JPS59147967A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59147967A
JPS59147967A JP2419483A JP2419483A JPS59147967A JP S59147967 A JPS59147967 A JP S59147967A JP 2419483 A JP2419483 A JP 2419483A JP 2419483 A JP2419483 A JP 2419483A JP S59147967 A JPS59147967 A JP S59147967A
Authority
JP
Japan
Prior art keywords
pipe line
cooling
compressor
coil
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2419483A
Other languages
Japanese (ja)
Inventor
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2419483A priority Critical patent/JPS59147967A/en
Publication of JPS59147967A publication Critical patent/JPS59147967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷房及び除湿機能を有する空気調和機に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner having cooling and dehumidifying functions.

従来用いられている冷房・除湿兼用の空気調和機の概要
を第1図に示す。冷房サイク/I/時は、圧縮機(1)
より吐出された冷媒は冷媒回路を切換える四方切換弁(
以下四方弁と云う) (2) k 1fflって1縦縮
器(8)へ入り、室外空気り、Eと熱交換し凝縮液化す
る。この液冷媒は第2逆止弁(7)全通って絞り装@(
6)で減圧され、冷却コイ/L/ (4)に入いる。低
圧液化冷媒は室内空気Aと熱交換して蒸発し圧縮様(1
)に戻る。そして、室内空気Aは冷却減湿され室内に吹
出される。その際、吹出空気は再熱コイル(3)を通過
するが熱の受授(ζ行われない。それは再熱コイル(3
)の一端には第1逆止弁(5)が設けられ冷媒の流入が
阻止されているので熱間換器として作用しないからであ
る。尚、この時、再熱コイル(3)の他端は四方弁(2
)を介し圧縮機(1)の吸入口と連通している。
Figure 1 shows an overview of a conventionally used air conditioner for both cooling and dehumidification. Cooling cycle/I/hour, compressor (1)
The refrigerant discharged through the four-way switching valve (
(hereinafter referred to as a four-way valve) (2) k 1ffl enters the 1 vertical condenser (8), exchanges heat with outdoor air, and condenses and liquefies. This liquid refrigerant passes through the second check valve (7) and is throttled @(
It is depressurized at step 6) and enters the cooling coil/L/ (4). The low-pressure liquefied refrigerant exchanges heat with indoor air A, evaporates, and becomes compressed (1
). Then, the indoor air A is cooled, dehumidified, and blown into the room. At that time, the blown air passes through the reheating coil (3), but no heat is received (ζ).
This is because the first check valve (5) is provided at one end of ) to prevent the refrigerant from flowing in, so that it does not function as a heat exchanger. At this time, the other end of the reheating coil (3) is connected to the four-way valve (2).
) is in communication with the suction port of the compressor (1).

一方、除湿サイクル時は、四方弁(2)が切換えられ1
図示破線の回路を形成する。従って圧縮機(1)から吐
出された冷媒は四方弁(2)ヲ通って再熱コイtV (
a)へ流入する。ここで、冷却コイ/L/(4)により
冷却減湿された室内空気Bと−S交換し凝縮液化する。
On the other hand, during the dehumidification cycle, the four-way valve (2) is switched to 1.
The circuit indicated by the broken line in the figure is formed. Therefore, the refrigerant discharged from the compressor (1) passes through the four-way valve (2) and reheats the coil tV (
flows into a). Here, -S is exchanged with the indoor air B which has been cooled and dehumidified by the cooling carp/L/(4), and the air is condensed and liquefied.

そして、室内を気Bは加熱され相対湿度が低下し室内空
気Cとして室内に吹出される。液冷媒は第1逆止弁(5
)ヲ面って絞り装置(6)で減圧され冷却コイ/L/ 
(4)で室内空・気Aと熱交換し、蒸発して圧縮機(1
)に戻る。この時、凝縮器(8)は四方弁(2)を介し
圧縮機(1)の吸入口と連通している。
Then, the air B inside the room is heated, its relative humidity decreases, and it is blown out into the room as indoor air C. The liquid refrigerant flows through the first check valve (5
) The pressure is reduced by the expansion device (6) and the cooling coil /L/
(4) exchanges heat with indoor air/Air A, evaporates, and compresses (1)
). At this time, the condenser (8) is in communication with the suction port of the compressor (1) via the four-way valve (2).

