the second heat exchanger (93) can be cooled. Increases ability.
 本開示の第2の態様は、第1の態様において、
 請求項1において、
 上記第1圧縮機(31)の第1吸入流路(32)と上記第2圧縮機(41)の第2吸入流路(42)とに接続された吸入連通流路(50)と、
 上記吸入連通流路(50)に接続され且つ開度調節可能な圧力調節弁(V5)と、
を備えていることを特徴とする冷凍装置。
According to a second aspect of the present disclosure, in the first aspect,
In claim 1,
A suction communication channel (50) connected to the first suction channel (32) of the first compressor (31) and the second suction channel (42) of the second compressor (41);
A pressure control valve (V5) connected to the suction communication channel (50) and adjustable in opening;
A refrigeration apparatus comprising:
 第2の態様では、第1利用熱交換器(83)の冷却能力が不足するときに、第2利用熱交換器(93)から第2圧縮機(41)へ吸入される冷媒の一部を、吸入連通流路(50)の圧力調節弁(V5)で減圧して、第1圧縮機(31)が吸入する動作を行える。その結果、第1利用熱交換器(83)の冷媒循環量を増やせるので、この第2の態様によれば、蒸発温度が低い第1利用熱交換器(83)の冷却能力を高めることも可能になる。 In the second aspect, when the cooling capacity of the first usage heat exchanger (83) is insufficient, a part of the refrigerant sucked from the second usage heat exchanger (93) to the second compressor (41) is removed. The first compressor (31) can perform the operation of reducing the pressure by the pressure control valve (V5) of the suction communication channel (50). As a result, the amount of refrigerant circulating in the first heat exchanger (83) can be increased, and according to the second aspect, the cooling capacity of the first heat exchanger (83) having a low evaporation temperature can be increased. become.
 本開示の第3の態様は、第1または第2の態様において、
 上記制御部(100)は、上記第1利用熱交換器(83)で蒸発した冷媒を上記第1圧縮機(31)で吸入する第1冷凍サイクルと、上記第2利用熱交換器(93)で蒸発した冷媒を上記第2圧縮機(41)で吸入する第2冷凍サイクルとが行われる運転状態で、上記第1利用熱交換器(83)の冷却能力が冷却負荷を下回ると、上記第1低圧流路(112)の冷媒圧力を上記第2圧縮機(41)の吸入圧力または中間圧力にするように上記第1減圧機構(116)の開度を調節し、上記第1液流路(63)を流れる冷媒の一部を上記第1分岐流路(115)から上記第2圧縮機(41)に供給して上記第2利用熱交換器(93)の冷却能力を補助する第1補助運転を行う
ように構成されていることを特徴とする。
According to a third aspect of the present disclosure, in the first or second aspect,
The controller (100) includes a first refrigeration cycle for sucking the refrigerant evaporated in the first use heat exchanger (83) through the first compressor (31), and the second use heat exchanger (93). When the cooling capacity of the first use heat exchanger (83) is below the cooling load in the operation state in which the second refrigeration cycle for sucking the refrigerant evaporated in the second compressor (41) is performed, the first The opening of the first pressure reducing mechanism (116) is adjusted so that the refrigerant pressure in the one low-pressure channel (112) becomes the suction pressure or intermediate pressure of the second compressor (41), and the first liquid channel A part of the refrigerant flowing through (63) is supplied from the first branch flow path (115) to the second compressor (41) to assist the cooling capacity of the second utilization heat exchanger (93). It is configured to perform auxiliary operation.
 第3の態様では、第2利用熱交換器(93)の冷却能力が冷却負荷を下回ると、第1補助運転を行うことにより、第2圧縮機(41)の吸入冷媒量を増やして、蒸発温度が高い第2利用熱交換器(93)の冷媒循環量を増やせるので、第2利用熱交換器(93)の冷却能力を高められる。 In the third aspect, when the cooling capacity of the second heat exchanger (93) falls below the cooling load, the first auxiliary operation is performed to increase the intake refrigerant amount of the second compressor (41) and evaporate. Since the refrigerant circulation amount of the second use heat exchanger (93) having a high temperature can be increased, the cooling capacity of the second use heat exchanger (93) can be increased.
 本開示の第4の態様は、第1から第3の態様の何れか1つにおいて、
 上記冷媒回路(11)は、第2高圧流路(121)と第2低圧流路(122)とを有する第2補助熱交換器(120)と、上記第2低圧流路(122)の冷媒流出側と上記第1圧縮機(31)の冷媒吸入部とに連通する第2補助吸入流路(128)とを備え、
 上記第1補助熱交換器(110)は、上記第2高圧流路(121)が、上記第2利用熱交換器(93)に連通する第2液流路(65)に接続されるとともに、上記第2低圧流路(122)が、上記第2液流路(65)から分岐し且つ第2減圧機構(126)が設けられた第2分岐流路(125)に接続され、上記第2高圧流路(121)を流れる冷媒と上記第2低圧流路(122)を流れる冷媒とが熱交換をするように構成されている
ことを特徴とする。
According to a fourth aspect of the present disclosure, in any one of the first to third aspects,
The refrigerant circuit (11) includes a second auxiliary heat exchanger (120) having a second high-pressure channel (121) and a second low-pressure channel (122), and a refrigerant in the second low-pressure channel (122). A second auxiliary suction channel (128) communicating with the outflow side and the refrigerant suction part of the first compressor (31),
The first auxiliary heat exchanger (110) has the second high-pressure channel (121) connected to a second liquid channel (65) communicating with the second utilization heat exchanger (93), The second low-pressure channel (122) branches from the second liquid channel (65) and is connected to a second branch channel (125) provided with a second pressure reducing mechanism (126). The refrigerant flowing through the high-pressure channel (121) and the refrigerant flowing through the second low-pressure channel (122) are configured to exchange heat.
 第4の態様では、第1利用熱交換器(83)の冷却能力が不足すると、第2補助熱交換器(120)が設けられていないと第2利用熱交換器(93)へ流れていく冷媒の一部が、第2低圧流路(122)で蒸発し、第2補助吸入流路(128)を通って第1圧縮機(31)に吸入される。その結果、第1圧縮機(31)の吸入冷媒量を増やして、蒸発温度が低い第1利用熱交換器(83)の冷媒流量を増やせるので、第1利用熱交換器(83)の冷却能力を高められる。 In the 4th mode, if the cooling capacity of the 1st utilization heat exchanger (83) is insufficient, if the 2nd auxiliary heat exchanger (120) is not provided, it will flow to the 2nd utilization heat exchanger (93). A part of the refrigerant evaporates in the second low pressure channel (122), and is sucked into the first compressor (31) through the second auxiliary suction channel (128). As a result, the amount of refrigerant sucked into the first compressor (31) can be increased to increase the refrigerant flow rate of the first use heat exchanger (83) having a low evaporation temperature, so that the cooling capacity of the first use heat exchanger (83) Can be enhanced.
 本開示の第5の態様は、第4の態様において、
 上記制御部(100)は、上記第1利用熱交換器(83)で蒸発した冷媒を上記第1圧縮機(31)で吸入する第1冷凍サイクルと、上記第2利用熱交換器(93)で蒸発した冷媒を上記第2圧縮機(41)で吸入する第2冷凍サイクルとが行われる運転状態で、上記第2利用熱交換器(93)の冷却能力が冷却負荷を下回ると、上記第2低圧流路(122)の冷媒圧力を上記第1圧縮機(31)の吸入圧力または中間圧力にするように上記第2減圧機構(126)の開度を調節し、上記第2液流路(65)を流れる冷媒の一部を上記第2分岐流路(125)から上記第1圧縮機(31)に供給して上記第1利用熱交換器(83)の冷却能力を補助する第2補助運転を行う
ように構成されていることを特徴とする。
According to a fifth aspect of the present disclosure, in the fourth aspect,
The controller (100) includes a first refrigeration cycle for sucking the refrigerant evaporated in the first use heat exchanger (83) through the first compressor (31), and the second use heat exchanger (93). When the cooling capacity of the second heat exchanger (93) is below the cooling load in the operation state in which the second refrigeration cycle for sucking the refrigerant evaporated in the second compressor (41) is performed, 2 The opening of the second pressure reducing mechanism (126) is adjusted so that the refrigerant pressure in the low-pressure channel (122) becomes the suction pressure or intermediate pressure of the first compressor (31), and the second liquid channel (2) supplying a part of the refrigerant flowing through (65) to the first compressor (31) from the second branch flow path (125) to assist the cooling capacity of the first heat exchanger (83). It is configured to perform auxiliary operation.
 第5の態様では、第1利用熱交換器(83)の冷却能力が冷却負荷を下回ると、第2補助運転を行うことにより、第1圧縮機(31)の吸入冷媒量を増やして、蒸発温度が低い第1利用熱交換器(83)の冷媒循環量を増やせるので、第1利用熱交換器(83)の冷却能力を高められる。 In the fifth aspect, when the cooling capacity of the first heat exchanger (83) falls below the cooling load, the second auxiliary operation is performed to increase the intake refrigerant amount of the first compressor (31) and evaporate. Since the refrigerant circulation amount of the first use heat exchanger (83) having a low temperature can be increased, the cooling capacity of the first use heat exchanger (83) can be increased.
図1は、実施形態1に係る冷凍装置の配管系統図である。FIG. 1 is a piping system diagram of the refrigeration apparatus according to the first embodiment. 図2は、運転モードを比較した表である。FIG. 2 is a table comparing operation modes. 図3は、冷設運転の冷媒の流れを示した図1相当図である。FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling operation. 図4は、冷房運転の冷媒の流れを示した図1相当図である。FIG. 4 is a view corresponding to FIG. 1 and showing the flow of the refrigerant in the cooling operation. 図5は、冷房/冷設運転の冷媒の流れを示した図1相当図である。FIG. 5 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling / cooling operation. 図6は、暖房運転の冷媒の流れを示した図1相当図である。FIG. 6 is a view corresponding to FIG. 1 illustrating the flow of the refrigerant in the heating operation. 図7は、暖房/冷設運転の冷媒の流れを示した図1相当図である。FIG. 7 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the heating / cooling operation. 図8は、暖房/冷設熱回収運転の冷媒の流れを示した図1相当図である。FIG. 8 is a diagram corresponding to FIG. 1 and showing the flow of the refrigerant in the heating / cooling heat recovery operation. 図9は、暖房/冷設余熱運転の冷媒の流れを示した図1相当図である。FIG. 9 is a view corresponding to FIG. 1 and showing the flow of the refrigerant in the heating / cooling residual heat operation. 図10は、空調能力補助運転の動作を示すフローチャートである。FIG. 10 is a flowchart showing the operation of the air conditioning capability assist operation. 図11は、実施形態2に係る冷凍装置の配管系統図である。FIG. 11 is a piping system diagram of the refrigeration apparatus according to the second embodiment. 図12は、冷設能力補助運転の動作を示すフローチャートである。FIG. 12 is a flowchart showing the operation of the cooling capacity assist operation. 図13は、実施形態3に係る冷凍装置の配管系統図である。FIG. 13 is a piping system diagram of the refrigeration apparatus according to the third embodiment.
 《実施形態1》
 実施形態1について説明する。
Embodiment 1
The first embodiment will be described.
 〈全体構成〉
 実施形態に係る冷凍装置(10)は、主に業務用に用いられる冷蔵庫、冷凍庫、ショーケースなどの冷蔵設備や冷凍設備(以下、総称として冷設という)の庫内空間の空気の冷却と、室内の空調とを同時に行う。図1に示すように、冷凍装置(10)は、室外に設置される室外ユニット(20)と、庫内の空気を冷却する冷設ユニット(80)と、室内の空調を行う室内ユニット(90)と、コントローラ(100)とを備える。冷設ユニット(80)及び室内ユニット(90)の数量は、1つに限らず、2つ以上であってもよい。これらのユニット(20,80,90)が4本の連絡配管(12,13,14,15)によって相互に接続されることで、冷媒回路(11)が構成される。冷媒回路(11)では、冷媒が循環することで冷凍サイクルが行われる。本実施形態の冷媒回路(11)の冷媒は、二酸化炭素である。
<overall structure>
The refrigeration apparatus (10) according to the embodiment is a refrigerator, freezer, showcase and other refrigeration equipment and refrigeration equipment (hereinafter collectively referred to as refrigeration) mainly used for business, Perform indoor air conditioning at the same time. As shown in FIG. 1, the refrigeration apparatus (10) includes an outdoor unit (20) installed outdoors, a cooling unit (80) for cooling the air in the cabinet, and an indoor unit (90 for performing indoor air conditioning) ) And a controller (100). The number of refrigeration units (80) and indoor units (90) is not limited to one, and may be two or more. These units (20, 80, 90) are connected to each other by four connecting pipes (12, 13, 14, 15) to constitute the refrigerant circuit (11). In the refrigerant circuit (11), a refrigeration cycle is performed by circulating the refrigerant. The refrigerant in the refrigerant circuit (11) of the present embodiment is carbon dioxide.
 この冷媒回路(11)では、蒸発温度が異なる複数の利用熱交換器である冷設熱交換器(第1利用熱交換器)(83)と室内熱交換器(第2利用熱交換器)(93)が、共用の熱源熱交換器である室外熱交換器(22)に並列に接続される。冷設熱交換器(83)における冷凍サイクルの冷媒の蒸発温度は、室内熱交換器(93)における冷媒の蒸発温度よりも低い。 In this refrigerant circuit (11), a cooling heat exchanger (first utilization heat exchanger) (83) and an indoor heat exchanger (second utilization heat exchanger) (a plurality of utilization heat exchangers having different evaporation temperatures) ( 93) is connected in parallel to the outdoor heat exchanger (22), which is a common heat source heat exchanger. The evaporating temperature of the refrigerant in the refrigeration cycle in the refrigerated heat exchanger (83) is lower than the evaporating temperature of the refrigerant in the indoor heat exchanger (93).
