JPS59147963A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59147963A
JPS59147963A JP2419083A JP2419083A JPS59147963A JP S59147963 A JPS59147963 A JP S59147963A JP 2419083 A JP2419083 A JP 2419083A JP 2419083 A JP2419083 A JP 2419083A JP S59147963 A JPS59147963 A JP S59147963A
Authority
JP
Japan
Prior art keywords
cooling
coil
cycle
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2419083A
Other languages
Japanese (ja)
Inventor
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2419083A priority Critical patent/JPS59147963A/en
Publication of JPS59147963A publication Critical patent/JPS59147963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷房及び除湿機能を有する空気調和機に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner having cooling and dehumidifying functions.

従来用いられている冷房曾除湿兼用の空気調和機の概要
tオ1図に示す。冷房サイクル時は、圧り機111よシ
吐出された冷媒は冷媒回@を切換える四方切換弁C以下
四方弁と云う)(2)を通って凝縮器(81−%入p、
冷却水41口と熱交換し凝縮液化する。この液冷媒は第
2逆止弁(7)を通って絞シ装置(6)で減圧され冷却
コイル(4)に入る。
Figure 1 shows an overview of a conventionally used air conditioner that functions as both a cooling unit and a dehumidifying unit. During the cooling cycle, the refrigerant discharged from the compressor 111 passes through a four-way switching valve C (hereinafter referred to as a four-way valve) (2) that switches the refrigerant circulation to a condenser (81-% input p,
It exchanges heat with 41 ports of cooling water and condenses into liquid. This liquid refrigerant passes through the second check valve (7), is depressurized by the throttling device (6), and enters the cooling coil (4).

低圧液化冷媒は室内空気Aとヤ〜交換して蒸発し、圧縮
機+11に戻る。そして、室内空気Aは冷却減湿され室
内に吹出される。その除、吹出全党は再熱コイル(3)
を矧過するが熱の受授は行われない。それは再熱コイル
(3)の一端にはオl逆止弁[51が設けられ、冷媒の
流入が阻止されているので熱交換器として作用しないか
らである。何、この時、再熱コイル(3)の他端は四方
弁(2)ヲ介して圧縮機il+の吸入口と連通している
The low-pressure liquefied refrigerant exchanges with room air A, evaporates, and returns to the compressor +11. Then, the indoor air A is cooled, dehumidified, and blown into the room. Except for that, all the blowouts are reheating coils (3)
However, no heat is given or received. This is because a check valve [51] is provided at one end of the reheating coil (3) to prevent refrigerant from flowing into the reheating coil (3), so that it does not function as a heat exchanger. What, at this time, the other end of the reheating coil (3) is communicating with the suction port of the compressor il+ via the four-way valve (2).

一方、除湿サイクル時は、四方弁(2)が切換えられ、
図示破線の回路を形成する。従って、圧編、a tt+
から吐出された冷媒は四方弁(2)ヲ通って再熱コイル
(3)へ流入する。ここで、冷却コイル(4)により冷
却減湿された室内空気Bと熱交換し凝縮液化する。そし
て、室内空気Bは卯熱され相対湿度が低下し、室内空気
Cとして室内に吹出さ扛る。液冷媒は第1逆止弁(5)
を通って絞り装置(6)で減圧され、冷却コイル(4)
で室内空気Aと熱交換し、蒸発して圧縮機(1)に戻る
。この時、凝縮器(8)は四方弁(2)を介して圧縮機
(1]の吸入口と連通している。
On the other hand, during the dehumidification cycle, the four-way valve (2) is switched,
The circuit indicated by the broken line in the figure is formed. Therefore, pressure edition, a tt+
The refrigerant discharged from the refrigerant passes through the four-way valve (2) and flows into the reheating coil (3). Here, it exchanges heat with indoor air B that has been cooled and dehumidified by the cooling coil (4), and is condensed and liquefied. Then, the indoor air B is heated, its relative humidity decreases, and it is blown out into the room as indoor air C. Liquid refrigerant is the first check valve (5)
The pressure is reduced by the throttle device (6) through the cooling coil (4).
It exchanges heat with indoor air A, evaporates, and returns to the compressor (1). At this time, the condenser (8) is in communication with the suction port of the compressor (1) via the four-way valve (2).