以上の回路に於いて、冷房サイクル時、室内熱交換器で
ある再熱コイル(3)が冷凍サイクル上、活用されてい
な寵。また、冷房サイクルから除湿サイケpに切換えた
時には、それまで凝縮液化作用をしていた凝縮器(8)
と圧wJ機(1)の吸入口が連通され。
In the above circuit, during the cooling cycle, the reheat coil (3), which is an indoor heat exchanger, is not utilized in the refrigeration cycle. In addition, when switching from the cooling cycle to the dehumidifying Psyche-P, the condenser (8)
and the suction port of the pressure wJ machine (1) are communicated.

除湿サイクルから冷房サイクルに切換えた時には、それ
まで凝縮液化作用をしていた再熱コイ/l/ (3)と
圧縮機(1)の吸入口が連通されるため、凝縮器(8)
あるいは再熱コイ/l/ (3)の内にあった高圧の液
冷媒が圧力差によって急激に移動し圧縮機(1)に流入
する。
When switching from the dehumidification cycle to the cooling cycle, the reheating coil /l/ (3), which had been condensing and liquefying, and the suction port of the compressor (1) are communicated, so the condenser (8)
Alternatively, the high pressure liquid refrigerant in the reheat coil/l/ (3) is rapidly moved due to the pressure difference and flows into the compressor (1).

即ち、運転サイクlV’jr:切換えたときいずれの場
合も急激な液バツクを生じ圧縮機(1)を損傷する恐れ
がある。また、冬季に於ける除湿運転で、室内空気Aよ
り室外空気りの方が温度が低い場合に圧縮機(1)の吸
入圧力飽和温度より室外空気りの温度の方が低くなるこ
とがある。この場合、冷媒が凝縮器(8)に溜り込んで
動作冷媒が不足し、性能が低下すると云う欠点もある。
That is, in either case, when the operating cycle lV'jr is changed, a sudden liquid back up may occur and the compressor (1) may be damaged. Furthermore, during dehumidification operation in winter, if the temperature of the outdoor air is lower than the indoor air A, the temperature of the outdoor air may become lower than the suction pressure saturation temperature of the compressor (1). In this case, there is also the disadvantage that refrigerant accumulates in the condenser (8), resulting in a shortage of operating refrigerant and a decrease in performance.

この発明は上記欠点を改善するため提案されたもので、
冷房サイクル時は再熱コイルを冷却器として活用するこ
とにより、性能の向上を計ると共に、サイク/I/′i
!il−切換えた時には高圧の液冷媒を冷却コイルに導
びき、ここで蒸発させてから圧縮機へ吸引させ、液バツ
クを防止すると共に冬季の除湿運転にて室外空気温度が
低下しても性能が低下しない空気調和1浅を提供するも
のである。
This invention was proposed to improve the above drawbacks.
By using the reheating coil as a cooler during the cooling cycle, performance is improved and the cycle/I/'i
! When switched to il-, high-pressure liquid refrigerant is guided to the cooling coil, where it is evaporated and then sucked into the compressor, which prevents liquid back up and maintains performance even when the outdoor air temperature drops during winter dehumidification operation. This provides air conditioning that does not deteriorate.

以下、この発明の一矢施例を第21図(冷房運転時)、
第3図(除湿運転時)によって説明する。
Below, an example of this invention is shown in Fig. 21 (during cooling operation).
This will be explained with reference to FIG. 3 (during dehumidification operation).