 〈室外ユニット〉
 室外ユニット(20)は、屋外に設置される。室外ユニット(20)には、室外回路(21)が設けられる。室外回路(21)には、第1圧縮機(31)と、第2圧縮機(41)と、室外熱交換器(22)と、室外膨張弁(23)と、レシーバ(24)と、過冷却熱交換器(25)とが接続される。
<Outdoor unit>
The outdoor unit (20) is installed outdoors. The outdoor unit (20) is provided with an outdoor circuit (21). The outdoor circuit (21) includes a first compressor (31), a second compressor (41), an outdoor heat exchanger (22), an outdoor expansion valve (23), a receiver (24), A cooling heat exchanger (25) is connected.
 第1圧縮機(31)及び第2圧縮機(41)は、冷媒を圧縮する圧縮部(30)を構成している。第1圧縮機(31)及び第2圧縮機(41)は、それぞれ二段圧縮式に構成されている。第1圧縮機(31)及び第2圧縮機(41)は、インバータ制御で運転周波数を調整することにより回転数が可変な可変容量式に構成される。 The first compressor (31) and the second compressor (41) constitute a compression unit (30) that compresses the refrigerant. The first compressor (31) and the second compressor (41) are each configured in a two-stage compression type. A 1st compressor (31) and a 2nd compressor (41) are comprised by the variable capacity type | mold by which rotation speed is variable by adjusting an operating frequency by inverter control.
 第1圧縮機(31)は、第1低段圧縮機構(31a)と第1高段圧縮機構(31b)とを有する。第1圧縮機(31)では、第1低段圧縮機構(31a)で圧縮された冷媒が、第1高段圧縮機構(31b)で更に圧縮される。第1圧縮機(31)には、第1吸入管(第1吸入流路)(32)、第1中継管(33)、第1吐出管(34)、及び第1油戻し管(35)が接続される。第1吸入管(32)は、第1低段圧縮機構(31a)の吸入ポートに連通する。第1中継管(33)の流入端は、第1低段圧縮機構(31a)の吐出ポートに連通する。第1中継管(33)の流出端は、第1高段圧縮機構(31b)の吸入ポートに連通する。第1吐出管(34)は、第1高段圧縮機構(31b)の吐出ポートに連通する。第1中継管(33)には、第1インタークーラ(36)が接続される。第1油戻し管(35)には、開度が可変な第1流量調節弁(37)が接続される。 The first compressor (31) has a first low-stage compression mechanism (31a) and a first high-stage compression mechanism (31b). In the first compressor (31), the refrigerant compressed by the first low stage compression mechanism (31a) is further compressed by the first high stage compression mechanism (31b). The first compressor (31) includes a first suction pipe (first suction flow path) (32), a first relay pipe (33), a first discharge pipe (34), and a first oil return pipe (35). Is connected. The first suction pipe (32) communicates with the suction port of the first low-stage compression mechanism (31a). The inflow end of the first relay pipe (33) communicates with the discharge port of the first low-stage compression mechanism (31a). The outflow end of the first relay pipe (33) communicates with the suction port of the first high-stage compression mechanism (31b). The first discharge pipe (34) communicates with the discharge port of the first high-stage compression mechanism (31b). A first intercooler (36) is connected to the first relay pipe (33). Connected to the first oil return pipe (35) is a first flow rate control valve (37) having a variable opening.
 第2圧縮機(41)は、第2低段圧縮機構(41a)と第2高段圧縮機構(41b)とを有する。第2圧縮機(41)では、第2低段圧縮機構(41a)で圧縮された冷媒が、第2高段圧縮機構(41b)で更に圧縮される。第2圧縮機(41)には、第2吸入管(第2吸入流路)(42)、第2中継管(43)、第2吐出管(44)、及び第2油戻し管(45)が接続される。第2吸入管(42)は、第2低段圧縮機構(41a)の吸入ポートに連通する。第2中継管(43)の流入端は、第2低段圧縮機構(41a)の吐出ポートに連通する。第2中継管(43)の流出端は、第2高段圧縮機構(41b)の吸入ポートに連通する。第2吐出管(44)は、第2高段圧縮機構(41b)の吐出ポートに連通する。第2中継管(43)には、第2インタークーラ(46)が接続される。第2油戻し管(45)には、開度が可変な第2流量調節弁(47)が接続される。 The second compressor (41) has a second low-stage compression mechanism (41a) and a second high-stage compression mechanism (41b). In the second compressor (41), the refrigerant compressed by the second low stage compression mechanism (41a) is further compressed by the second high stage compression mechanism (41b). The second compressor (41) includes a second suction pipe (second suction flow path) (42), a second relay pipe (43), a second discharge pipe (44), and a second oil return pipe (45). Is connected. The second suction pipe (42) communicates with the suction port of the second low-stage compression mechanism (41a). The inflow end of the second relay pipe (43) communicates with the discharge port of the second low-stage compression mechanism (41a). The outflow end of the second relay pipe (43) communicates with the suction port of the second high-stage compression mechanism (41b). The second discharge pipe (44) communicates with the discharge port of the second high-stage compression mechanism (41b). A second intercooler (46) is connected to the second relay pipe (43). A second flow rate control valve (47) having a variable opening is connected to the second oil return pipe (45).
 第1吐出管(34)には、第1油分離器(38)が接続される。第2吐出管(44)には、第2油分離器(48)が接続される。第1油分離器(38)で分離された油、及び第2油分離器(48)で分離された油は、油クーラ(39)で冷却される。油クーラ(39)で冷却された油は、第1油戻し管(35)を経由して第1圧縮機(31)に戻される。油クーラ(39)で冷却された油は、第2油戻し管(45)を経由して第2圧縮機(41)に戻される。 The first oil separator (38) is connected to the first discharge pipe (34). A second oil separator (48) is connected to the second discharge pipe (44). The oil separated by the first oil separator (38) and the oil separated by the second oil separator (48) are cooled by the oil cooler (39). The oil cooled by the oil cooler (39) is returned to the first compressor (31) via the first oil return pipe (35). The oil cooled by the oil cooler (39) is returned to the second compressor (41) via the second oil return pipe (45).
 第1吸入管(32)及び第2吸入管(42)には、吸入連通管(吸入連通流路)(50)が接続される。吸入連通管(50)には、開度が可変な圧力調節弁(V5)が設けられる。第1吐出管(34)の流出端及び第2吐出管(44)の流出端は、合流吐出管(52)に接続する。 The suction communication pipe (suction communication flow path) (50) is connected to the first suction pipe (32) and the second suction pipe (42). The suction communication pipe (50) is provided with a pressure control valve (V5) having a variable opening. The outflow end of the first discharge pipe (34) and the outflow end of the second discharge pipe (44) are connected to the merged discharge pipe (52).
 ブリッジ回路(70)は、流路切換機構を構成している。ブリッジ回路(70)は、ブリッジ状に接続された第1から第4までの流路(71,72,73,74)と、各流路(71,72,73,74)を開閉可能な4つの弁(V1,V2,V3,V4)とを有する。第1流路(71)には第1弁(V1)が、第2流路(72)には第2弁(V2)が、第3流路(73)には第3弁(V3)が、第4流路(74)には第4弁(V4)がそれぞれ接続される。本実施形態では、4つの弁(V1,V2,V3,V4)の全てが、開度が可変な流量調節弁で構成される。4つの弁(V1,V2,V3,V4)は、逆流防止機構を有している。具体的に、各弁(V1,V2,V3,V4)は、図1の各矢印で示す方向の冷媒の流通を許容し、その逆方向の冷媒の流通を禁止する。 The bridge circuit (70) constitutes a flow path switching mechanism. The bridge circuit (70) can open and close the first to fourth flow paths (71, 72, 73, 74) connected in a bridge shape and the respective flow paths (71, 72, 73, 74). With two valves (V1, V2, V3, V4). The first flow path (71) has a first valve (V1), the second flow path (72) has a second valve (V2), and the third flow path (73) has a third valve (V3). The fourth valve (V4) is connected to the fourth flow path (74). In the present embodiment, all of the four valves (V1, V2, V3, V4) are constituted by flow rate control valves whose opening degrees are variable. The four valves (V1, V2, V3, V4) have a backflow prevention mechanism. Specifically, the valves (V1, V2, V3, V4) allow the refrigerant to flow in the directions indicated by the arrows in FIG. 1, and prohibit the refrigerant in the opposite direction.
 ブリッジ回路(70)には、第1から第4までの4つの接続点(C1,C2,C3,C4)が構成される。第1接続点(C1)は、第1流路(71)の流入部と第2流路(72)の流入部とを接続する。第2接続点(C2)は、第1流路(71)の流出部と第3流路(73)の流入部とを接続する。第3接続点(C3)は、第2流路(72)の流出部と第4流路(74)の流入部とを接続する。第4接続点(C4)は、第3流路(73)の流出部と第4流路(74)の流出部とを接続する。 The bridge circuit (70) has four connection points (C1, C2, C3, C4) from the first to the fourth. The first connection point (C1) connects the inflow portion of the first flow path (71) and the inflow portion of the second flow path (72). The second connection point (C2) connects the outflow portion of the first flow path (71) and the inflow portion of the third flow path (73). The third connection point (C3) connects the outflow portion of the second flow path (72) and the inflow portion of the fourth flow path (74). The fourth connection point (C4) connects the outflow portion of the third flow path (73) and the outflow portion of the fourth flow path (74).
 第1接続点(C1)は、合流吐出管(52)を介して第1吐出管(34)及び第2吐出管(44)(圧縮部(30)の吐出部)と繋がる。第2接続点(C2)は、室外熱交換器(22)(熱源熱交換器)のガス側端部と繋がる。第3接続点(C3)は、室内熱交換器(93)(第2利用熱交換器)のガス側端部と繋がる。第4接続点(C4)は、吸入中継管(58)を介して第2吸入管(42)(圧縮部(30)の吸入部)と繋がる。 The first connection point (C1) is connected to the first discharge pipe (34) and the second discharge pipe (44) (the discharge section of the compression section (30)) via the merging discharge pipe (52). The second connection point (C2) is connected to the gas side end of the outdoor heat exchanger (22) (heat source heat exchanger). A 3rd connection point (C3) is connected with the gas side edge part of an indoor heat exchanger (93) (2nd utilization heat exchanger). The fourth connection point (C4) is connected to the second suction pipe (42) (the suction part of the compression part (30)) via the suction relay pipe (58).
 室外熱交換器(22)は、熱源熱交換器を構成している。室外熱交換器(22)は、フィン・アンド・チューブ型の熱交換器である。室外熱交換器(22)の近傍には、室外ファン(22a)が設けられている。室外熱交換器(22)を流れる冷媒と、室外ファン(22a)が送風する空気とが熱交換する。第1インタークーラ(36)、第2インタークーラ(46)、油クーラ(39)、及び室外熱交換器(22)は、室外ファン(22a)及びフィン(図示省略)を共有するように互いに隣接して配置される。 The outdoor heat exchanger (22) constitutes a heat source heat exchanger. The outdoor heat exchanger (22) is a fin-and-tube heat exchanger. An outdoor fan (22a) is provided in the vicinity of the outdoor heat exchanger (22). The refrigerant flowing through the outdoor heat exchanger (22) and the air blown by the outdoor fan (22a) exchange heat. The first intercooler (36), the second intercooler (46), the oil cooler (39), and the outdoor heat exchanger (22) are adjacent to each other so as to share an outdoor fan (22a) and fins (not shown). Arranged.
 室外熱交換器(22)とレシーバ(24)との間には、第1配管(61)が接続される。第1配管(61)には、室外膨張弁(23)が接続される。室外膨張弁(23)は、開度が可変な電子膨張弁で構成される。 The first pipe (61) is connected between the outdoor heat exchanger (22) and the receiver (24). An outdoor expansion valve (23) is connected to the first pipe (61). The outdoor expansion valve (23) is an electronic expansion valve having a variable opening.
 レシーバ(24)は、冷媒を貯留する容器を構成している。過冷却熱交換器(25)は、高圧側流路(25a)と低圧側流路(25b)とを有する。過冷却熱交換器(25)では、高圧側流路(25a)を流れる冷媒と、低圧側流路(25b)を流れる冷媒とが熱交換する。 The receiver (24) constitutes a container for storing the refrigerant. The supercooling heat exchanger (25) has a high pressure side channel (25a) and a low pressure side channel (25b). In the supercooling heat exchanger (25), the refrigerant flowing through the high-pressure channel (25a) and the refrigerant flowing through the low-pressure channel (25b) exchange heat.
 レシーバ(24)と過冷却熱交換器(25)の高圧側流路(25a)との間には、第2配管(62)が接続される。過冷却熱交換器(25)の高圧側流路(25a)の流出部には、冷設熱交換器(83)側の液管(第1液管(第1液流路))である第3配管(63)の一端が接続される。第3配管(63)の他端には、第1液分岐管(63a)と第2液分岐管(63b)とが接続する。第1液分岐管(63a)は、第1液連絡配管(12)を介して冷設熱交換器(83)の液側端部と繋がる。第2液分岐管(63b)は、第2液連絡配管(14)を介して室内熱交換器(93)の液側端部と繋がる。 The second pipe (62) is connected between the receiver (24) and the high pressure side flow path (25a) of the supercooling heat exchanger (25). The outflow part of the high-pressure side flow path (25a) of the supercooling heat exchanger (25) is a liquid pipe (first liquid pipe (first liquid flow path)) on the cold heat exchanger (83) side. One end of the three pipes (63) is connected. The first liquid branch pipe (63a) and the second liquid branch pipe (63b) are connected to the other end of the third pipe (63). The first liquid branch pipe (63a) is connected to the liquid side end of the chilled heat exchanger (83) via the first liquid communication pipe (12). The second liquid branch pipe (63b) is connected to the liquid side end of the indoor heat exchanger (93) via the second liquid communication pipe (14).