以上の回路に於いて、冷態サイクル時、室内熱交換器で
ある再熱コイル(3)が冷凍サイクル上、活用されてい
ない。また、冷房サイクルから除湿サイクルに切換えた
時には、それまで凝縮液化作用をしていた凝縮器(8)
と圧縮機i11の吸入口が連通され、除湿サイクルから
冷房サイクルに切換えた時には、それまで凝縮液化作用
をしていた再熱コイル(3)と圧縮機111の吸入口が
連通されるため、凝縮器(8)あるいは再熱コイルi3
1の内にあった高圧の液冷媒が圧力差によって急激に移
動し圧縮機+11に流入する。即ち、運転サイクルを切
換えたとき、いずれの場合にも急激な液パンクを生じ圧
縮機Illを損傷する恐れがある。
In the above circuit, the reheating coil (3), which is an indoor heat exchanger, is not utilized in the refrigeration cycle during the cold cycle. Also, when switching from the cooling cycle to the dehumidification cycle, the condenser (8), which had been performing condensation and liquefaction,
When switching from the dehumidification cycle to the cooling cycle, the reheat coil (3), which had been performing condensation and liquefaction, and the inlet of the compressor 111 are communicated with each other. device (8) or reheat coil i3
The high-pressure liquid refrigerant in compressor 1 moves rapidly due to the pressure difference and flows into compressor +11. That is, when switching the operating cycle, in either case, there is a risk of sudden liquid puncture and damage to the compressor Ill.

この発明は、上記欠点を改善するため提案さされもので
、冷房サイクル時は再熱コイルを冷却器として活用する
ことにより、性能の向上を計ると共に、除湿サイクルに
切換えた時には凝縮器と冷却コイルの入口とを連通させ
ることにより、凝縮器内の液冷媒を冷却コイルに辱ひき
、ここで蒸発させてから圧縮機へ吸引させ、液パンクを
防止する金気調和機全提供するものである。
This invention was proposed in order to improve the above-mentioned drawbacks. During the cooling cycle, the reheating coil is used as a cooler to improve performance, and when switching to the dehumidification cycle, the condenser and cooling coil are used as a cooler. By communicating with the inlet of the refrigerant, the liquid refrigerant in the condenser is drawn into the cooling coil, where it is evaporated and then sucked into the compressor, thereby providing a complete air conditioner that prevents liquid puncture.

以下、この発明の一実施例を第2図(冷房運転時)、及
び第3図(除湿運転時)によって説明する。図中、第1
図と同一符号は同一または千目当部分を示し、(11)
は凝縮器(8)と再熱コイル(3)の入口を連通ずるオ
lの管路で、途中にオl絞9装置12(支)と逆止弁圓
とが設けられている。(I匂は凝縮器(8)とオlの管
@ (11)とを側路し、四方弁(2)と再熱コイル(
3ノヲ連通ずる第2の管路である。
An embodiment of the present invention will be described below with reference to FIG. 2 (during cooling operation) and FIG. 3 (during dehumidifying operation). In the figure, the first
The same reference numerals as in the figure indicate the same or 1000-moku parts, (11)
1 is an open pipe connecting the inlet of the condenser (8) and the reheating coil (3), and an open throttle 9 device 12 (support) and a check valve ring are provided in the middle. (The I smell bypasses the condenser (8) and the oil pipe @ (11), and the four-way valve (2) and the reheat coil (
This is the second conduit that connects the three pipes.

(1g+は、再熱コイル(3)と冷却コイル(4)の間
に、皮けられた第2絞シ装置@金側路するオ8の管路で
、途中に電磁弁(ハ)が設けられている。電磁弁(23
Iは冷房サイクル時に回路し、除湿サイクル時にしJ路
する◇−は四方弁(21と冷却コイル(4)の入口と全
連通ずる第4の管路で、四方弁(2)が冷房サイクルを
形成しているときは四方弁(2)ヲ介して第2の管路θ
りと連通し、除湿サイクルを形成している時は四方弁(
2]ヲ介してFiX!縮器(8)と連通する。
(1g+ is the pipe line O8 that runs through the second diaphragm device @ metal between the reheating coil (3) and the cooling coil (4), and a solenoid valve (c) is installed in the middle. Solenoid valve (23
I circuits during the cooling cycle, and J circuits during the dehumidification cycle. ◇- is the fourth pipe line that fully communicates with the four-way valve (21 and the inlet of the cooling coil (4), and the four-way valve (2) runs the cooling cycle. When forming the second pipe line θ through the four-way valve (2)
The four-way valve (
2] FiX through Wo! It communicates with the compressor (8).

尚、第4の管路(141途中にはオ8絞シ装置(財)が
設けられている。
In addition, an O8 diaphragm device is provided in the middle of the fourth pipe (141).

次いで作用を説明する。Next, the action will be explained.