図中、第1図と同一符号は同−丑たは相当部分を示し、
(Illは凝縮器(8)と再熱コイ/l/ (3)の入
口を連通する第1の管路で、途中に第1絞り装置(至)
と逆止弁閉)とが設けられている。Q21は凝縮器(8
)と第1の管路(11)とを側路し、四方弁(2)と再
熱コイ/I/(3)を連通する第2の管路である。θ3
1は再熱コイ/l/ (3)と冷起コイA/ (4)の
111に設けられた第2絞り装置シzを側路する第3の
管路で、途中に電磁弁!23)が設けられている。この
電磁弁□□□は冷房サイクル時に開路し除湿サイクル時
に閉路する。(14)は四方弁(2)と冷却コイIV 
(4)の入口とを連通する第4の管路で、四方弁(2)
が冷房サイケlし全形成しているときは四方弁(2)を
介して第2の管路θ2と連通し、除湿サイケμを形成し
ているときは四方弁(2)を介して凝縮器(8)と連通
ずる。第4の・W路(141途中には第3の絞り装置(
財)と逆止弁(20とが設けられている。
In the figure, the same symbols as in Figure 1 indicate the same or equivalent parts,
(Ill is the first pipe line that communicates the inlet of the condenser (8) and the reheating coil/l/ (3), and there is a first throttle device (towards) on the way.
and check valve closed). Q21 is the condenser (8
) and the first pipe line (11), and is a second pipe line that connects the four-way valve (2) and the reheating carp /I/ (3). θ3
1 is the third conduit that bypasses the second throttling device z installed at 111 of the reheating carp/l/ (3) and cold-boosting carp A/ (4), and there is a solenoid valve in the middle! 23) is provided. This solenoid valve □□□ opens during the cooling cycle and closes during the dehumidification cycle. (14) is the four-way valve (2) and the cooling coil IV
(4) A fourth pipe communicating with the inlet of the four-way valve (2).
When the cooling system is fully formed, it communicates with the second pipe θ2 through the four-way valve (2), and when the dehumidifying system μ is formed, it communicates with the condenser through the four-way valve (2). It communicates with (8). On the 4th W path (141, there is a third throttle device (
A check valve (20) is provided.

尚、逆止弁し[ilは、冷却コイ/l/ (4)の入口
部から四方弁(2)の方へ向う流れを阻止する。即ち、
四方弁(2)から冷却コイル(4)の入口方向へのみ流
通全許容する。
The check valve [il] prevents the flow from the inlet of the cooling coil/l/ (4) toward the four-way valve (2). That is,
Full flow is allowed only from the four-way valve (2) to the inlet direction of the cooling coil (4).

次いで作用を説明する。Next, the action will be explained.

冷房運転時(第2図)では四方弁(2)は切換えられ、
図示のように冷房サイケ)vを形成する。
During cooling operation (Fig. 2), the four-way valve (2) is switched,
As shown in the figure, a cooling psyche) v is formed.

従って、圧縮機(1)から吐出された冷媒は四方弁(2
)を通!ll凝縮器(8)へ入υ、室外空気り、Eと熱
交換して凝縮液化する。液化冷媒は第1の管路(Ill
’e通)、第1絞り装置(宏で減圧される。この低圧液
化冷媒は再熱コイ/I/(3)へ流入し、冷却コイ/L
/ (4)で冷却減湿された室内空気Bと熱交(・(シ
て、その一部が蒸発する。室内空気Bは、さらに冷却減
湿され、室内空気Cとして室内へ吹出される。再熱コイ
/l/ (3)でその一部が蒸発した冷媒は電磁弁(2
31を通って冷却コイル(4)へ入り、ここで、室内空
気Aと熱交換して蒸発し圧krU機(1)に戻る。そし
て、室内空気Aは冷却減湿され前述の室内空気Bとなる
Therefore, the refrigerant discharged from the compressor (1) is
) through! It enters the condenser (8), exchanges heat with the outdoor air, and E to condense and liquefy. The liquefied refrigerant is passed through the first pipe (Ill
'e communication), the pressure is reduced by the first expansion device (Hiroshi). This low-pressure liquefied refrigerant flows into the reheating coil/I/(3), and the cooling coil/L
/ Heat exchange with the indoor air B that has been cooled and dehumidified in (4), and a portion of it evaporates. The indoor air B is further cooled and dehumidified, and is blown into the room as indoor air C. The refrigerant, a part of which has evaporated in the reheating coil/l/ (3), is removed from the solenoid valve (2).
31 and enters the cooling coil (4), where it exchanges heat with room air A, evaporates, and returns to the pressure krU machine (1). Then, the indoor air A is cooled and dehumidified to become the above-mentioned indoor air B.