 第3配管(63)には、導入管(53)の一端が接続される。導入管(53)の途中には、減圧弁(54)と高圧側流路(25a)とが接続される。減圧弁(54)は、逆流防止機構を有している。減圧弁(54)は、図1の矢印で示す方向の冷媒の流通を許容し、その逆方向の冷媒の流通を禁止する。 一端 One end of the introduction pipe (53) is connected to the third pipe (63). In the middle of the introduction pipe (53), the pressure reducing valve (54) and the high-pressure side flow path (25a) are connected. The pressure reducing valve (54) has a backflow prevention mechanism. The pressure reducing valve (54) allows the refrigerant to flow in the direction indicated by the arrow in FIG. 1 and prohibits the refrigerant from flowing in the opposite direction.
 導入管(53)の他端には、第1導入分岐管(53a)の流入端と、第2導入分岐管(53b)の流入端とが接続する。第1導入分岐管(53a)の流出端は、第1中継管(33)に接続する。第2導入分岐管(53b)の流出端は、第2中継管(43)に接続する。第1導入分岐管(53a)には、開度が可変な第3流量調節弁(55)が接続される。第2導入分岐管(53b)には、開度が可変な第4流量調節弁(56)が接続される。 The other end of the introduction pipe (53) is connected to the inflow end of the first introduction branch pipe (53a) and the inflow end of the second introduction branch pipe (53b). The outflow end of the first introduction branch pipe (53a) is connected to the first relay pipe (33). The outflow end of the second introduction branch pipe (53b) is connected to the second relay pipe (43). A third flow rate control valve (55) having a variable opening is connected to the first introduction branch pipe (53a). A fourth flow rate control valve (56) having a variable opening is connected to the second introduction branch pipe (53b).
 第1配管(61)と第3配管(63)との間には、第4配管(64)が接続される。第1配管(61)と第2液連絡配管(14)との間には、室内熱交換器(93)側の液管(第2液管)である第5配管(65)が接続される。第5配管(65)には第2液分岐管(63b)が接続される。レシーバ(24)の頂部には、ガス抜き管(67)の一端が接続される。ガス抜き管(67)の他端は、導入管(53)に減圧弁(54)の下流で接続される。ガス抜き管(67)には、ガス抜き弁(68)が接続される。ガス抜き弁(68)は、開度が可変な膨張弁で構成される。 The fourth pipe (64) is connected between the first pipe (61) and the third pipe (63). A fifth pipe (65) which is a liquid pipe (second liquid pipe) on the indoor heat exchanger (93) side is connected between the first pipe (61) and the second liquid communication pipe (14). . A second liquid branch pipe (63b) is connected to the fifth pipe (65). One end of a gas vent pipe (67) is connected to the top of the receiver (24). The other end of the gas vent pipe (67) is connected to the introduction pipe (53) downstream of the pressure reducing valve (54). A gas vent valve (68) is connected to the gas vent pipe (67). The gas vent valve (68) is an expansion valve having a variable opening.
 上述した第1吐出管(34)、第2吐出管(44)、第1配管(61)、第4配管(64)、第5配管(65)、第2液分岐管(63b)には、それぞれ逆止弁(CV)が設けられる。各逆止弁(CV)は、図1の各矢印で示す方向の冷媒の流通を許容し、その逆方向の冷媒の流通を禁止する。 In the first discharge pipe (34), the second discharge pipe (44), the first pipe (61), the fourth pipe (64), the fifth pipe (65), and the second liquid branch pipe (63b) described above, A check valve (CV) is provided for each. Each check valve (CV) allows the refrigerant to flow in the direction indicated by each arrow in FIG. 1 and prohibits the refrigerant from flowing in the opposite direction.
 〈冷設ユニット〉
 冷設ユニット(80)は、例えば冷蔵倉庫に設置される。冷設ユニット(80)には、冷設回路(81)が設けられる。冷設回路(81)の液側端部には、第1液連絡配管(12)が接続される。冷設回路(81)のガス側端部には、第1ガス連絡配管(13)が接続される。冷設回路(81)には、液側端から順に、冷設膨張弁(82)及び冷設熱交換器(83)が設けられる。冷設膨張弁(82)は、開度が可変な電子膨張弁で構成される。
<Cooling unit>
The refrigeration unit (80) is installed in, for example, a refrigerated warehouse. The refrigeration unit (80) is provided with a refrigeration circuit (81). A first liquid communication pipe (12) is connected to the liquid side end of the refrigeration circuit (81). A first gas communication pipe (13) is connected to the gas side end of the refrigeration circuit (81). The chilling circuit (81) is provided with a chilling expansion valve (82) and a chilling heat exchanger (83) in order from the liquid side end. The cold expansion valve (82) is an electronic expansion valve having a variable opening.
 冷設熱交換器(83)は、第1利用熱交換器を構成している。冷設熱交換器(83)は、フィン・アンド・チューブ型の熱交換器である。冷設熱交換器(83)の近傍には、庫内ファン(83a)が設けられている。冷設熱交換器(83)を流れる冷媒と、庫内ファン(83a)が送風する空気とが熱交換する。冷設熱交換器(83)のガス側端部は、第1ガス連絡配管(13)を介して第1圧縮機(31)の第1吸入管(32)に繋がる。 The chilled heat exchanger (83) constitutes a first use heat exchanger. The refrigerated heat exchanger (83) is a fin-and-tube heat exchanger. An internal fan (83a) is provided in the vicinity of the refrigerated heat exchanger (83). The refrigerant flowing through the chilled heat exchanger (83) exchanges heat with the air blown by the internal fan (83a). The gas side end of the chilled heat exchanger (83) is connected to the first suction pipe (32) of the first compressor (31) via the first gas communication pipe (13).
 〈室内ユニット〉
 室内ユニット(90)は、屋内に設置される。室内ユニット(90)には、室内回路(91)が設けられる。室内回路(91)のガス側端部には、第2ガス連絡配管(15)が接続される。室内回路(91)の液側端部には、第2液連絡配管(14)が接続される。室内回路(91)には、液側端から順に、室内膨張弁(92)及び室内熱交換器(93)が設けられる。室内膨張弁(92)は、開度が可変な電子膨張弁で構成される。
<Indoor unit>
The indoor unit (90) is installed indoors. The indoor unit (90) is provided with an indoor circuit (91). A second gas communication pipe (15) is connected to the gas side end of the indoor circuit (91). A second liquid communication pipe (14) is connected to the liquid side end of the indoor circuit (91). The indoor circuit (91) is provided with an indoor expansion valve (92) and an indoor heat exchanger (93) in order from the liquid side end. The indoor expansion valve (92) is an electronic expansion valve having a variable opening.
 室内熱交換器(93)は、第2利用熱交換器を構成している。室内熱交換器(93)は、フィン・アンド・チューブ型の熱交換器である。室内熱交換器(93)の近傍には、室内ファン(93a)が設けられている。室内熱交換器(93)を流れる冷媒と、室内ファン(93a)が送風する空気とが熱交換する。室内熱交換器(93)のガス側端部は、第2ガス連絡配管(15)、ブリッジ回路(70)の第4流路(74)、及び吸入中継管(58)を介して、第2圧縮機(41)の第2吸入管(42)に繋がる。 The indoor heat exchanger (93) constitutes a second utilization heat exchanger. The indoor heat exchanger (93) is a fin-and-tube heat exchanger. An indoor fan (93a) is provided in the vicinity of the indoor heat exchanger (93). The refrigerant flowing through the indoor heat exchanger (93) and the air blown by the indoor fan (93a) exchange heat. The gas side end of the indoor heat exchanger (93) is connected to the second gas communication pipe (15), the fourth flow path (74) of the bridge circuit (70), and the suction relay pipe (58) via the second gas communication pipe (15). It connects with the 2nd suction pipe (42) of a compressor (41).
 〈第1補助熱交換器〉
 上述したように、室外ユニット(20)の上記圧縮部(30)は、複数の利用熱交換器(83,93)のうち、冷凍サイクルの蒸発温度が低い冷設熱交換器(83)に吸入部(吸入ポート)が接続された第1圧縮機(31)と、冷設熱交換器(83)よりも蒸発温度が高い室内熱交換器(93)に吸入部(吸入ポート)が接続された第2圧縮機(41)とを備える。この実施形態では、室内熱交換器(93)を流れる冷媒を吸入して圧縮する第2圧縮機(41)の能力不足を補うために、室外ユニット(20)に、第1補助熱交換器(110)が設けられる。つまり、第1補助熱交換器(110)は、第2圧縮機(41)及び室内熱交換器(93)の能力を補助するための熱交換器である。
<First auxiliary heat exchanger>
As described above, the compression unit (30) of the outdoor unit (20) is sucked into the chilled heat exchanger (83) having a low evaporation temperature of the refrigeration cycle among the plurality of heat exchangers (83, 93). The suction part (suction port) was connected to the first compressor (31) to which the part (suction port) was connected and the indoor heat exchanger (93) having a higher evaporation temperature than the cold heat exchanger (83) A second compressor (41). In this embodiment, in order to compensate for the shortage of the capacity of the second compressor (41) that sucks and compresses the refrigerant flowing through the indoor heat exchanger (93), the outdoor unit (20) is provided with the first auxiliary heat exchanger ( 110). That is, the first auxiliary heat exchanger (110) is a heat exchanger for assisting the capabilities of the second compressor (41) and the indoor heat exchanger (93).
 第1補助熱交換器(110)は、第1高圧流路(111)と第1低圧流路(112)とを有する。第1高圧流路(111)は、第3配管(第1液管)(63)に接続される。第1低圧流路(112)は、第3配管(第1液管)(63)から分岐した第1分岐管(第1分岐流路)(115)に冷媒流入端が接続される。第1分岐管(115)には第1減圧弁(第1減圧機構)(116)として第1膨張弁が設けられる。第1補助熱交換器(110)では、第1高圧流路(111)を流れる冷媒と、第1低圧流路(112)を流れる冷媒とが熱交換する。 The first auxiliary heat exchanger (110) has a first high-pressure channel (111) and a first low-pressure channel (112). The first high-pressure channel (111) is connected to the third pipe (first liquid pipe) (63). In the first low-pressure channel (112), the refrigerant inflow end is connected to the first branch pipe (first branch channel) (115) branched from the third pipe (first liquid pipe) (63). The first branch pipe (115) is provided with a first expansion valve as a first pressure reducing valve (first pressure reducing mechanism) (116). In the first auxiliary heat exchanger (110), the refrigerant flowing through the first high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) exchange heat.
 第1低圧流路(112)の冷媒流出端には、第1補助吸入管(第1補助吸入流路)(118)が接続される。第1補助吸入管(118)は、上記第2圧縮機(41)の吸入部である第2低段圧縮機構(41a)の吸入ポートに、吸入中継管(58)を介して接続される。第1補助吸入管(118)は、第2高段圧縮機構(41b)の吸入ポートに接続されていてもよい。 A first auxiliary suction pipe (first auxiliary suction flow path) (118) is connected to the refrigerant outflow end of the first low pressure flow path (112). The first auxiliary suction pipe (118) is connected to the suction port of the second low-stage compression mechanism (41a), which is the suction part of the second compressor (41), via a suction relay pipe (58). The first auxiliary suction pipe (118) may be connected to the suction port of the second high-stage compression mechanism (41b).
 〈センサ〉
 冷凍装置(10)には、各種のセンサが設けられる。これらのセンサが検出する指標の一例として、冷媒回路(11)の高圧冷媒の温度/圧力、低圧冷媒の温度/圧力、中間圧冷媒の温度/圧力、室外熱交換器(22)の冷媒の温度、冷設熱交換器(83)の冷媒の温度、室内熱交換器(93)の冷媒の温度、各圧縮機(31,41)の吸入過熱度、各圧縮機(31,41)の吐出過熱度、室外空気の温度、庫内空気の温度、室内空気の温度が挙げられる。
<Sensor>
Various sensors are provided in the refrigeration apparatus (10). Examples of indices detected by these sensors include the temperature / pressure of the high-pressure refrigerant in the refrigerant circuit (11), the temperature / pressure of the low-pressure refrigerant, the temperature / pressure of the intermediate-pressure refrigerant, and the temperature of the refrigerant in the outdoor heat exchanger (22). , The temperature of the refrigerant in the cold heat exchanger (83), the temperature of the refrigerant in the indoor heat exchanger (93), the degree of suction superheat of each compressor (31, 41), the discharge superheat of each compressor (31, 41) Temperature, outdoor air temperature, internal air temperature, and indoor air temperature.
 なお、図1では、これらのセンサのうち、詳細は後述する外気温度センサ(94)、第1冷媒温度センサ(95)、第2冷媒温度センサ(96)、及び内気温度センサ(97)を図示している。 In FIG. 1, among these sensors, an outside air temperature sensor (94), a first refrigerant temperature sensor (95), a second refrigerant temperature sensor (96), and an inside air temperature sensor (97), which will be described in detail later, are shown. Show.
 〈コントローラ〉
 制御部であるコントローラ(100)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。コントローラ(100)は、運転指令やセンサの検出信号に基づいて、冷凍装置(1)の各機器を制御する。コントローラ(100)による各機器の制御により、冷凍装置(1)の運転が切り換えられる。コントローラ(100)は、空調能力が不足するときに空調能力補助運転の制御も行う。
<controller>
The controller (100) that is a control unit includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer. The controller (100) controls each device of the refrigeration apparatus (1) based on the operation command and the detection signal of the sensor. The operation of the refrigeration apparatus (1) is switched by the control of each device by the controller (100). The controller (100) also controls the air conditioning capability auxiliary operation when the air conditioning capability is insufficient.