冷房運転時Cツ・2図】では四方弁+21 t/′i切
換えらル、図示のように冷房サイクルを形成する。
During cooling operation, the four-way valve +21t/'i is switched to form a cooling cycle as shown in the figure.

圧縮機illから吐出された冷媒は四方弁(2)ヲ通シ
凝縮器(8)へ入り、冷却水41口と熱交換して凝縮液
化する。液化冷媒はオlの管路(11)をdシ、牙l絞
シ装置彌で減圧される。この低圧液化冷媒はI!電磁弁
至)が回路しているので、冷却コイル]4)と同じ圧力
になっている再熱コイルFBIへ流入し、冷却コイル(
4)で冷却減湿された室内空気Bと熱交換して、その一
部が蒸発する。室内空気Bけ、さらに冷却減湿され、室
内空気Cとして室内へ吹出される。再熱コイル(3)で
その一部が蒸発した冷媒は電磁弁@全通って冷却コイル
14)へ入り、ここで、室内空気Aと熱交換して蒸発し
圧縮機(1)に戻る。そして、室内空気Aは冷却g湿さ
れ、前述の室内空気Bとなる。この冷房サイクルに於い
て、四方弁(2)を介して第2の管路(121と第4の
管路(I41が連通しているが、第4の管路Q4)には
オ8絞り装置(財)が設けられているので、第1絞シ装
置20)で減圧された冷媒の大半は前述のように再熱コ
イル(3)へ流入する。ごく一部の冷媒は、第2の管路
12)、四方弁)2)及び第4の菅路θ蜀を通って冷却
コイル(4)へ流入するが、冷却コイル(4)にて室内
空気Aとの熱交換に寄与するので損失にはならない。
The refrigerant discharged from the compressor ill passes through the four-way valve (2) and enters the condenser (8), where it exchanges heat with the cooling water 41 and is condensed and liquefied. The liquefied refrigerant passes through the main pipe (11) and is depressurized by the cooling device. This low pressure liquefied refrigerant is I! Since the solenoid valve (to) is in a circuit, the flow flows into the reheating coil (FBI), which has the same pressure as the cooling coil (4), and the cooling coil (
It exchanges heat with the indoor air B that has been cooled and dehumidified in step 4), and a portion of it evaporates. Indoor air B is further cooled, dehumidified, and blown into the room as indoor air C. The refrigerant that has partially evaporated in the reheating coil (3) passes through the solenoid valve @ and enters the cooling coil 14), where it exchanges heat with the indoor air A, evaporates, and returns to the compressor (1). The indoor air A is then cooled and humidified to become the indoor air B described above. In this cooling cycle, the second conduit (121) and the fourth conduit (I41) communicate through the four-way valve (2), but the fourth conduit Q4 is connected to an O8 throttle device. (Incorporated), most of the refrigerant reduced in pressure by the first throttling device 20) flows into the reheating coil (3) as described above. A small portion of the refrigerant flows into the cooling coil (4) through the second conduit 12), the four-way valve (2) and the fourth pipe θShu, but the cooling coil (4) passes through the indoor air Since it contributes to heat exchange with A, there is no loss.

一方、除湿運転時(第3図)には、四方弁(2)は切換
えられ図示のように除湿サイクルを形成する。圧m機+
11から吐出された冷媒は四方弁(2]全通り、凝縮器
(8)及びオlの管路(11)を側路して第2の管WI
021から再熱コイル(3)へ流入する。ここで、冷媒
は冷却コイル(4)で冷却減湿された室内空気Bと熱交
換し凝縮液化する。そして、室内空気Bは加熱されて相
対湿度が低下し、室内空気Cとして室内に吹出される。
On the other hand, during dehumidification operation (FIG. 3), the four-way valve (2) is switched to form a dehumidification cycle as shown. pressure m machine +
The refrigerant discharged from 11 passes through the four-way valve (2), passes through the condenser (8) and the other pipe (11), and then flows through the second pipe WI.
021 to the reheat coil (3). Here, the refrigerant exchanges heat with the cooled and dehumidified indoor air B in the cooling coil (4) and is condensed and liquefied. Then, the indoor air B is heated, the relative humidity is reduced, and the room air B is blown into the room as indoor air C.

