JPS5914634A - Substrate heating apparatus - Google Patents

Substrate heating apparatus

Info

Publication number
JPS5914634A
JPS5914634A JP57124047A JP12404782A JPS5914634A JP S5914634 A JPS5914634 A JP S5914634A JP 57124047 A JP57124047 A JP 57124047A JP 12404782 A JP12404782 A JP 12404782A JP S5914634 A JPS5914634 A JP S5914634A
Authority
JP
Japan
Prior art keywords
substrate
substrate heating
temperature
heating apparatus
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124047A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57124047A priority Critical patent/JPS5914634A/en
Publication of JPS5914634A publication Critical patent/JPS5914634A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To control temperature of substrate with a high accuracy during plasma discharge by forming a cylindrical substrate heating apparatus and arranging a heater and a piping for cooling in close contact with the internal surface of cylindrical portion. CONSTITUTION:The covers 302a, 302b of heating apparatus are placed in contact with the internal surface of the basic materials 301a, 301b of light sensitive drum and the heaters 303a, 303b, 303c and the tubes 304a, 304b for flowing coolant are arranged alternately at the internal surface. When such a substrate heating apparatus is used, temperature of basic material can be kept constant during deposition of amorphous Si on the drum by the plasma CVD method and obtained the drum assures excellent light sensitivity.

Description

【発明の詳細な説明】 本発明はプラズマOVDの基板加熱装置において、その
内部にヒータと冷却用の管を配管し、加熱と冷却の橙能
を備えるととkより、プラズマ放電中においても基板の
温度制御の高精度化をはかった基板加熱装置K11lす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a substrate heating device for plasma OVD, in which a heater and a cooling tube are installed inside the device, and the substrate is heated and cooled even during plasma discharge. The substrate heating device K11l is designed for highly accurate temperature control.

近’f−,アモルファスシリコン(以下ではα−8iと
かく)、シリコン酸化膜、およびシリコン窒化膜等をは
じめとして多くの薄膜がプラズマOVD法で作られるよ
うになりて−た。
In recent years, many thin films, including amorphous silicon (hereinafter referred to as α-8i), silicon oxide films, and silicon nitride films, have come to be produced by plasma OVD.

プラズマavn法によって上記のような材料の成膜を行
なう場合、通常150〜650℃の基板加熱a−8tを
用いた感光ドラムの作製方法を例としてプラズマOVD
法による成膜の概要ならびに基板加熱の方法について説
明する。
When forming a film of the above-mentioned materials by the plasma AVN method, an example of a photosensitive drum manufacturing method using a substrate heating A-8T at 150 to 650° C. is used as an example.
An overview of film formation using this method and the method of heating the substrate will be explained.

第1図は感光ドラム作製用プラズマovDIItftの
模式図である。同図にお の基材、102は石英チャンノく一1103Fi高周波
コイル、104は高周波発振器、105は参ト気用のポ
ンプ、106はシャフト、107は七−夕である。第1
必の装置を用いてα・′Bイの感光ドラムを次の方法で
作製する。
FIG. 1 is a schematic diagram of a plasma ovDIItft for producing a photosensitive drum. In the same figure, the base material 102 is a quartz Channo Kuichi 1103Fi high frequency coil, 104 is a high frequency oscillator, 105 is a pump for the air, 106 is a shaft, and 107 is a Tanabata. 1st
Using the necessary equipment, a photosensitive drum of α·′Bi is prepared in the following manner.

排気用ポンプによりてチャン/(−102の中を約lX
1G=丁orr、まで排気しながら、円筒上の基材の温
度を230〜250℃に保つ。基材の加熱は後述の基板
加熱装置内に取り付けられた加熱用ヒータによって行な
う。ヒータの温度が所定の温度に達したところで、矢印
Aの方向にモノシラン(84H,)アルゴン(Ar)、
ジポラン(B、H,)の混合ガスをチャンバ内の圧力が
約ITOr?’、になるように導入する。また、モノシ
ランに対するジポランの流量比は約1×10′である。
Approximately lX inside the chamber/(-102
The temperature of the base material on the cylinder is maintained at 230 to 250° C. while evacuating to 1G=1 orr. The substrate is heated by a heater installed in a substrate heating device, which will be described later. When the temperature of the heater reaches a predetermined temperature, monosilane (84H,) argon (Ar),
A mixed gas of Diporan (B, H,) is heated to a pressure of approximately ITOr? ', introduce it so that it becomes. Also, the flow rate ratio of diporane to monosilane is approximately 1×10'.

この状態で、高周波発振器104によってチャンバー内
に高周波放電を起こすと、導入ガスが分解して基材10
1の表面上にα−8iの膜が形成される。
In this state, when a high frequency discharge is caused in the chamber by the high frequency oscillator 104, the introduced gas is decomposed and the base material 10
An α-8i film is formed on the surface of 1.