 -運転動作-
 冷凍装置(1)の運転動作について詳細に説明する。図2に示すように、冷凍装置の運転は、冷設運転、冷房運転、冷房/冷設運転、暖房運転、暖房/冷設運転、暖房/冷設熱回収運転、暖房/冷設余熱運転、及びデフロスト運転を含む。
-Driving operation-
The operation of the refrigeration apparatus (1) will be described in detail. As shown in FIG. 2, the operation of the refrigeration system includes a cooling operation, a cooling operation, a cooling / cooling operation, a heating operation, a heating / cooling operation, a heating / cooling heat recovery operation, a heating / cooling residual heat operation, And defrost operation.
 冷設運転では、冷設ユニット(80)が運転され、室内ユニット(90)は停止する。冷房運転では、冷設ユニット(80)が停止し、室内ユニット(90)が冷房を行う。冷房/冷設運転では、冷設ユニット(80)が運転され、室内ユニット(90)が冷房を行う。暖房運転では、冷設ユニット(80)が停止し、室内ユニット(90)が暖房を行う。暖房/冷設運転、暖房/冷設熱回収運転、及び暖房/冷設余熱運転のいずれにおいても、冷設ユニット(80)が運転され、室内ユニット(90)が暖房を行う。デフロスト運転では、冷設ユニット(80)が運転され、室外熱交換器(22)の表面の霜を融かす動作が行われる。 In the cooling operation, the cooling unit (80) is operated and the indoor unit (90) is stopped. In the cooling operation, the cooling unit (80) stops and the indoor unit (90) performs cooling. In the cooling / cooling operation, the cooling unit (80) is operated, and the indoor unit (90) performs cooling. In the heating operation, the cooling unit (80) stops and the indoor unit (90) performs heating. In any of the heating / cooling operation, the heating / cooling heat recovery operation, and the heating / cooling residual heat operation, the cooling unit (80) is operated, and the indoor unit (90) performs heating. In the defrost operation, the cooling unit (80) is operated, and an operation of melting frost on the surface of the outdoor heat exchanger (22) is performed.
 暖房/冷設運転は、室内ユニット(90)の必要な暖房能力が比較的大きい条件下で実行され、不足する熱量が室外から取り込まれる。暖房/冷設余熱運転は、室内ユニット(90)の必要な暖房能力が比較的小さい条件下で実行され、余剰の熱量が室外に放出される。暖房/冷設熱回収運転は、室内ユニット(90)の必要な暖房能力が、暖房/冷設運転と暖房/冷設余熱運転の間である条件(冷設と暖房がバランスする条件)下で実行される。 The heating / cooling operation is executed under the condition that the required heating capacity of the indoor unit (90) is relatively large, and the insufficient amount of heat is taken in from the outside. The heating / cooling residual heat operation is executed under the condition that the required heating capacity of the indoor unit (90) is relatively small, and an excessive amount of heat is released to the outside. Heating / cooling heat recovery operation is performed under the condition that the required heating capacity of the indoor unit (90) is between heating / cooling operation and heating / cooling residual heat operation (conditions where cooling and heating are balanced). Executed.
 図2に示すように、各運転では、第1圧縮機(31)及び第2圧縮機(41)の一方又は両方が運転される。第1圧縮機(31)のみ運転する場合、圧力調節弁(V5)が閉状態となる。第2圧縮機(41)のみ運転する場合、圧力調節弁(V5)が開状態となる。第1圧縮機(31)及び第2圧縮機(41)を運転する場合、冷房/冷設運転と暖房/冷設運転を除いて圧力調節弁(V5)が開状態となる。以下の各運転の説明では、第1圧縮機(31)及び第2圧縮機(41)を運転する場合を例示する。 As shown in FIG. 2, in each operation, one or both of the first compressor (31) and the second compressor (41) are operated. When operating only the first compressor (31), the pressure control valve (V5) is closed. When only the second compressor (41) is operated, the pressure control valve (V5) is opened. When the first compressor (31) and the second compressor (41) are operated, the pressure control valve (V5) is opened except for the cooling / cooling operation and the heating / cooling operation. In the following description of each operation, a case where the first compressor (31) and the second compressor (41) are operated is illustrated.
 〈冷設運転〉
 図3に示す冷設運転では、第1弁(V1)が開状態となり、第2弁(V2)、第3弁(V3)、第4弁(V4)が閉状態となる。室外膨張弁(23)は全開状態となり、冷設膨張弁(82)の開度が過熱度制御により調節され、室内膨張弁(92)が全閉状態となる。圧縮部(30)で圧縮された冷媒が、室外熱交換器(22)で放熱し、冷設熱交換器(83)で蒸発する冷凍サイクルが行われる。
<Cooling operation>
In the cooling operation shown in FIG. 3, the first valve (V1) is opened, and the second valve (V2), the third valve (V3), and the fourth valve (V4) are closed. The outdoor expansion valve (23) is fully opened, the opening degree of the cold expansion valve (82) is adjusted by superheat control, and the indoor expansion valve (92) is fully closed. A refrigeration cycle is performed in which the refrigerant compressed in the compressor (30) radiates heat in the outdoor heat exchanger (22) and evaporates in the cold heat exchanger (83).
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第1流路(71)を経由して室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒の熱が室外空気へ放出される。室外熱交換器(22)で放熱した冷媒は、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して冷設熱交換器(83)を流れる。冷設熱交換器(83)では、蒸発する冷媒によって庫内空気が冷やされる。冷設熱交換器(83)で蒸発した冷媒は、第1圧縮機(31)及び第2圧縮機(41)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the first flow path (71) of the bridge circuit (70), and the outdoor heat exchanger (22 ). In the outdoor heat exchanger (22), the heat of the refrigerant is released to the outdoor air. The refrigerant radiated by the outdoor heat exchanger (22) flows through the chilled heat exchanger (83) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25). In the refrigerated heat exchanger (83), the internal air is cooled by the evaporated refrigerant. The refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) and the second compressor (41).
 冷設運転や、他の運転では、次のように中間圧の冷媒を冷却する冷媒冷却動作が適宜行われる。第1圧縮機(31)の第1低段圧縮機構(31a)で圧縮された冷媒の少なくとも一部は、第1中継管(33)を経由して第1インタークーラ(36)を流れる。第1インタークーラ(36)では、冷媒の熱が室外空気へ放出される。第1インタークーラ(36)で冷却された冷媒は、第1圧縮機(31)の第1高段圧縮機構(31b)で更に圧縮される。同様に、第2圧縮機(41)の第2低段圧縮機構(41a)で圧縮された冷媒の少なくとも一部は、第2中継管(43)を経由して第2インタークーラ(46)を流れる。第2インタークーラ(46)では、冷媒の熱が室外空気へ放出される。第2インタークーラ(46)で冷却された冷媒は、第2圧縮機(41)の第2高段圧縮機構(41b)で更に圧縮される。 In the cooling operation and other operations, the refrigerant cooling operation for cooling the intermediate pressure refrigerant is appropriately performed as follows. At least a part of the refrigerant compressed by the first low-stage compression mechanism (31a) of the first compressor (31) flows through the first intercooler (36) via the first relay pipe (33). In the first intercooler (36), the heat of the refrigerant is released to the outdoor air. The refrigerant cooled by the first intercooler (36) is further compressed by the first higher stage compression mechanism (31b) of the first compressor (31). Similarly, at least a part of the refrigerant compressed by the second low-stage compression mechanism (41a) of the second compressor (41) passes through the second intercooler (46) via the second relay pipe (43). Flowing. In the second intercooler (46), the heat of the refrigerant is released to the outdoor air. The refrigerant cooled by the second intercooler (46) is further compressed by the second higher stage compression mechanism (41b) of the second compressor (41).
 冷設運転や、他の運転では、過冷却熱交換器(25)の低圧側流路(25b)を流れた冷媒を各圧縮機(31,41)へ導入するインジェクション動作が適宜行われる。なお、各図においては、インジェクション動作時の冷媒の流れの図示は省略している。第2配管(62)の冷媒の一部は、導入管(53)に流入する。また、レシーバ(24)内のガス冷媒は、ガス抜き管(67)を経由して導入管(53)に流入する。導入管(53)に流入した冷媒は、減圧弁(54)で減圧された後、低圧側流路(25b)を流れる。冷設熱交換器(83)では、高圧側流路(25a)を流れる冷媒の熱が、低圧側流路(25b)を流れる冷媒に付与される。低圧側流路(25b)を流出した冷媒は、第1導入分岐管(53a)及び第2導入分岐管(53b)に分流する。第1導入分岐管(53a)の冷媒は、第1中継管(33)を経由して第1圧縮機(31)の第1高段圧縮機構(31b)に導入される。第2導入分岐管(53b)の冷媒は、第2中継管(43)を経由して第2圧縮機(41)の第2高段圧縮機構(41b)に導入される。 In the cooling operation and other operations, an injection operation for introducing the refrigerant that has flowed through the low pressure side flow path (25b) of the supercooling heat exchanger (25) into each compressor (31, 41) is appropriately performed. In each figure, the flow of the refrigerant during the injection operation is not shown. Part of the refrigerant in the second pipe (62) flows into the introduction pipe (53). Further, the gas refrigerant in the receiver (24) flows into the introduction pipe (53) via the gas vent pipe (67). The refrigerant flowing into the introduction pipe (53) is depressurized by the pressure reducing valve (54) and then flows through the low pressure side flow path (25b). In the refrigerated heat exchanger (83), the heat of the refrigerant flowing through the high-pressure channel (25a) is imparted to the refrigerant flowing through the low-pressure channel (25b). The refrigerant that has flowed out of the low-pressure channel (25b) is divided into the first introduction branch pipe (53a) and the second introduction branch pipe (53b). The refrigerant in the first introduction branch pipe (53a) is introduced into the first high-stage compression mechanism (31b) of the first compressor (31) via the first relay pipe (33). The refrigerant in the second introduction branch pipe (53b) is introduced into the second high-stage compression mechanism (41b) of the second compressor (41) via the second relay pipe (43).
 〈冷房運転〉
 図4に示す冷房運転では、第1弁(V1)及び第4弁(V4)が開状態となり、第2弁(V2)及び第3弁(V3)が閉状態となる。室外膨張弁(23)は全開状態となり、冷設膨張弁(82)が全閉状態となり、室内膨張弁(92)の開度が過熱度制御により制御される。圧縮部(30)で圧縮された冷媒が、室外熱交換器(22)で放熱し、冷設熱交換器(83)で蒸発する冷凍サイクルが行われる。
<Cooling operation>
In the cooling operation shown in FIG. 4, the first valve (V1) and the fourth valve (V4) are opened, and the second valve (V2) and the third valve (V3) are closed. The outdoor expansion valve (23) is fully opened, the cold expansion valve (82) is fully closed, and the opening degree of the indoor expansion valve (92) is controlled by superheat control. A refrigeration cycle is performed in which the refrigerant compressed in the compressor (30) radiates heat in the outdoor heat exchanger (22) and evaporates in the cold heat exchanger (83).
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第1流路(71)を経由して室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒の熱が室外空気へ放出される。室外熱交換器(22)で放熱した冷媒は、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して室内熱交換器(93)を流れる。室内熱交換器(93)では、蒸発する冷媒によって室内空気が冷やされる。室内熱交換器(93)で蒸発した冷媒は、ブリッジ回路(70)の第4流路(74)及び吸入中継管(58)を経由して第1圧縮機(31)及び第2圧縮機(41)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the first flow path (71) of the bridge circuit (70), and the outdoor heat exchanger (22 ). In the outdoor heat exchanger (22), the heat of the refrigerant is released to the outdoor air. The refrigerant radiated by the outdoor heat exchanger (22) flows through the indoor heat exchanger (93) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25). In the indoor heat exchanger (93), the indoor air is cooled by the evaporating refrigerant. The refrigerant evaporated in the indoor heat exchanger (93) passes through the fourth flow path (74) and the suction relay pipe (58) of the bridge circuit (70), and the first compressor (31) and the second compressor ( 41) Inhaled.
 〈冷房/冷設運転〉
 図5に示す冷房/冷設運転では、第1弁(V1)及び第4弁(V4)が開状態となり、第2弁(V2),第3弁(V3)及び圧力調節弁(V5)が閉状態となる。室外膨張弁(23)は全開状態となり、冷設膨張弁(82)及び室内膨張弁(92)の開度が過熱度制御により制御される。圧縮部(30)で圧縮された冷媒が、室外熱交換器(22)で放熱し、冷設熱交換器(83)及び室内熱交換器(93)で蒸発する冷凍サイクルが行われる。
<Cooling / cooling operation>
In the cooling / cooling operation shown in FIG. 5, the first valve (V1) and the fourth valve (V4) are opened, and the second valve (V2), the third valve (V3) and the pressure control valve (V5) are opened. Closed. The outdoor expansion valve (23) is fully opened, and the openings of the cold expansion valve (82) and the indoor expansion valve (92) are controlled by superheat control. The refrigerant compressed in the compression unit (30) dissipates heat in the outdoor heat exchanger (22) and evaporates in the cold heat exchanger (83) and the indoor heat exchanger (93).
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第1流路(71)を経由して室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒の熱が室外空気へ放出される。室外熱交換器(22)で放熱した冷媒は、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して冷設熱交換器(83)及び室内熱交換器(93)を流れる。冷設熱交換器(83)では、蒸発する冷媒によって庫内空気が冷やされる。冷設熱交換器(83)で蒸発した冷媒は、第1ガス連絡配管(13)を経由して第1圧縮機(31)に吸入される。室内熱交換器(93)で蒸発した冷媒は、ブリッジ回路(70)の第4流路(74)及び吸入中継管(58)を経由して第2圧縮機(41)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the first flow path (71) of the bridge circuit (70), and the outdoor heat exchanger (22 ). In the outdoor heat exchanger (22), the heat of the refrigerant is released to the outdoor air. The refrigerant dissipated in the outdoor heat exchanger (22) passes through the receiver (24), the high-pressure side flow path (25a) of the supercooling heat exchanger (25), and the cold heat exchanger (83) and the indoor heat exchange. Flows through the vessel (93). In the refrigerated heat exchanger (83), the internal air is cooled by the evaporated refrigerant. The refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) through the first gas communication pipe (13). The refrigerant evaporated in the indoor heat exchanger (93) is sucked into the second compressor (41) via the fourth flow path (74) and the suction relay pipe (58) of the bridge circuit (70).