この冷房サイクルに於いて、四方弁(2)を介し、第2
の管路021と第4の管路(14)が連m しているが
、第4の管路(14)には第3絞V装置し弔が設けられ
ているので、第11収り装瞳頭で減圧された冷媒の大半
(は前述のように再熱コイtL/(3)へ流入する。ご
く一部の冷媒は、第2の管路θ2、四方弁(2)及び第
4の′i路o41’を通って冷却コイA/(4)へ流入
するが、冷却コイ/l/(4)にて室内空気Aとの熱交
換に寄与するので損失にはならない。
In this cooling cycle, the second
The pipe line 021 and the fourth pipe line (14) are connected, but since the fourth pipe line (14) is equipped with a third restrictor V device, the eleventh Most of the refrigerant whose pressure is reduced at the head of the pupil flows into the reheat coil tL/(3) as described above. A small portion of the refrigerant flows into the second pipe θ2, the four-way valve (2) Although it flows into the cooling coil A/(4) through the 'i-route o41', it contributes to heat exchange with the indoor air A at the cooling coil/l/(4), so there is no loss.

一方、除湿運転時(第3図)には四方弁(2)は切換え
られ図示のように除湿サイケA/を形成する。
On the other hand, during dehumidification operation (FIG. 3), the four-way valve (2) is switched to form a dehumidification psyche A/ as shown.

従って、圧縮機(1)から吐出された冷媒は四方弁(2
)を通!ll凝縮器(8)及び$1の管M +I11を
側路して第2の管路(1りから再熱コイ/L/ (3)
へ流入する。ここで冷媒は冷却コイlしく4)で冷却減
湿された室内空気Bと熱交換し凝縮液化する。室内空気
Bは加熱され相対湿度が低下し、室内空気Cとして室内
に吹出される。間圧液化冷媒は電磁弁(231が閉路し
ているので、第2枢り装置−を通り、ここで減圧されも
この低圧液化冷媒は冷却コイA/ (4)へ入り、室内
空気Aと熱交換し蒸発して圧縮機(1)へ戻り、室内空
気Aは冷却減湿され室内空気Bとなる。この除湿サイク
ルに於いて、第1の管路(11)及び凝縮器(8)と第
4の管路(14)とが四方弁(2)を介し連通されるが
、第1の管路(11)に設けられた逆止弁@Iにより高
圧冷媒は凝縮器(8)へは流れない。但し、冷房サイケ
μから除湿サイケμへ切換えた直後は、凝縮器(8)内
に高圧液冷媒が存在しておυ、これが四方弁(2)から
第4の管路α4)を通って低圧側へ移動するが、この高
圧液冷媒は第3絞9装置圓で減圧され、低圧減圧され、
低圧液冷媒になって冷却コイル(4)へ入り、蒸発する
Therefore, the refrigerant discharged from the compressor (1) is
) through! ll condenser (8) and $1 pipe M
flow into. Here, the refrigerant exchanges heat with the cooled and dehumidified indoor air B in the cooling coil 4) and is condensed and liquefied. Indoor air B is heated, its relative humidity is reduced, and it is blown into the room as indoor air C. Since the solenoid valve (231 is closed, the interpressure liquefied refrigerant passes through the second pivot device), and even though the pressure is reduced here, this low-pressure liquefied refrigerant enters the cooling coil A/ (4), where it exchanges heat with indoor air A. The indoor air A is exchanged, evaporated, and returned to the compressor (1), and indoor air A is cooled and dehumidified to become indoor air B. In this dehumidification cycle, the first pipe line (11), the condenser (8), and the The fourth pipe (14) is communicated with the four-way valve (2), but the check valve @I provided in the first pipe (11) prevents the high-pressure refrigerant from flowing to the condenser (8). However, immediately after switching from cooling psych μ to dehumidifying psych μ, high pressure liquid refrigerant exists in the condenser (8), and this flows from the four-way valve (2) to the fourth pipe α4). However, this high pressure liquid refrigerant is depressurized by the third restrictor 9 device circle, and the pressure is reduced to low pressure.
The low-pressure liquid refrigerant enters the cooling coil (4) and evaporates.