膜厚の均一性を得るためにシャフト106を通してモー
タ107で基材を回転する。回転速度Fi1分間に約1
0回転である。
The substrate is rotated by a motor 107 through a shaft 106 in order to obtain uniformity in film thickness. Rotation speed Fi: Approximately 1 per minute
It is 0 rotation.

第2図は基板加熱装置にドラム用の基材をセットした状
態の外観と断面構造とを模式的に示しA図である。
FIG. 2 is a diagram A schematically showing the appearance and cross-sectional structure of a drum base material set in the substrate heating device.

第2図において、201αと201bけ感光ドラムの基
材で201aはその外観図、201bけ断面図である。
In FIG. 2, 201α and 201b are the base materials of photosensitive drums, 201a is an external view thereof, and 201b is a sectional view.

また202α、202bおよび203 t−を基板加熱
!!2置を示しておシ202αはカバーの外観図、20
2る。
Also, 202α, 202b and 203t- are heated! ! 2 position is shown, 202α is an external view of the cover, 20
2 Ru.

竿2図の202α、202bおよび203で表わされる
基板加熱装置に円筒状の基材201αをセットし加熱し
なかも基材表面上にa−siをデポジションする。
A cylindrical base material 201α is set in a substrate heating device represented by 202α, 202b, and 203 in Figure 2, and a-si is deposited on the surface of the base material while heating.

上聞の説、明では感光ドラムを例にとって説明したので
、円柱状の基板加熱装置に円筒状の基材をセットしてい
る。一方、平面状の基板加熱装置に平面基板を接触させ
てセットし、プラズマ(’ V Dによるデポジション
を行なう場合もしげしばあるが原理的には同じである。
In the above explanation, the explanation was given using a photosensitive drum as an example, so a cylindrical base material is set in a cylindrical substrate heating device. On the other hand, there are also cases where a flat substrate is set in contact with a flat substrate heating device and deposition is performed using plasma ('VD), but the principle is the same.

第2図に示し基板加熱装置、あるいは平板状の基板加熱
装置を用いて、加熱をしながらプラズマOVDによるデ
ポジションを行なう場合、従来の基板加熱装置には大舞
な欠点が存在する。それはプラズマ放電中における基板
の温度制御が難しいことである。
When performing plasma OVD deposition while heating using the substrate heating device shown in FIG. 2 or a flat substrate heating device, the conventional substrate heating device has a major drawback. The problem is that it is difficult to control the temperature of the substrate during plasma discharge.

ある一定の温度、たとえば200℃に基板を加熱してお
いて、プラズマ放電を開始した場合でもプラズマ自体が
エネルギーを持っているので温度が上昇して一定に僅て
ないことである。
Even if the substrate is heated to a certain temperature, for example 200° C., and plasma discharge is started, the temperature will rise and will not be constant because the plasma itself has energy.

とくに第2図に示した感光ドラム用の円筒基材を用いて
第1図の装νでα−8iのデポジションを行なう場合、
温度の上昇は大舞い。その理由の一つけ、高周波電極1
03が基材の周囲を囲んでおりプラズマがとじこめられ
密度が上がふこと、もう一つFi10時間以上をかけた
長時間のデボジン1ンを要するためである。
In particular, when depositing α-8i using the cylindrical base material for the photosensitive drum shown in FIG. 2 with the arrangement shown in FIG.
The temperature rise is huge. One of the reasons, high frequency electrode 1
This is because 03 surrounds the base material, trapping the plasma and increasing the density, and also because Fi requires a long debossing process of 10 hours or more.

したがって、着干高周波パワーの強い場合には当初20
0℃まで加熱し、プラズマ放電開始と同時に基板加熱装
置のヒータをオフにしてもプラズマのエネルギーによっ
て基材の温度は上昇し1JQ10分間MICは250℃
以上に:sする場合もある。
Therefore, if the landing high frequency power is strong, the initial
Even if the substrate heating device was heated to 0℃ and the heater of the substrate heating device was turned off at the same time as the plasma discharge started, the temperature of the substrate rose due to the plasma energy, and the MIC for 10 minutes of 1JQ was 250℃.
There are cases where it is more than that.

プラズマCVDKよって作製する膜の特性は。What are the characteristics of films produced using plasma CVDK?

デボレフ1フ時の温度に影響される場合が多く、感光体
用のa−Bi膜をデポジションする場合にも250℃以
上の温度になると膜中の水素の脱離が生じ、帯電性能が
劣ることがわかっている。
It is often affected by the temperature at the time of deboref 1, and even when depositing an a-Bi film for a photoconductor, if the temperature exceeds 250°C, hydrogen in the film will be desorbed, resulting in poor charging performance. I know that.