 〈暖房運転〉
 図6に示す暖房運転では、第2弁(V2)及び第3弁(V3)が開状態となり、第1弁(V1)及び第4弁(V4)が閉状態となる。室外膨張弁(23)の開度が過熱度制御され、冷設膨張弁(82)が全閉状態となり、室内膨張弁(92)が全開状態となる。圧縮部(30)で圧縮された冷媒が、室内熱交換器(93)で放熱し、室外熱交換器(22)で蒸発する冷凍サイクルが行われる。
<Heating operation>
In the heating operation shown in FIG. 6, the second valve (V2) and the third valve (V3) are opened, and the first valve (V1) and the fourth valve (V4) are closed. The degree of superheat of the outdoor expansion valve (23) is controlled, the cold expansion valve (82) is fully closed, and the indoor expansion valve (92) is fully open. A refrigeration cycle is performed in which the refrigerant compressed by the compression unit (30) dissipates heat in the indoor heat exchanger (93) and evaporates in the outdoor heat exchanger (22).
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第2流路(72)及び第2ガス連絡配管(15)を経由して室内熱交換器(93)を流れる。室内熱交換器(93)では、放熱する冷媒によって室内空気が加熱される。室内熱交換器(93)で放熱した冷媒は、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒が室内空気から吸熱して蒸発する。室外熱交換器(22)で蒸発した冷媒は、ブリッジ回路(70)の第3流路(73)及び吸入中継管(58)を経由して第1圧縮機(31)及び第2圧縮機(41)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the second flow path (72) and the second gas connection pipe (15) of the bridge circuit (70). It flows through the indoor heat exchanger (93). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant. The refrigerant radiated by the indoor heat exchanger (93) flows through the outdoor heat exchanger (22) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25). In the outdoor heat exchanger (22), the refrigerant absorbs heat from the room air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (22) passes through the third flow path (73) and the suction relay pipe (58) of the bridge circuit (70), and the first compressor (31) and the second compressor ( 41) Inhaled.
 〈暖房/冷設運転〉
 図7に示す暖房/冷設運転では、第2弁(V2)及び第3弁(V3)が開状態となり、第1弁(V1),第4弁(V4)及び圧力調節弁(V5)が閉状態となる。室外膨張弁(23)及び冷設膨張弁(82)の開度が過熱度制御され、室内膨張弁(92)が全開状態となる。圧縮部(30)で圧縮された冷媒が、室内熱交換器(93)で放熱し、室外熱交換器(22)及び冷設熱交換器(83)で蒸発する冷凍サイクルが行われる。
<Heating / Cooling operation>
In the heating / cooling operation shown in FIG. 7, the second valve (V2) and the third valve (V3) are opened, and the first valve (V1), the fourth valve (V4) and the pressure control valve (V5) are opened. Closed. The opening degree of the outdoor expansion valve (23) and the cold expansion valve (82) is superheated, and the indoor expansion valve (92) is fully opened. The refrigerant compressed in the compression unit (30) dissipates heat in the indoor heat exchanger (93) and evaporates in the outdoor heat exchanger (22) and the cold heat exchanger (83).
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第2流路(72)及び第2ガス連絡配管(15)を経由して室内熱交換器(93)を流れる。室内熱交換器(93)では、放熱する冷媒によって室内空気が加熱される。室内熱交換器(93)で放熱した冷媒は、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して室外熱交換器(22)及び冷設熱交換器(83)を流れる。室外熱交換器(22)では、冷媒が室内空気から吸熱して蒸発する。室外熱交換器(22)で蒸発した冷媒は、ブリッジ回路(70)の第3流路(73)及び吸入中継管(58)を経由して第2圧縮機(41)に吸入される。冷設熱交換器(83)では、蒸発する冷媒によって庫内空気が冷やされる。冷設熱交換器(83)で蒸発した冷媒は、第1ガス連絡配管(13)を経由して第1圧縮機(31)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the second flow path (72) and the second gas connection pipe (15) of the bridge circuit (70). It flows through the indoor heat exchanger (93). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant. The refrigerant that dissipated heat in the indoor heat exchanger (93) passes through the receiver (24) and the high-pressure side flow path (25a) of the supercooling heat exchanger (25), and the cold heat exchange is performed in the outdoor heat exchanger (22). Flows through the vessel (83). In the outdoor heat exchanger (22), the refrigerant absorbs heat from the room air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (22) is sucked into the second compressor (41) via the third flow path (73) and the suction relay pipe (58) of the bridge circuit (70). In the refrigerated heat exchanger (83), the internal air is cooled by the evaporated refrigerant. The refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) through the first gas communication pipe (13).
 〈暖房/冷設熱回収運転〉
 図8に示す暖房/冷設熱回収運転では、第2弁(V2)が開状態となり、第1弁(V1)及び第4弁(V4)が閉状態となる。第3弁(V3)は原則として開状態となる。室外膨張弁(23)が全閉状態となり、冷設膨張弁(82)の開度が過熱度制御され、室内膨張弁(92)が全開状態となる。圧縮部(30)で圧縮された冷媒が、室内熱交換器(93)で放熱し、冷設熱交換器(83)で蒸発する冷凍サイクルが行われる。この際、室外熱交換器(22)は、停止状態となる。
<Heating / Cooling heat recovery operation>
In the heating / cooling heat recovery operation shown in FIG. 8, the second valve (V2) is opened, and the first valve (V1) and the fourth valve (V4) are closed. The third valve (V3) is open as a rule. The outdoor expansion valve (23) is fully closed, the degree of opening of the cold expansion valve (82) is superheated, and the indoor expansion valve (92) is fully opened. A refrigeration cycle is performed in which the refrigerant compressed by the compression unit (30) dissipates heat in the indoor heat exchanger (93) and evaporates in the cold heat exchanger (83). At this time, the outdoor heat exchanger (22) is stopped.
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第2流路(72)及び第2ガス連絡配管(15)を経由して室内熱交換器(93)を流れる。室内熱交換器(93)では、放熱する冷媒によって室内空気が加熱される。室内熱交換器(93)で放熱した冷媒は、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して冷設熱交換器(83)を流れる。冷設熱交換器(83)では、蒸発する冷媒によって庫内空気が冷やされる。冷設熱交換器(83)で蒸発した冷媒は、第1ガス連絡配管(13)を経由して第1圧縮機(31)及び第2圧縮機(41)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) passes through the second flow path (72) and the second gas connection pipe (15) of the bridge circuit (70). It flows through the indoor heat exchanger (93). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant. The refrigerant radiated by the indoor heat exchanger (93) flows through the chilled heat exchanger (83) via the receiver (24) and the high-pressure channel (25a) of the supercooling heat exchanger (25). In the refrigerated heat exchanger (83), the internal air is cooled by the evaporated refrigerant. The refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) and the second compressor (41) via the first gas communication pipe (13).
 〈暖房/冷設余熱運転〉
 図9に示す暖房/冷設余熱運転では、第1弁(V1)及び第2弁(V2)が開状態となり、第3弁(V3)及び第4弁(V4)が閉状態となる。室外膨張弁(23)及び室内膨張弁(92)が全開状態となり、冷設膨張弁(82)の開度が過熱度制御される。圧縮部(30)で圧縮された冷媒が、室外熱交換器(22)及び室内熱交換器(93)で放熱し、冷設熱交換器(83)で蒸発する冷凍サイクルが行われる。
<Heating / Cooling residual heat operation>
In the heating / cooling residual heat operation shown in FIG. 9, the first valve (V1) and the second valve (V2) are opened, and the third valve (V3) and the fourth valve (V4) are closed. The outdoor expansion valve (23) and the indoor expansion valve (92) are fully opened, and the degree of opening of the cold expansion valve (82) is superheated. The refrigerant compressed in the compression unit (30) dissipates heat in the outdoor heat exchanger (22) and the indoor heat exchanger (93) and evaporates in the cold heat exchanger (83).
 具体的には、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、ブリッジ回路(70)の第1流路(71)及び第2流路(72)に分流する。第1流路(71)を流出した冷媒は、室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒の熱が室外空気へ放出される。第2流路(72)を流出した冷媒は、第2ガス連絡配管(15)を経由して室内熱交換器(93)を流れる。室内熱交換器(93)では、放熱する冷媒によって室内空気が加熱される。室内熱交換器(93)で放熱した冷媒は、室外熱交換器(22)で放熱した冷媒と合流し、レシーバ(24)、過冷却熱交換器(25)の高圧側流路(25a)を経由して冷設熱交換器(83)を流れる。冷設熱交換器(83)では、蒸発する冷媒によって庫内空気が冷やされる。冷設熱交換器(83)で蒸発した冷媒は、第1ガス連絡配管(13)を経由して第1圧縮機(31)及び第2圧縮機(41)に吸入される。 Specifically, the refrigerant compressed by the first compressor (31) and the second compressor (41) is divided into the first flow path (71) and the second flow path (72) of the bridge circuit (70). To do. The refrigerant that has flowed out of the first flow path (71) flows through the outdoor heat exchanger (22). In the outdoor heat exchanger (22), the heat of the refrigerant is released to the outdoor air. The refrigerant that has flowed out of the second flow path (72) flows through the indoor heat exchanger (93) via the second gas communication pipe (15). In the indoor heat exchanger (93), the indoor air is heated by the radiating refrigerant. The refrigerant dissipated by the indoor heat exchanger (93) merges with the refrigerant dissipated by the outdoor heat exchanger (22), and passes through the high-pressure channel (25a) of the receiver (24) and supercooling heat exchanger (25). It flows through a chilled heat exchanger (83) via. In the refrigerated heat exchanger (83), the internal air is cooled by the evaporated refrigerant. The refrigerant evaporated in the cold heat exchanger (83) is sucked into the first compressor (31) and the second compressor (41) via the first gas communication pipe (13).
 〈デフロスト運転〉
 デフロスト運転の冷媒の流れは、図3に示す冷房運転と同様である。つまり、第1圧縮機(31)及び第2圧縮機(41)で圧縮された冷媒は、室外熱交換器(22)で放熱する。これにより、室外熱交換器(22)の表面の霜と融ける。室外熱交換器(22)の除霜に利用された冷媒は、室内熱交換器(93)で蒸発した後、第1圧縮機(31)及び第2圧縮機(41)に吸入される。
<Defrost operation>
The refrigerant flow in the defrost operation is the same as that in the cooling operation shown in FIG. That is, the refrigerant compressed by the first compressor (31) and the second compressor (41) dissipates heat in the outdoor heat exchanger (22). Thereby, it melts with frost on the surface of the outdoor heat exchanger (22). The refrigerant used for defrosting the outdoor heat exchanger (22) evaporates in the indoor heat exchanger (93), and is then sucked into the first compressor (31) and the second compressor (41).
 -空調能力補助運転-
 本実施形態では、冷設熱交換器(83)で蒸発した冷媒を第1圧縮機(31)で吸入する第1冷凍サイクルと、室内熱交換器(93)で蒸発した冷媒を第2圧縮機(41)で吸入する第2冷凍サイクルとが行われる運転状態(図5の冷房/冷設運転の状態)で、室内熱交換器(93)の冷却能力が不足すると、図10のフローチャートに従って空調能力補助運転が行われる。
-Air-conditioning capacity auxiliary operation-
In the present embodiment, the first refrigeration cycle for sucking the refrigerant evaporated in the cold heat exchanger (83) with the first compressor (31), and the refrigerant evaporated in the indoor heat exchanger (93) with the second compressor If the cooling capacity of the indoor heat exchanger (93) is insufficient in the operation state (the state of the cooling / cooling operation in FIG. 5) in which the second refrigeration cycle sucked in (41) is performed, air conditioning is performed according to the flowchart in FIG. Ability-assisted operation is performed.
 具体的には、空調能力補助運転時に、コントローラ(100)は、ステップST11において、(1)空調用の第2圧縮機(41)が最大周波数であり、(2)空調能力アップの要求があり、(3)冷設用の第1圧縮機(31)が最大周波数でないまたは空調優先である、という3つの条件が全て満たされているかどうかを判別する。この3つの条件が満たされていると、第2圧縮機(41)を最大容量にしているのに室内熱交換器(93)の冷却能力が不足しており、室内熱交換器(93)の冷却能力が冷却負荷を下回っている。 Specifically, during the air conditioning capacity assist operation, the controller (100), in step ST11, (1) the second compressor for air conditioning (41) has the maximum frequency, and (2) there is a request for increasing the air conditioning capacity. (3) It is determined whether or not all three conditions that the first compressor for cooling (31) is not at the maximum frequency or air-conditioning priority is satisfied. If these three conditions are satisfied, the cooling capacity of the indoor heat exchanger (93) is insufficient even though the second compressor (41) is at the maximum capacity, and the indoor heat exchanger (93) The cooling capacity is below the cooling load.