従って、サイ94し切換直後の急激な液パツクを生じな
い。また凝縮器(8)内の高圧液冷媒を室内空気Aの冷
却に活用できる。さらにまた、除湿サイケル時に於いて
、室外空気りの温度が冷却コイル(4)の入口圧力(即
ち蒸発圧力)の飽和温度以下に低下した場合であっても
、逆止弁(2ヒによって、冷媒が凝縮器(8)の方へ移
動することが阻止される。
Therefore, the liquid 94 does not suddenly accumulate immediately after switching. Further, the high-pressure liquid refrigerant in the condenser (8) can be used to cool the indoor air A. Furthermore, during the dehumidification cycle, even if the temperature of the outdoor air falls below the saturation temperature of the inlet pressure (i.e. evaporation pressure) of the cooling coil (4), the refrigerant is prevented from moving towards the condenser (8).

よって、冬季などに室外の気温が低下しても、除湿運転
の性能に影響を受けない。
Therefore, even if the outdoor temperature drops during winter, the performance of the dehumidifying operation is not affected.

以上のように、この発明によれば、冷房サイクル時には
、冷却コイv (4)に加えて再無コイ/l/ (3)
が冷却器として作用するので、性能が向上する。
As described above, according to the present invention, during the cooling cycle, in addition to the cooling coil v (4), the re-coil /l/ (3)
acts as a cooler, improving performance.

また、冷房と除湿のサイクル切換え時に、非作用管路内
の液冷媒は冷却コイμで蒸発させられるので、サイクル
切換え直後の圧縮機への急激な液パツクが生じず、圧縮
機を損傷する恐れが無くなると共に、高圧液冷媒を室内
空気の冷却に有効利用できる。
In addition, when the cooling and dehumidifying cycles are switched, the liquid refrigerant in the non-operating pipes is evaporated by the cooling coil μ, so there is no sudden liquid buildup in the compressor immediately after the cycle is switched, which could damage the compressor. At the same time, high-pressure liquid refrigerant can be effectively used to cool indoor air.

更に、従来の冷房、除湿兼用空気調和機ではいずれのサ
イケμに於いても、どちらかの逆止弁から冷媒が漏れる
恐れがあり、しかも、漏れた冷媒は、そのまま圧縮機(
1)へ吸引されるので、性能がその分だけ低下するが、
この発明に於いては、冷房サイクル時、E述のような冷
媒漏れによる性能低下が生じない。
Furthermore, in conventional air conditioners that combine cooling and dehumidification, there is a risk that refrigerant may leak from one of the check valves in either pump, and the leaked refrigerant is directly transferred to the compressor (
1), so the performance will decrease by that amount,
In this invention, performance deterioration due to refrigerant leakage as described in E does not occur during the cooling cycle.

その上、除湿サイクル時、室外空気りの温度が低下して
も、凝縮器へ冷媒が移動し溜り込むことが無いので、性
能が低下しない。
Furthermore, even if the temperature of the outdoor air chamber drops during the dehumidification cycle, the refrigerant moves to the condenser and does not accumulate, so performance does not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