また、再熱コイル(3)の高圧液化冷媒は電磁弁(23
1が閑d’r しているので、才2絞り装置−を通9、
ここで減圧される。この低圧液化冷媒は冷却コイル(4
)へ入り、室内空気Aと熱交換し蒸発して圧縮機:1]
へ戻り、室内空気Aは冷却減湿されデ内空気Bとなる。
In addition, the high-pressure liquefied refrigerant in the reheating coil (3) is controlled by a solenoid valve (23).
1 is idle, so 9,
The pressure is reduced here. This low-pressure liquefied refrigerant is used in cooling coils (4
), exchanges heat with indoor air A, evaporates, and generates a compressor: 1]
The indoor air A is cooled and dehumidified and becomes indoor air B.

この除湿サイクルに於いて、オlの管路(11)及び凝
縮器(8)と第4の管路l141とが四方弁(2)を介
し連通されるが、オlの管路(11)に設けられた逆止
弁償υによシ高圧冷媒は凝縮器(8)へは流れない。但
し、冷房サイクルから除湿サイクルへ切換えた直後は、
凝縮器(8)内に高圧液冷媒が存在しておp、これ゛が
四方弁(2)から第4の管路Q41を通って低圧側へ移
動するが、この高圧液冷媒は第3絞9装置(24Iで減
圧され、低圧液冷媒になって冷却コイル(4)へ入り、
蒸発する。
In this dehumidification cycle, the O1 pipe (11) and the condenser (8) are communicated with the fourth pipe I141 via the four-way valve (2). The high pressure refrigerant does not flow to the condenser (8) due to the check valve υ provided in the condenser (8). However, immediately after switching from the cooling cycle to the dehumidification cycle,
A high-pressure liquid refrigerant exists in the condenser (8), and this moves from the four-way valve (2) to the low-pressure side through the fourth conduit Q41. 9 device (24I), becomes a low-pressure liquid refrigerant and enters the cooling coil (4),
Evaporate.

従って、サイクル切換え直後の急激な液パツクを生じな
い。
Therefore, no sudden liquid buildup occurs immediately after cycle switching.

以上の夾施例では凝縮器(8)を冷却水42口にて冷却
する水冷式について説明したが、これを窒冷式′F:、
捉えても同様の効果が得られる。捷た凝縮器(8)の内
容積が小さく凝縮液冷媒量が少ない場合、第3絞り装置
例を省略しても、はぼ同様の効果が得られる。
In the above examples, a water-cooled type in which the condenser (8) is cooled with 42 cooling water ports was explained, but this is a nitrogen-cooled type 'F:
A similar effect can be obtained by capturing. If the internal volume of the shrunk condenser (8) is small and the amount of condensed refrigerant is small, the same effect can be obtained even if the third throttling device example is omitted.

以上のようにこの発明によれば、冷房サイクル時には、
冷却コイルに加えて再熱コイルが冷却器として作用する
ので、性能が向上する。
As described above, according to the present invention, during the cooling cycle,
Performance is improved because the reheat coil acts as a cooler in addition to the cooling coil.

また、冷房と除湿サイクル切換え時に、非作用管路内の
液冷媒は冷却コイルで蒸発させられるので、サイクル切
換え直後の圧縮機への急激な液バンクが生じず、圧縮機
を損傷する恐れが無くなると共に、高圧液冷媒を室内空
気の冷却i/i:有効利用できる。
In addition, when switching between cooling and dehumidifying cycles, the liquid refrigerant in the inactive pipes is evaporated by the cooling coil, so there is no sudden liquid bank to the compressor immediately after the cycle is switched, eliminating the risk of damaging the compressor. At the same time, high-pressure liquid refrigerant can be effectively used for cooling indoor air.