 そこで、この場合は、ステップST12へ進んで、第1補助熱交換器(110)を設けていなければ冷設熱交換器(83)へ流れて行くことになる冷媒の一部を、第1分岐管(115)の第1減圧弁(116)(図では第1減圧弁を空調補助用膨張弁と表示)で減圧して第1低圧流路(112)で蒸発させ、第1補助吸入管(118)から吸入中継管(58)を介して第2圧縮機(41)に吸入させる。このとき、第1減圧弁(116)は、第1低圧流路(112)の冷媒圧力が第2圧縮機(41)の吸入圧力になるように開度が調整される。なお、第1補助吸入管(118)が第2高段圧縮機構(41b)の吸入ポートに接続されている場合は、第1減圧弁(116)は、第1低圧流路(112)の冷媒圧力が第2圧縮機(41)の中間圧力になるように開度が調整される。 Therefore, in this case, the process proceeds to step ST12, and if the first auxiliary heat exchanger (110) is not provided, a part of the refrigerant that will flow to the cold heat exchanger (83) is changed to the first branch. The first pressure reducing valve (116) of the pipe (115) (in the figure, the first pressure reducing valve is indicated as an air conditioning auxiliary expansion valve) is depressurized and evaporated in the first low pressure channel (112), and the first auxiliary suction pipe ( 118) is sucked into the second compressor (41) through the suction relay pipe (58). At this time, the opening of the first pressure reducing valve (116) is adjusted so that the refrigerant pressure in the first low-pressure channel (112) becomes the suction pressure of the second compressor (41). When the first auxiliary suction pipe (118) is connected to the suction port of the second high-stage compression mechanism (41b), the first pressure reducing valve (116) is a refrigerant in the first low-pressure channel (112). The opening degree is adjusted so that the pressure becomes an intermediate pressure of the second compressor (41).
 この運転を行うと、第2圧縮機(41)の吸入冷媒量を増やせるので、室内熱交換器(93)の冷媒流量が増加して冷却能力が高められる。このように、ステップST11の条件が満たされたときは、第1液管(63)を流れる冷媒の一部を利用して室内熱交換器(93)の冷却能力を補助する空調能力補助運転(第1補助運転)が行われる。この運転時は、第1高圧流路(111)で冷媒が過冷却されるため、冷設熱交換器(83)の能力低下が抑制される
When this operation is performed, the amount of refrigerant sucked in the second compressor (41) can be increased, so that the refrigerant flow rate in the indoor heat exchanger (93) is increased and the cooling capacity is enhanced. Thus, when the condition of step ST11 is satisfied, the air conditioning capability assisting operation (assuming the cooling capability of the indoor heat exchanger (93) using a part of the refrigerant flowing through the first liquid pipe (63) ( First auxiliary operation) is performed. During this operation, the refrigerant is supercooled in the first high-pressure flow path (111), so that a reduction in the capacity of the chilled heat exchanger (83) is suppressed.
 ステップST11の条件が満たされないときは、室内熱交換器(93)の冷却能力を高める運転が求められていないか、室内熱交換器(93)の冷却能力を第2圧縮機(41)の運転周波数を上昇させて高める余裕がある。したがって、この場合は、1補助熱交換器(110)を用いた空調能力補助運転(第1補助運転)は行われない。そこで、この場合は、ステップST13において、第1減圧弁(116)が全閉となる。 When the condition of step ST11 is not satisfied, the operation for increasing the cooling capacity of the indoor heat exchanger (93) is not required, or the cooling capacity of the indoor heat exchanger (93) is set to the operation of the second compressor (41). There is room to increase the frequency. Therefore, in this case, the air conditioning capability auxiliary operation (first auxiliary operation) using the one auxiliary heat exchanger (110) is not performed. Therefore, in this case, the first pressure reducing valve (116) is fully closed in step ST13.
 -実施形態1の効果-
 この実施形態1では、蒸発温度が異なる複数の利用熱交換器(83,93)が共用の熱源熱交換器(22)に並列に接続された冷媒回路(11)を有する冷凍装置において、蒸発温度が低い冷設熱交換器(83)に吸入部が接続された第1圧縮機(31)と、それよりも蒸発温度が高い室内熱交換器(93)に吸入部が接続された第2圧縮機(41)とで圧縮部(30)を構成している。また、第1高圧流路(111)と第1低圧流路(112)とを有し、第1高圧流路(111)を流れる冷媒と第1低圧流路(112)を流れる冷媒とが熱交換をする第1補助熱交換器(110)を設け、第1低圧流路(112)の冷媒流出側と第2圧縮機(41)の吸入部とを第1補助吸入管(118)で接続している。
-Effect of Embodiment 1-
In Embodiment 1, in a refrigeration apparatus having a refrigerant circuit (11) in which a plurality of heat exchangers (83, 93) having different evaporation temperatures are connected in parallel to a common heat source heat exchanger (22), the evaporation temperature The first compressor (31) connected to the cold heat exchanger (83) having a low temperature and the second compressor connected to the indoor heat exchanger (93) having a higher evaporation temperature than the first compressor (31) The machine (41) constitutes a compression section (30). Further, the first high-pressure channel (111) and the first low-pressure channel (112) are provided, and the refrigerant flowing through the first high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) are heated. A first auxiliary heat exchanger (110) for exchanging is provided, and the refrigerant outflow side of the first low-pressure channel (112) and the suction portion of the second compressor (41) are connected by the first auxiliary suction pipe (118). is doing.
 したがって、この実施形態1によれば、冷設熱交換器(83)で蒸発した冷媒を第1圧縮機(31)で吸入する第1冷凍サイクルと、室内熱交換器(93)で蒸発した冷媒を第2圧縮機(41)で吸入する第2冷凍サイクルとが行われる冷房/冷設運転の状態で、室内熱交換器(93)の冷却能力が冷却負荷を下回って冷却能力が不足する状態になると、空調能力補助運転(第1補助運転)を行うことができる。 Therefore, according to the first embodiment, the first refrigeration cycle that sucks the refrigerant evaporated in the cold heat exchanger (83) by the first compressor (31) and the refrigerant evaporated in the indoor heat exchanger (93). The cooling capacity of the indoor heat exchanger (93) is below the cooling load and the cooling capacity is insufficient in the cooling / cooling operation state where the second refrigeration cycle that sucks in the second compressor (41) is performed Then, the air conditioning capability auxiliary operation (first auxiliary operation) can be performed.
 空調能力補助運転時は、具体的には、第1補助熱交換器(110)が設けられていないと冷設熱交換器(83)へ流れていく冷媒の一部が、第1低圧流路(112)に分流して第1高圧流路(111)の冷媒と熱交換して蒸発する。蒸発した冷媒は、第1補助吸入管(118)を通って第2圧縮機(41)に吸入される。その結果、第2圧縮機(41)の吸入冷媒量を増やして、蒸発温度が高い室内熱交換器(93)の冷媒循環量を増やせるので、室内熱交換器(93)の冷却能力を高められる。 Specifically, during the air-conditioning capacity auxiliary operation, if the first auxiliary heat exchanger (110) is not provided, a part of the refrigerant flowing to the cold heat exchanger (83) is the first low-pressure channel. The refrigerant is diverted to (112) and evaporated by exchanging heat with the refrigerant in the first high-pressure channel (111). The evaporated refrigerant is sucked into the second compressor (41) through the first auxiliary suction pipe (118). As a result, the amount of refrigerant sucked into the second compressor (41) can be increased to increase the amount of refrigerant circulating in the indoor heat exchanger (93) having a high evaporation temperature, so that the cooling capacity of the indoor heat exchanger (93) can be increased. .
 このように、従来は冷房/冷設運転の状態で蒸発温度が高い室内熱交換器(93)の能力不足が生じたときに、室内熱交換器(93)の冷却能力を高めることができなかったのに対して、本実施形態によれば、室内熱交換器(93)の冷却能力を高めることが可能になる。したがって、より幅広い運転条件に対応することが可能になる。 Thus, conventionally, when the capacity of the indoor heat exchanger (93) having a high evaporation temperature in the cooling / cooling operation state is insufficient, the cooling capacity of the indoor heat exchanger (93) cannot be increased. On the other hand, according to this embodiment, the cooling capacity of the indoor heat exchanger (93) can be increased. Therefore, it becomes possible to cope with a wider range of operating conditions.
 本実施形態では、第1圧縮機(31)の第1吸入管(32)と第2圧縮機(41)の第2吸入管(42)とに、開度調節可能な圧力調節弁(V5)が設けられた吸入連通管(50)を接続している。 In this embodiment, a pressure control valve (V5) whose opening degree can be adjusted between the first suction pipe (32) of the first compressor (31) and the second suction pipe (42) of the second compressor (41). The suction communication pipe (50) provided with is connected.
 本実施形態によれば、室内熱交換器(93)の冷却能力を高めるだけでなく、室内熱交換器(93)から流出した冷媒の一部を圧力調整弁(V5)で減圧して第1圧縮機(31)で吸入する運転が可能になるので、冷設熱交換器(83)の冷媒循環量を増やすことで冷設熱交換器(83)の冷却能力を高めることも可能になる。 According to this embodiment, not only the cooling capacity of the indoor heat exchanger (93) is increased, but also part of the refrigerant flowing out of the indoor heat exchanger (93) is reduced in pressure by the pressure regulating valve (V5). Since the compressor (31) can be inhaled, the cooling capacity of the cold heat exchanger (83) can be increased by increasing the refrigerant circulation amount of the cold heat exchanger (83).
 本実施形態では、冷媒として二酸化炭素を用いている。このため、地球温暖化の影響を緩和できる。 In this embodiment, carbon dioxide is used as the refrigerant. For this reason, the influence of global warming can be mitigated.
 《実施形態2》
 実施形態2について説明する。
<< Embodiment 2 >>
Embodiment 2 will be described.
 図11に示すように、実施形態2は、実施形態1の冷凍装置(10)に、さらに第2補助熱交換器(120)を設けた例である。第2補助熱交換器(120)は、冷設熱交換器(83)を流れる冷媒を吸入して圧縮する第1圧縮機(31)の能力不足を補うために、室外ユニット(20)に設けられている。つまり、第2補助熱交換器(110)は、第1圧縮機(31)及び冷設熱交換器(83)の能力を補助するための熱交換器である。 As shown in FIG. 11, Embodiment 2 is an example in which a second auxiliary heat exchanger (120) is further provided in the refrigeration apparatus (10) of Embodiment 1. The second auxiliary heat exchanger (120) is provided in the outdoor unit (20) in order to compensate for the shortage of capacity of the first compressor (31) that sucks and compresses the refrigerant flowing through the cold heat exchanger (83). It has been. That is, the second auxiliary heat exchanger (110) is a heat exchanger for assisting the capacities of the first compressor (31) and the chilled heat exchanger (83).
 第2補助熱交換器(120)は、第2高圧流路(121)と第2低圧流路(122)とを有する。第2高圧流路(121)は、第5配管(第2液管)(65)に接続される。第2低圧流路(122)は、第3配管(第1液管)(63)から分岐した第2分岐管(第2分岐流路)(125)に冷媒流入端が接続される。第2分岐管(125)には第2減圧弁(第2減圧機構)(126)として第2膨張弁が設けられる。第2補助熱交換器(120)では、第2高圧流路(121)を流れる冷媒と、第2低圧流路(122)を流れる冷媒とが熱交換する。 The second auxiliary heat exchanger (120) has a second high-pressure channel (121) and a second low-pressure channel (122). The second high-pressure channel (121) is connected to the fifth pipe (second liquid pipe) (65). The second low-pressure channel (122) has a refrigerant inflow end connected to a second branch pipe (second branch channel) (125) branched from the third pipe (first liquid pipe) (63). The second branch pipe (125) is provided with a second expansion valve as a second pressure reducing valve (second pressure reducing mechanism) (126). In the second auxiliary heat exchanger (120), heat is exchanged between the refrigerant flowing through the second high-pressure channel (121) and the refrigerant flowing through the second low-pressure channel (122).
 第2低圧流路(122)の冷媒流出端には、第2補助吸入管(第2補助吸入流路)(128)が接続される。第2補助吸入管(128)は、上記第1圧縮機(31)の吸入部である第1低段圧縮機構(31a)の吸入ポートに、第1吸入管(32)を介して接続される。第2補助吸入管(128)は、第1高段圧縮機構(31b)の吸入ポートに接続されていてもよい。 A second auxiliary suction pipe (second auxiliary suction flow path) (128) is connected to the refrigerant outflow end of the second low pressure flow path (122). The second auxiliary suction pipe (128) is connected to the suction port of the first low-stage compression mechanism (31a), which is the suction portion of the first compressor (31), via the first suction pipe (32). . The second auxiliary suction pipe (128) may be connected to the suction port of the first high-stage compression mechanism (31b).
 この実施形態2の冷媒回路(11)は、第2補助熱交換器(120)を追加した点を除いては、実施形態1と同様に構成されている。 The refrigerant circuit (11) of the second embodiment is configured in the same manner as in the first embodiment except that a second auxiliary heat exchanger (120) is added.
 -運転動作-
 この実施形態2においても、冷凍装置(1)は、実施形態1と同様に、冷設運転、冷房運転、冷房/冷設運転、暖房運転、暖房/冷設運転、暖房/冷設熱回収運転、暖房/冷設余熱運転、及びデフロスト運転を行うことができる。
-Driving operation-
Also in the second embodiment, the refrigeration apparatus (1) is similar to the first embodiment in the cooling operation, cooling operation, cooling / cooling operation, heating operation, heating / cooling operation, heating / cooling heat recovery operation. Heating / cooling preheating operation and defrosting operation can be performed.
 この実施形態2では、冷房/冷設運転時に空調能力補助運転を行うことができるのに加え、同じく図5の冷房/冷設運転時に冷設熱交換器(83)の冷却能力が不足する場合は、図12のフローチャートに従って冷設能力補助運転を行うことができる。 In the second embodiment, in addition to being able to perform the air conditioning capacity auxiliary operation during the cooling / cooling operation, the cooling capacity of the cooling heat exchanger (83) is also insufficient during the cooling / cooling operation of FIG. Can perform the cooling capacity assisting operation according to the flowchart of FIG.