第11図は従来の冷房・除湿兼用空気調和機のサイケル
説明図、第2図及び第3図はそれぞれこの発明の一実施
例を示す冷房運転及び除湿運転のサイクル説明図である
。 図中、(1)は圧縮機、(2)は四方切換弁、(3)は
再熱コイ/l’%(4)は冷却コイル、(8)は凝縮器
、(11)は第1の管路、(121は第2の管路、(1
31は第3の管路、Q4]は第4の管路、(201は第
工絞シ装置、しIl陵は逆止弁、□□□は第2絞り装置
、(転))は電磁弁である。 なお、同一符号は同一または相当部分を示す。 代理人 葛野信−
FIG. 11 is a cycle explanatory diagram of a conventional cooling/dehumidifying air conditioner, and FIGS. 2 and 3 are cycle diagrams of a cooling operation and a dehumidifying operation, respectively, showing an embodiment of the present invention. In the figure, (1) is the compressor, (2) is the four-way switching valve, (3) is the reheat coil/l'%, (4) is the cooling coil, (8) is the condenser, and (11) is the first pipe line, (121 is the second pipe line, (1
31 is the third conduit, Q4] is the fourth conduit, (201 is the first throttle device, and I1 is the check valve, □□□ is the second throttle device, (transfer) is the solenoid valve It is. Note that the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】[Claims] 圧縮機からの吐出冷媒を四方切換弁、凝縮器、第1絞り
装置と第1逆止弁とが直列に設けられた第1の管路、再
熱コイル途中に電磁弁が設けられた第3の管路及び冷却
コイ/1/を経て上記圧縮機へ吸入させる冷房サイケμ
と、上記圧縮機からの吐出冷媒を上記四方切換弁、上記
凝縮器及び第1の管路を側路する第2の管路、上記再熱
ニイル、上記第3管路を側路する第2級り装置及び上記
冷却コイ/l/を経て上記圧縮機へ吸入させる除湿サイ
クルと、上記冷房サイクル時は上記四方切換弁を介して
上記第2の管路と上記冷却コイル入口とを連通ずると共
に上記除湿サイクル時は上記四方切換弁を介して上記凝
縮器と上記冷却コイlし入口とを連通する第4の管路と
、この第4の管路の途中に設けられ、上記冷却コイIし
入目方向へのみ流通を許容する第2逆止弁とを備えたこ
と全特徴とする空気調和機。
The refrigerant discharged from the compressor is transferred to a first conduit in which a four-way switching valve, a condenser, a first throttling device and a first check valve are installed in series, and a third conduit in which a solenoid valve is installed in the middle of the reheating coil. The cooling psychrometer μ is sucked into the compressor through the pipe line and the cooling coil /1/
and a second pipe line which bypasses the refrigerant discharged from the compressor, the four-way switching valve, the condenser and the first pipe line, the reheating kiln, and a second pipe line which bypasses the third pipe line. A dehumidifying cycle in which the air is sucked into the compressor through the grading device and the cooling coil /l/, and during the cooling cycle, the second pipe line and the cooling coil inlet are communicated through the four-way switching valve. During the dehumidification cycle, there is a fourth pipe line that communicates the condenser with the inlet of the cooling coil I through the four-way switching valve, and a fourth pipe line that is provided in the middle of the fourth pipe line, An air conditioner characterized by comprising a second check valve that allows flow only in the direction of entry.
JP2419483A 1983-02-14 1983-02-14 Air conditioner Pending JPS59147967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419483A JPS59147967A (en) 1983-02-14 1983-02-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419483A JPS59147967A (en) 1983-02-14 1983-02-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS59147967A true JPS59147967A (en) 1984-08-24

Family

ID=12131510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419483A Pending JPS59147967A (en) 1983-02-14 1983-02-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59147967A (en)

Similar Documents

Publication Publication Date Title
JP3042797B2 (en) Air conditioner
KR19980025642A (en) Tea room air conditioner
US6338254B1 (en) Refrigeration sub-cooler and air conditioning dehumidifier
JPH074794A (en) Air-conditioning equipment
JPS59147967A (en) Air conditioner
JP2641058B2 (en) Three-tube water-cooled heat pump unit
CN112303954A (en) Heat pump system, control method and device thereof, air conditioning equipment and storage medium
JPH06257874A (en) Heat pump type air-conditioning machine
JPS59147963A (en) Air conditioner
JPS59147965A (en) Air conditioner
JPH02118365A (en) Air conditioner
JPS59147966A (en) Air conditioner
JPH03170758A (en) Air conditioner
JPH02247466A (en) Air conditioner
JP2653749B2 (en) Heat pump package
JPS6243249Y2 (en)
JPH0413576Y2 (en)
JPH01127870A (en) Air conditioner
JPS63271067A (en) Refrigeration cycle
CA1093330A (en) Auxiliary coil arrangement
JPH08136067A (en) Air conditioner
JPH03129260A (en) Multi-room type air conditioner
JPH0540769U (en) Air conditioner
JPS5825233Y2 (en) air conditioner
JPH0443270A (en) Dehumidifier