それにもかかわらず従来の基板加装装置では温度上昇が
激しく、得られた膜に所望の1!!!件が得られないと
いう欠点を有していた。
However, in conventional substrate processing equipment, the temperature rises rapidly, and the resulting film does not reach the desired level. ! ! The disadvantage was that it was not possible to obtain

本発明はかかる欠点を除去したものであって、その目的
とするところは基板加熱装置において精度の良い温度制
御を行なうことにある。
The present invention eliminates such drawbacks, and its purpose is to perform accurate temperature control in a substrate heating device.

第3図は本発明の外観と断面を模式的に示したものであ
る。同図において301αおよび3016Fi感光ドラ
ムの基材で301αは外観を301b#′i断面を表わ
している。また302αは基板加熱装量カバーの外観、
302 b 1−を基板加熱装置カバーの断面である。
FIG. 3 schematically shows the appearance and cross section of the present invention. In the figure, 301α represents a cross section of 301b#'i of the base materials of photosensitive drums 301α and 3016Fi. In addition, 302α is the appearance of the substrate heating charge cover,
302 b 1- is a cross section of the substrate heating device cover.

ζらに、 3Q3 a、、  505.b 、  30
3 C・・・・・・・・・・は基板加熱の為のヒータ、
304α、5O4b、・・・・・・・・・は基板冷却の
為の冷媒を流す管である。
ζ et al., 3Q3 a,, 505. b, 30
3 C・・・・・・・・・ is a heater for heating the substrate,
304α, 5O4b, . . . are tubes through which coolant for cooling the substrate flows.

一つの実施例をもって、本発明の説明を行なう感光ドラ
ムの外径は80wnφ、長さは500m5+で基材の厚
ζId5waである。したがって、基板加熱装置のカバ
ーの外径は74tmφであシ、加熱ヒータはシース型の
ものを約201111のピヅチでカバーに接して巻いた
。まえ、冷媒を流す管は内在的5 mmの銅パイプを2
0順のピッチでヒータ同様カバーに接して巻いた。
The present invention will be explained with reference to one embodiment. The photosensitive drum has an outer diameter of 80wnφ, a length of 500m5+, and a base material thickness of ζId5wa. Therefore, the outer diameter of the cover of the substrate heating device was 74 tmφ, and the heater was of a sheath type and was wound around the cover with a pitch of about 201111 mm. In front, the tube through which the refrigerant flows is an internal 5 mm copper pipe.
It was wound in contact with the cover in the same way as the heater at a pitch of 0.

この基板加熱装置を用いて、n、−siの感光ドラムを
作製した。最初に1空に排気しながらヒータによ−てア
ルミ基材の温度を200℃に上げ、反応ガスをチャンバ
ー内に導入して、高周波放電を開始すると同時にヒータ
をオフにした。さらに冷媒用の管に約70℃の水を11
/min程度流した。なお高周波電力FiO,8K W
であふ。この状態で約8時間デポジションを行なったが
基材の温度は205℃まで上昇しただけであった。この
値は従来の方法で250℃くらいに上昇したのに比べれ
ば非常に少ないものであり、温度制御の精度は非常に向
上した。
Using this substrate heating device, an n, -si photosensitive drum was produced. First, the temperature of the aluminum substrate was raised to 200° C. using a heater while the chamber was being evacuated, a reaction gas was introduced into the chamber, and the heater was turned off at the same time as high-frequency discharge was started. Furthermore, water at about 70℃ was added to the refrigerant pipe for 11 minutes.
/min. In addition, high frequency power FiO, 8K W
It's thick. Deposition was carried out in this state for about 8 hours, but the temperature of the substrate only rose to 205°C. This value is very small compared to the 250° C. increase in the conventional method, and the accuracy of temperature control has been greatly improved.

実験によると、高周波電力を大きくすると基材の温度上
昇も大舞くなるが、冷媒の温度を下げることによ抄、デ
ポジション中の温度をほぼ一定に保ちうることか確認さ
れた。
According to experiments, it was confirmed that increasing the high-frequency power increases the temperature of the base material, but by lowering the temperature of the coolant, it is possible to keep the temperature almost constant during papermaking and deposition.

また冷媒は水だけでなく有機液体を用いても同様の効果
が得られる。
Further, similar effects can be obtained by using not only water but also an organic liquid as the refrigerant.