 具体的には、冷設能力補助運転時に、コントローラ(100)は、ステップST21において、(1)冷設用の第1圧縮機(31)が最大周波数であり、(2)冷設能力アップの要求があり、(3)空調用の第2圧縮機(41)が最大周波数でないまたは冷設優先である、という3つの条件が全て満たされているかどうかを判別する。この3つの条件が満たされていると、第1圧縮機(31)を最大能力にしているのに冷設熱交換器(83)の冷却能力が不足しており、冷設熱交換器(83)の冷却能力が冷却負荷を下回っている。 Specifically, during the cooling capacity assist operation, in step ST21, the controller (100) (1) the first compressor (31) for cooling is at the maximum frequency, and (2) the cooling capacity is increased. There is a request, and it is determined whether or not all the three conditions that (3) the second compressor (41) for air conditioning is not at the maximum frequency or the cooling priority is satisfied are satisfied. If these three conditions are satisfied, the cooling capacity of the chilled heat exchanger (83) is insufficient even though the first compressor (31) has the maximum capacity, and the chilled heat exchanger (83 ) Cooling capacity is below the cooling load.
 そこで、この場合は、ステップST22へ進んで、第2補助熱交換器(120)を設けていなければ室内熱交換器(93)へ流れて行くことになる冷媒の一部を、第2分岐管(125)の第2減圧弁(126)(図では第2減圧弁を冷設補助用膨張弁と表示)で減圧して第2低圧流路(122)で蒸発させ、第2補助吸入管(128)から第1吸入管(32)を介して第1圧縮機(31)に吸入させる。このとき、第2減圧弁(126)は、第2低圧流路(122)の冷媒圧力が第1圧縮機(31)の吸入圧力になるように開度が調整される。なお、第2補助吸入管(128)が第1高段圧縮機構(31b)の吸入ポートに接続されている場合は、第2減圧弁(126)は、第2低圧流路(122)の冷媒圧力が第1圧縮機(31)の中間圧力になるように開度が調整される。 Therefore, in this case, the process proceeds to step ST22, and if the second auxiliary heat exchanger (120) is not provided, a part of the refrigerant that flows to the indoor heat exchanger (93) is removed from the second branch pipe. The second pressure reducing valve (126) of (125) (in the figure, the second pressure reducing valve is indicated as a cooling auxiliary expansion valve) is depressurized and evaporated in the second low pressure flow path (122), and the second auxiliary suction pipe ( 128) to the first compressor (31) through the first suction pipe (32). At this time, the opening of the second pressure reducing valve (126) is adjusted so that the refrigerant pressure in the second low-pressure channel (122) becomes the suction pressure of the first compressor (31). When the second auxiliary suction pipe (128) is connected to the suction port of the first high-stage compression mechanism (31b), the second pressure reducing valve (126) is a refrigerant in the second low-pressure channel (122). The opening degree is adjusted so that the pressure becomes an intermediate pressure of the first compressor (31).
 この運転を行うと、第1圧縮機(31)の吸入冷媒量を増やせるので、冷設熱交換器(83)の冷媒流量が増加して冷却能力が高められる。このように、ステップST21の条件が満たされたときは、第2液管(65)を流れる冷媒の一部を利用して冷設熱交換器(83)の冷却能力を補助する冷設能力補助運転(第2補助運転)が行われる。この運転時は、第2高圧流路(121)で冷媒が過冷却されるため、室内熱交換器(93)の能力低下が抑制される。 When this operation is performed, the amount of refrigerant sucked in the first compressor (31) can be increased, so that the refrigerant flow rate in the cold heat exchanger (83) increases and the cooling capacity is enhanced. In this way, when the condition of step ST21 is satisfied, the cooling capacity assistance that assists the cooling capacity of the cooling heat exchanger (83) using a part of the refrigerant flowing through the second liquid pipe (65). Operation (second auxiliary operation) is performed. During this operation, the refrigerant is supercooled in the second high-pressure channel (121), so that the capacity reduction of the indoor heat exchanger (93) is suppressed.
 ステップST21の条件が満たされないときは、冷設熱交換器(83)の冷却能力を高める運転が求められていないか、冷設熱交換器(83)の冷却能力を第1圧縮機(31)の運転周波数を上昇させて高める余裕がある。したがって、この場合は、第2補助熱交換器(120)を用いた冷設能力補助運転(第2補助運転)は行われない。そこで、この場合は、ステップST23において、第2減圧弁(126)が全閉となる。 When the condition of step ST21 is not satisfied, an operation for increasing the cooling capacity of the chilled heat exchanger (83) is not required, or the cooling capacity of the chilled heat exchanger (83) is set to the first compressor (31). There is room to increase the operating frequency of Therefore, in this case, the cooling capacity auxiliary operation (second auxiliary operation) using the second auxiliary heat exchanger (120) is not performed. Therefore, in this case, the second pressure reducing valve (126) is fully closed in step ST23.
 -実施形態2の効果-
 この実施形態2では、第2高圧流路(121)と第2低圧流路(122)とを有し、第2高圧流路(121)を流れる冷媒と第2低圧流路(122)を流れる冷媒とが熱交換をする第2補助熱交換器(120)を設け、第2低圧流路(122)の冷媒流出側と第1圧縮機(31)の吸入部とを第1補助吸入管(118)で接続している。
-Effect of Embodiment 2-
In this Embodiment 2, it has the 2nd high pressure channel (121) and the 2nd low pressure channel (122), and flows through the 2nd high pressure channel (121) and the 2nd low pressure channel (122). A second auxiliary heat exchanger (120) for exchanging heat with the refrigerant is provided, and the refrigerant outlet side of the second low-pressure channel (122) and the suction portion of the first compressor (31) are connected to the first auxiliary suction pipe ( 118).
 したがって、この実施形態2によれば、冷房/冷設運転の状態で、実施形態1の空調能力補助運転を行うことができるのに加えて、冷設熱交換器(83)の冷却能力が冷却負荷を下回ってその冷却能力が不足する状態になると、冷設能力補助運転(第2補助運転)を行うことができる。 Therefore, according to the second embodiment, in addition to being able to perform the air conditioning capability auxiliary operation of the first embodiment in the cooling / cooling operation state, the cooling capability of the cooling heat exchanger (83) is reduced. When the cooling capacity is insufficient due to a drop in the load, a cooling capacity auxiliary operation (second auxiliary operation) can be performed.
 冷設能力補助運転時は、具体的には、第2補助熱交換器(120)が設けられていないと室内熱交換器(93)へ流れていく冷媒の一部が、第2低圧流路(122)に分流して第2高圧流路(121)の冷媒と熱交換して蒸発する。蒸発した冷媒は、第2補助吸入管(128)を通って第1圧縮機(31)に吸入される。その結果、第1圧縮機(31)の吸入冷媒量を増やして、蒸発温度が低い冷設熱交換器(93)の冷媒循環量を増やせるので、室内熱交換器(93)の冷却能力も高められる。このように、本実施形態によれば、空調能力補助運転に加えて、第2補助熱交換器(120)を用いて冷設能力補助運転も行えるので、より幅広い運転条件に対応することが可能になる。 Specifically, during the refrigeration capacity auxiliary operation, if the second auxiliary heat exchanger (120) is not provided, a part of the refrigerant flowing to the indoor heat exchanger (93) is part of the second low-pressure channel. (122) is divided into heat and exchanged with the refrigerant in the second high-pressure channel (121) to evaporate. The evaporated refrigerant is sucked into the first compressor (31) through the second auxiliary suction pipe (128). As a result, the amount of refrigerant sucked into the first compressor (31) can be increased, and the amount of refrigerant circulating in the chilled heat exchanger (93) with a low evaporation temperature can be increased, so the cooling capacity of the indoor heat exchanger (93) is also increased. It is done. As described above, according to the present embodiment, in addition to the air conditioning capacity auxiliary operation, the cooling capacity auxiliary operation can be performed using the second auxiliary heat exchanger (120), so it is possible to cope with a wider range of operating conditions. become.
 《実施形態3》
 冷凍装置(10)には、第2利用熱交換器として、水などの熱媒体と冷媒とを熱交換させる熱交換器(85)を用いてもよい。
<< Embodiment 3 >>
In the refrigeration apparatus (10), a heat exchanger (85) that exchanges heat between a heat medium such as water and a refrigerant may be used as the second heat exchanger.
 図13に示す実施形態3の冷凍装置(10)では、実施形態1の室内熱交換器(93)に代えて、温水及び冷水を生成するための熱交換器(85)が設けられる。熱交換器(85)は、室外回路(21)に接続される。熱交換器(85)の液側には、実施形態の室内膨張弁(92)と同様に機能する膨張弁(86)が接続される。熱交換器(85)は、冷媒流路(85a)と熱媒体流路(85b)とを有する。熱交換器(85)では、冷媒と熱媒体(水)とが熱交換する。 In the refrigeration apparatus (10) of Embodiment 3 shown in FIG. 13, a heat exchanger (85) for generating hot water and cold water is provided instead of the indoor heat exchanger (93) of Embodiment 1. The heat exchanger (85) is connected to the outdoor circuit (21). An expansion valve (86) that functions in the same manner as the indoor expansion valve (92) of the embodiment is connected to the liquid side of the heat exchanger (85). The heat exchanger (85) has a refrigerant channel (85a) and a heat medium channel (85b). In the heat exchanger (85), the refrigerant and the heat medium (water) exchange heat.
 熱交換器(85)が放熱器として機能すると、冷媒流路(85a)の冷媒によって、熱媒体流路(85b)の水が加熱される。この水は、温水としてタンク(87)に貯留される。熱交換器(85)が蒸発器として機能すると、冷媒流路(85a)の冷媒によって、熱媒体流路(85b)の水が冷却される。この水は、冷水としてタンク(87)に貯留される。タンク(87)に貯留された温水及び冷水は、ポンプ(88)によって対象へ供給される。 When the heat exchanger (85) functions as a radiator, the water in the heat medium channel (85b) is heated by the refrigerant in the refrigerant channel (85a). This water is stored in the tank (87) as hot water. When the heat exchanger (85) functions as an evaporator, the water in the heat medium flow path (85b) is cooled by the refrigerant in the refrigerant flow path (85a). This water is stored in the tank (87) as cold water. Hot water and cold water stored in the tank (87) are supplied to the object by a pump (88).
 この実施形態3においても、実施形態2と同様に配管接続された第1補助熱交換器(110)と第2補助熱交換器(120)が設けられている。したがって、実施形態2と同様に空調能力補助運転と冷設能力補助運転を行えるので、空調能力補助と冷設能力補助に関して実施形態2と同様の効果を得ることができる。 Also in the third embodiment, the first auxiliary heat exchanger (110) and the second auxiliary heat exchanger (120), which are connected to each other in the same manner as in the second embodiment, are provided. Therefore, since the air conditioning capability assist operation and the cooling capacity assist operation can be performed as in the second embodiment, the same effects as those of the embodiment 2 can be obtained with respect to the air conditioning capability assist and the cooling capacity assist.
 《その他の実施形態》
 上記実施形態や、各変形例においては、以下のような構成としてもよい。
<< Other Embodiments >>
In the said embodiment and each modification, it is good also as following structures.
 実施形態1~3において、上記第1分岐管(115)は、第1補助熱交換器(110)の第1高圧流路(111)の下流側で第3配管(63)(第1液分岐管(63a))から分岐し、第1減圧機構(116)を介して第1低圧流路(112)の冷媒流入側に接続される構成であってもよい。第1低圧流路(112)の冷媒流出側には、第1補助吸入管(118)が接続される。 In Embodiments 1 to 3, the first branch pipe (115) is connected to the third pipe (63) (first liquid branch) on the downstream side of the first high-pressure channel (111) of the first auxiliary heat exchanger (110). The pipe may be branched from the pipe (63a) and connected to the refrigerant inflow side of the first low-pressure channel (112) via the first pressure reducing mechanism (116). A first auxiliary suction pipe (118) is connected to the refrigerant outflow side of the first low-pressure channel (112).
 実施形態2,3において、第2分岐管(125)は、第2補助熱交換器(120)の第2高圧流路(121)の下流側で第5配管(65)から分岐し、第2減圧機構(126)を介して第2低圧流路(122)の冷媒流入側に接続される構成であってもよい。第2低圧流路(122)の冷媒流出側には、第2補助吸入管(128)が接続される。 In the second and third embodiments, the second branch pipe (125) branches from the fifth pipe (65) on the downstream side of the second high-pressure channel (121) of the second auxiliary heat exchanger (120), and the second branch pipe (125) The structure connected to the refrigerant | coolant inflow side of a 2nd low pressure flow path (122) via a pressure reduction mechanism (126) may be sufficient. A second auxiliary suction pipe (128) is connected to the refrigerant outflow side of the second low-pressure channel (122).
 以上のように、第1分岐管(115)に設けられる第1減圧機構(116)や第2分岐管(125)に設けられる第2減圧機構(126)は、第1高圧流路(111)や第2高圧流路(121)の上流側と下流側のどちらに配置してもよい。 As described above, the first pressure reducing mechanism (116) provided in the first branch pipe (115) and the second pressure reducing mechanism (126) provided in the second branch pipe (125) are the first high pressure channel (111). Or on the upstream side or the downstream side of the second high-pressure channel (121).
 冷媒回路(11)の冷媒は、二酸化炭素に限らず、HFC系の冷媒などの他の冷媒を用いてもよい。冷凍サイクルは、冷媒を臨界圧力以上にまで圧縮する、いわゆる臨界サイクルであってもよいし、冷媒を臨界圧力よりも低い圧力まで圧縮する、いわゆる亜臨界サイクルであってもよい。 The refrigerant in the refrigerant circuit (11) is not limited to carbon dioxide, and other refrigerants such as an HFC refrigerant may be used. The refrigeration cycle may be a so-called critical cycle in which the refrigerant is compressed to a critical pressure or higher, or may be a so-called subcritical cycle in which the refrigerant is compressed to a pressure lower than the critical pressure.
 第1圧縮機(31)及び第2圧縮機(41)は、単段式であってもよい。 The first compressor (31) and the second compressor (41) may be of a single stage type.