更に、従来の冷房・除湿兼用空気調和機では、2個の逆
上弁を用いており、いずれに於いても、どちらかの逆止
弁から冷媒が漏れる恐れがあり、しかも、漏れた冷媒は
、そのまま圧縮機fi+へ吸引されるので、性能がその
分だけ低下するが、この発明に於いては逆止弁が1個で
あり、冷房サイクル時には上述のような冷媒漏れによる
性能低下が生じない。
Furthermore, conventional air conditioning/dehumidification air conditioners use two check valves, and in either case, there is a risk that refrigerant may leak from either of the check valves. Since the refrigerant is sucked into the compressor fi+ as it is, the performance will be reduced by that amount, but in this invention there is only one check valve, so there will be no performance deterioration due to refrigerant leakage as described above during the cooling cycle. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷房・除湿兼用空気調和機のサイクル説
明図、第2図及び第3図はそれぞn。 この発明の一実施例を示す冷房運転及び除湿運転のサイ
クル説明図である。 図中、Il+は圧縮機、(21け四方切換弁、(3)け
再ボ(コイル、(4)は冷却コイル、(8)は凝縮器、
(u7はオlの管路、1121は第2の管路、(13)
はオ8の管路、(14)は第4の管路、3(至)はオl
絞シ装置、I2υは逆止弁1..221 tri第2絞
り装置、+231は電磁弁である。 なお、同一符号は同一または相当部分を示す。 代理人  葛 野  信 − 第1図 第2図 第3図
Fig. 1 is an explanatory diagram of the cycle of a conventional air conditioning/dehumidifying air conditioner, and Figs. 2 and 3 are respectively n. FIG. 2 is a cycle explanatory diagram of cooling operation and dehumidification operation showing an embodiment of the present invention. In the figure, Il+ is a compressor, (21 four-way switching valve, (3) reboiler coil, (4) is a cooling coil, (8) is a condenser,
(u7 is the original pipe, 1121 is the second pipe, (13)
is the O8 pipe, (14) is the fourth pipe, and 3 (to) is the O1 pipe.
Throttling device, I2υ is check valve 1. .. 221 tri second throttle device, +231 is a solenoid valve. Note that the same reference numerals indicate the same or equivalent parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 圧縮機からの吐出冷媒全四方切換弁、凝縮器、オl絞り
装置とオl逆止弁とが直列に設けられたオlの管路、再
熱コイル、途中に電磁弁が設けられた第3の管路及び冷
却コイルを経て上記圧縮機へ吸入させる冷房サイクルと
、上記圧縮機からの吐出冷媒を上記四方切換弁、上記凝
縮器及びオlの管路を側路する第2の管路、上記再熱′
コイル、上記オ8の管路を側路する第2絞9装置及び上
記冷却コイルを経て上記圧縮機へ1吸入させる除湿サイ
クルと、上記冷房サイクル時は上記四方切換弁を介して
上記第2の管路と上記冷却コイル入口とを連通ずると共
に上記除晶サイクル時は上記四方切換弁を介して上記凝
縮器と上記冷却コイル入口とを連通ずるオ舎の管路とを
備えだことを特徴とする空気調和機。
A four-way switching valve for the refrigerant discharged from the compressor, a condenser, an oil conduit in which an oil throttling device and an oil check valve are installed in series, a reheating coil, and a solenoid valve in the middle. a cooling cycle in which the refrigerant is sucked into the compressor through the conduit No. 3 and the cooling coil; and a second conduit through which the refrigerant discharged from the compressor bypasses the four-way switching valve, the condenser, and the conduit No. 1. , the above reheat′
A dehumidifying cycle in which one air is drawn into the compressor through the coil, a second restrictor 9 device that bypasses the pipe line of the above O 8, and the cooling coil, and a dehumidifying cycle in which one air is sucked into the compressor through the cooling coil, and the second air flow through the four-way switching valve during the cooling cycle. It is characterized by comprising a pipe line communicating with the inlet of the cooling coil and communicating the condenser with the inlet of the cooling coil through the four-way switching valve during the crystal removal cycle. air conditioner.
JP2419083A 1983-02-14 1983-02-14 Air conditioner Pending JPS59147963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419083A JPS59147963A (en) 1983-02-14 1983-02-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419083A JPS59147963A (en) 1983-02-14 1983-02-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS59147963A true JPS59147963A (en) 1984-08-24

Family

ID=12131402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419083A Pending JPS59147963A (en) 1983-02-14 1983-02-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59147963A (en)

Similar Documents

Publication Publication Date Title
JP2007240025A (en) Refrigerating device
JP4273588B2 (en) Air conditioner refrigerant circuit
JP2944507B2 (en) Air conditioner
JPH0544675Y2 (en)
JP4747439B2 (en) Multi-room air conditioner
JPS59147963A (en) Air conditioner
JPH0426847Y2 (en)
JP3754272B2 (en) Air conditioner
JPH06257874A (en) Heat pump type air-conditioning machine
JPH07151413A (en) Separate type air conditioner
JP4090238B2 (en) Air conditioner and outdoor heat exchanger switching control method of air conditioner
JP2005291558A (en) Air conditioner
JPS59147965A (en) Air conditioner
JPH02118365A (en) Air conditioner
JPS59147967A (en) Air conditioner
JPH02247466A (en) Air conditioner
JPS6218933Y2 (en)
JPS59147966A (en) Air conditioner
JPH045972Y2 (en)
JPH10238882A (en) Operating method of multi-type air conditioner
KR100243055B1 (en) Heating/cooling device of a separable air conditioner
KR20200121200A (en) An air conditioning apparatus
JPH01127870A (en) Air conditioner
JPH0413576Y2 (en)
JPS595810Y2 (en) Heat pump air conditioner