上述のように本発明の基板加熱装置を用いることKより
、デポジション中の基板の温度を一定に保つことがで禽
、得られたドラムの感光特性も良好であった。このよう
に本発明の効果は大き1ハものであり、また、その原理
はスパッタや蒸着、そしてOVD装置における平板タイ
プの基板加熱にも使用できその利用範囲はきわめて広い
ものである。
As described above, by using the substrate heating device of the present invention, the temperature of the substrate during deposition could be kept constant, and the photosensitive properties of the resulting drum were also good. As described above, the effects of the present invention are enormous, and the principle of the present invention can be used for sputtering, vapor deposition, and flat plate type substrate heating in OVD equipment, and its range of application is extremely wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は感光ドラム作製用のプラズマ0VD装置の模式
図、第2図は基板加熱装置にドラム用の基拐をセ・ノド
した状態の外観と断面構造とを模式的に示した図、そし
て第3図は本発明の外観と断面を模式的に示した図であ
る。 101・・・・・・感光ドラム基材 102・・・・・・石英チャンバー 103・・・・・・高周波コイル 104・・・・・・高周波発振器 105・・・・・・排気用のポンプ 106・・・・・・シャフト 107・・・・・・モータ 301α〜b・・・・・・感光ドラム基材302α〜b
・・・・・・基板加熱itカバー303cLA−c・・
・・・・ヒータ 304a−b・・・・・・冷媒を流す管板  上 出願人 株式会社 諏訪精工舎 第1図 築2F!」 第3図
FIG. 1 is a schematic diagram of a plasma 0VD device for producing photosensitive drums, FIG. 2 is a diagram schematically showing the external appearance and cross-sectional structure of a substrate for a drum installed in a substrate heating device, and FIG. 3 is a diagram schematically showing the appearance and cross section of the present invention. 101... Photosensitive drum base material 102... Quartz chamber 103... High frequency coil 104... High frequency oscillator 105... Exhaust pump 106 ...Shaft 107...Motor 301α-b...Photosensitive drum base material 302α-b
...... Board heating IT cover 303cLA-c...
...Heater 304a-b...Pipe plate through which refrigerant flows Applicant Suwa Seikosha Co., Ltd. 1st Zuzuki 2F! ” Figure 3

Claims (1)

【特許請求の範囲】 1)プラズマOVDの基板加熱装置において、その内部
にヒータと冷却用の管とを儒えたことを特徴とする基板
加熱装置。 2) 基板加熱装fが円筒状をなし、紋円筒の内側に接
してヒータ並びに冷却用の配管を配量したことを特徴と
する特許請求範囲第1項記載の基板加熱装置。
[Scope of Claims] 1) A substrate heating device for plasma OVD, characterized in that a heater and a cooling tube are provided inside the device. 2) The substrate heating device according to claim 1, wherein the substrate heating device f has a cylindrical shape, and a heater and cooling piping are arranged in contact with the inside of the cylinder.
JP57124047A 1982-07-16 1982-07-16 Substrate heating apparatus Pending JPS5914634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124047A JPS5914634A (en) 1982-07-16 1982-07-16 Substrate heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124047A JPS5914634A (en) 1982-07-16 1982-07-16 Substrate heating apparatus

Publications (1)

Publication Number Publication Date
JPS5914634A true JPS5914634A (en) 1984-01-25

Family

ID=14875673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124047A Pending JPS5914634A (en) 1982-07-16 1982-07-16 Substrate heating apparatus

Country Status (1)

Country Link
JP (1) JPS5914634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661387A2 (en) * 1993-12-30 1995-07-05 Saint-Gobain/Norton Industrial Ceramics Corporation Apparatus and method for depositing a substance on a rotating surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661387A2 (en) * 1993-12-30 1995-07-05 Saint-Gobain/Norton Industrial Ceramics Corporation Apparatus and method for depositing a substance on a rotating surface
EP0661387A3 (en) * 1993-12-30 1996-12-18 Saint Gobain Norton Ind Cerami Apparatus and method for depositing a substance on a rotating surface.

Similar Documents

Publication Publication Date Title
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
US4404076A (en) Film forming process utilizing discharge
JPH0459390B2 (en)
JPH02133577A (en) Formation of deposited film by microwave plasma cvd and device therefor
JPS61281519A (en) Formation of amorphous silicon film
JPS5914634A (en) Substrate heating apparatus
JPS6153431B2 (en)
JP3387616B2 (en) Plasma processing equipment
JPS6273622A (en) Formation of amorphous semiconductor film
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPS62199771A (en) Formation of deposited film
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPS6042766A (en) Formation of deposited film
JP2609866B2 (en) Microwave plasma CVD equipment
JPS62151571A (en) Deposited film forming device
JPS63234513A (en) Deposition film formation
JPH0645882B2 (en) Deposited film formation method
JP3402952B2 (en) Method and apparatus for forming deposited film
JPS63223178A (en) Production of amorphous silicon film
JPH0645883B2 (en) Deposited film formation method
JPH07288194A (en) Plasma treatment apparatus
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPS63223181A (en) Production of amorphous silicon film
JPS62230978A (en) Deposited film forming device
JPS62163319A (en) Forming device for deposit film