 第1利用熱交換器及び第2利用熱交換器は、それぞれ2つ以上あってもよい。第1利用熱交換器は、冷凍庫の庫内を冷却するものであってもよいし、冷房専用の室内ユニットに設けられてもよい。 There may be two or more first heat exchangers and two second heat exchangers. The 1st utilization heat exchanger may cool the inside of a freezer, and may be provided in the indoor unit only for cooling.
 各実施形態の冷媒回路(11)には、ブリッジ回路(70)に代えて、複数の四路切換弁などを用いた流路切換機構を設けてもよい。 In the refrigerant circuit (11) of each embodiment, a flow path switching mechanism using a plurality of four-way switching valves or the like may be provided instead of the bridge circuit (70).
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能である。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The embodiment and the modification have been described above, but various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the above embodiments and modifications may be appropriately combined or replaced as long as the functions of the subject of the present disclosure are not impaired. The above-mentioned descriptions of “first”, “second”, “third”,... Are used to distinguish the words to which these descriptions are given, and the number and order of the words are also limited. Not what you want.
 以上説明したように、本開示は、冷凍装置について有用である。 As described above, the present disclosure is useful for a refrigeration apparatus.
 10  冷凍装置
 11  冷媒回路
 22  室外熱交換器(熱源熱交換器)
 30  圧縮部
 31  第1圧縮機
 32  第1吸入管(第1吸入流路)
 41  第1圧縮機
 42  第2吸入管(第2吸入流路)
 50  吸入連通管(吸入連通流路)
 63  第3配管(第1液管(第1液流路))
 83  冷設熱交換器(第1利用熱交換器)
 93  室内熱交換器(第2利用熱交換器)
 100  コントローラ(制御部)
 110  第1補助熱交換器
 111  第1高圧流路
 112  第1低圧流路
 115  第1分岐管(第1分岐流路)
 116  第1減圧機構
 118  第1補助吸入管(第1補助吸入流路)
 120  第2補助熱交換器
 121  第2高圧流路
 122  第2低圧流路
 125  第2分岐管(第2分岐流路)
 126  第2減圧機構
 128  第2補助吸入管(第1補助吸入流路)
 V5  圧力調節弁
 
10 Refrigeration equipment 11 Refrigerant circuit 22 Outdoor heat exchanger (heat source heat exchanger)
30 Compressor 31 First compressor 32 First suction pipe (first suction flow path)
41 1st compressor 42 2nd suction pipe (2nd suction flow path)
50 Suction communication pipe (suction communication flow path)
63 Third pipe (first liquid pipe (first liquid flow path))
83 Refrigerated heat exchanger (1st heat exchanger)
93 Indoor heat exchanger (second heat exchanger)
100 controller (control unit)
110 First auxiliary heat exchanger 111 First high-pressure channel 112 First low-pressure channel 115 First branch pipe (first branch channel)
116 First decompression mechanism 118 First auxiliary suction pipe (first auxiliary suction flow path)
120 Second auxiliary heat exchanger 121 Second high pressure flow path 122 Second low pressure flow path 125 Second branch pipe (second branch flow path)
126 Second decompression mechanism 128 Second auxiliary suction pipe (first auxiliary suction flow path)
V5 pressure regulating valve

Claims (5)

  1.  圧縮部(30)と熱源熱交換器(22)と複数の利用熱交換器(83,93)とを備え、上記複数の利用熱交換器(83,93)が共用の熱源熱交換器(22)に並列に接続された冷媒回路(11)と、上記冷媒回路(11)の運転動作を制御する制御部(100)と、を有する冷凍装置であって、
     上記複数の利用熱交換器(83,93)は、第1利用熱交換器(83)と第2利用熱交換器(93)とを含み、
     上記圧縮部(30)は、上記第1利用熱交換器(83)に吸入部が接続された第1圧縮機(31)と、上記第2利用熱交換器(93)に吸入部が接続された第2圧縮機(41)とを備え、
     上記冷媒回路(11)は、第1高圧流路(111)と第1低圧流路(112)とを有する第1補助熱交換器(110)と、上記第1低圧流路(112)の冷媒流出側と上記第2圧縮機(41)の冷媒吸入部とに連通する第1補助吸入流路(118)とを備え、
     上記第1補助熱交換器(110)は、上記第1高圧流路(111)が、上記第1利用熱交換器(83)に連通する第1液流路(63)に接続されるとともに、上記第1低圧流路(112)が、上記第1液流路(63)から分岐し且つ第1減圧機構(116)が設けられた第1分岐流路(115)に接続され、上記第1高圧流路(111)を流れる冷媒と上記第1低圧流路(112)を流れる冷媒とが熱交換をするように構成され、
     上記第1利用熱交換器(83)における冷媒の蒸発温度は上記第2利用熱交換器(93)における冷媒の蒸発温度よりも低いことを特徴とする冷凍装置。
    A compression section (30), a heat source heat exchanger (22), and a plurality of utilization heat exchangers (83, 93) are provided, and the plurality of utilization heat exchangers (83, 93) are shared heat source heat exchangers (22 ) A refrigerant circuit (11) connected in parallel, and a control unit (100) for controlling the operation of the refrigerant circuit (11),
    The plurality of utilization heat exchangers (83, 93) include a first utilization heat exchanger (83) and a second utilization heat exchanger (93),
    The compression unit (30) includes a first compressor (31) having a suction unit connected to the first use heat exchanger (83) and a suction unit connected to the second use heat exchanger (93). A second compressor (41),
    The refrigerant circuit (11) includes a first auxiliary heat exchanger (110) having a first high-pressure channel (111) and a first low-pressure channel (112), and a refrigerant in the first low-pressure channel (112). A first auxiliary suction channel (118) communicating with the outflow side and the refrigerant suction part of the second compressor (41);
    The first auxiliary heat exchanger (110) has the first high-pressure channel (111) connected to a first liquid channel (63) communicating with the first utilization heat exchanger (83), The first low-pressure channel (112) is connected to a first branch channel (115) branched from the first liquid channel (63) and provided with a first pressure reducing mechanism (116). The refrigerant flowing through the high-pressure channel (111) and the refrigerant flowing through the first low-pressure channel (112) are configured to exchange heat,
    The refrigerating apparatus, wherein an evaporating temperature of the refrigerant in the first use heat exchanger (83) is lower than an evaporating temperature of the refrigerant in the second use heat exchanger (93).
  2.  請求項1において、
     上記第1圧縮機(31)の第1吸入流路(32)と上記第2圧縮機(41)の第2吸入流路(42)とに接続された吸入連通流路(50)と、
     上記吸入連通流路(50)に接続され且つ開度調節可能な圧力調節弁(V5)と、
    を備えていることを特徴とする冷凍装置。
    In claim 1,
    A suction communication channel (50) connected to the first suction channel (32) of the first compressor (31) and the second suction channel (42) of the second compressor (41);
    A pressure control valve (V5) connected to the suction communication channel (50) and adjustable in opening;
    A refrigeration apparatus comprising:
  3.  請求項1または2において、
     上記制御部(100)は、上記第1利用熱交換器(83)で蒸発した冷媒を上記第1圧縮機(31)で吸入する第1冷凍サイクルと、上記第2利用熱交換器(93)で蒸発した冷媒を上記第2圧縮機(41)で吸入する第2冷凍サイクルとが行われる運転状態で、上記第1利用熱交換器(83)の冷却能力が冷却負荷を下回ると、上記第1低圧流路(112)の冷媒圧力を上記第2圧縮機(41)の吸入圧力または中間圧力にするように上記第1減圧機構(116)の開度を調節し、上記第1液流路(63)を流れる冷媒の一部を上記第1分岐流路(115)から上記第2圧縮機(41)に供給して上記第2利用熱交換器(93)の冷却能力を補助する第1補助運転を行うように構成されていることを特徴とする冷凍装置。
    In claim 1 or 2,
    The controller (100) includes a first refrigeration cycle for sucking the refrigerant evaporated in the first use heat exchanger (83) through the first compressor (31), and the second use heat exchanger (93). When the cooling capacity of the first use heat exchanger (83) is below the cooling load in the operation state in which the second refrigeration cycle for sucking the refrigerant evaporated in the second compressor (41) is performed, the first The opening of the first pressure reducing mechanism (116) is adjusted so that the refrigerant pressure in the one low-pressure channel (112) becomes the suction pressure or intermediate pressure of the second compressor (41), and the first liquid channel A part of the refrigerant flowing through (63) is supplied from the first branch flow path (115) to the second compressor (41) to assist the cooling capacity of the second utilization heat exchanger (93). A refrigeration apparatus configured to perform auxiliary operation.
  4.  請求項1から3の何れか1つにおいて、
     上記冷媒回路(11)は、第2高圧流路(121)と第2低圧流路(122)とを有する第2補助熱交換器(120)と、上記第2低圧流路(122)の冷媒流出側と上記第1圧縮機(31)の冷媒吸入部とに連通する第2補助吸入流路(128)とを備え、
     上記第1補助熱交換器(110)は、上記第2高圧流路(121)が、上記第2利用熱交換器(93)に連通する第2液流路(65)に接続されるとともに、上記第2低圧流路(122)が、上記第2液流路(65)から分岐し且つ第2減圧機構(126)が設けられた第2分岐流路(125)に接続され、上記第2高圧流路(121)を流れる冷媒と上記第2低圧流路(122)を流れる冷媒とが熱交換をするように構成されていることを特徴とする冷凍装置。
    In any one of Claims 1-3,
    The refrigerant circuit (11) includes a second auxiliary heat exchanger (120) having a second high-pressure channel (121) and a second low-pressure channel (122), and a refrigerant in the second low-pressure channel (122). A second auxiliary suction channel (128) communicating with the outflow side and the refrigerant suction part of the first compressor (31),
    The first auxiliary heat exchanger (110) has the second high-pressure channel (121) connected to a second liquid channel (65) communicating with the second utilization heat exchanger (93), The second low-pressure channel (122) branches from the second liquid channel (65) and is connected to a second branch channel (125) provided with a second pressure reducing mechanism (126). A refrigerating apparatus, wherein the refrigerant flowing through the high-pressure channel (121) and the refrigerant flowing through the second low-pressure channel (122) exchange heat.
  5.  請求項4において、
     上記制御部(100)は、上記第1利用熱交換器(83)で蒸発した冷媒を上記第1圧縮機(31)で吸入する第1冷凍サイクルと、上記第2利用熱交換器(93)で蒸発した冷媒を上記第2圧縮機(41)で吸入する第2冷凍サイクルとが行われる運転状態で、上記第2利用熱交換器(93)の冷却能力が冷却負荷を下回ると、上記第2低圧流路(122)の冷媒圧力を上記第1圧縮機(31)の吸入圧力または中間圧力にするように上記第2減圧機構(126)の開度を調節し、上記第2液流路(65)を流れる冷媒の一部を上記第2分岐流路(125)から上記第1圧縮機(31)に供給して上記第1利用熱交換器(83)の冷却能力を補助する第2補助運転を行うように構成されていることを特徴とする冷凍装置。
     
    In claim 4,
    The controller (100) includes a first refrigeration cycle for sucking the refrigerant evaporated in the first use heat exchanger (83) through the first compressor (31), and the second use heat exchanger (93). When the cooling capacity of the second heat exchanger (93) is below the cooling load in the operation state in which the second refrigeration cycle for sucking the refrigerant evaporated in the second compressor (41) is performed, 2 The opening of the second pressure reducing mechanism (126) is adjusted so that the refrigerant pressure in the low-pressure channel (122) becomes the suction pressure or intermediate pressure of the first compressor (31), and the second liquid channel (2) supplying a part of the refrigerant flowing through (65) to the first compressor (31) from the second branch flow path (125) to assist the cooling capacity of the first heat exchanger (83). A refrigeration apparatus configured to perform auxiliary operation.
PCT/JP2019/013970 2018-03-30 2019-03-29 Refrigeration device WO2019189748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069198A JP6593483B2 (en) 2018-03-30 2018-03-30 Refrigeration equipment
JP2018-069198 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189748A1 true WO2019189748A1 (en) 2019-10-03

Family

ID=68061865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013970 WO2019189748A1 (en) 2018-03-30 2019-03-29 Refrigeration device

Country Status (2)

Country Link
JP (1) JP6593483B2 (en)
WO (1) WO2019189748A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105462A (en) * 2004-10-04 2006-04-20 Daikin Ind Ltd Refrigerating plant
JP2014070829A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105462A (en) * 2004-10-04 2006-04-20 Daikin Ind Ltd Refrigerating plant
JP2014070829A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Refrigerator

Also Published As

Publication number Publication date
JP6593483B2 (en) 2019-10-23
JP2019178821A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
CN106030219B (en) Conditioner
JP2007240025A (en) Refrigerating device
WO2016208042A1 (en) Air-conditioning device
JP2007232265A (en) Refrigeration unit
JP5872052B2 (en) Air conditioner
JP6508394B2 (en) Refrigeration system
JP7116346B2 (en) Heat source unit and refrigerator
JP2008267653A (en) Refrigerating device
JP7100244B2 (en) Four-way switching valve and refrigerating device
JP2010002112A (en) Refrigerating device
JP5216557B2 (en) Refrigeration cycle equipment
JP5195302B2 (en) Refrigeration air conditioner
US20220268498A1 (en) Intermediate unit for refrigeration apparatus, and refrigeration apparatus
JP2008002711A (en) Refrigerating device
JP2017026289A (en) Air conditioner
US11486616B2 (en) Refrigeration device
JP4468888B2 (en) Air conditioner
WO2019065856A1 (en) Refrigeration device
JP2009293887A (en) Refrigerating device
JP6593483B2 (en) Refrigeration equipment
JP2010014343A (en) Refrigerating device
KR102087677B1 (en) A combined refrigerating and air conditioning system
JP2009115336A (en) Refrigeration system
JP2010014386A (en) Refrigerating device
JP5790367B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778063

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19778063

Country of ref document: EP

Kind code of ref document: A1