JP3402952B2 - Method and apparatus for forming deposited film - Google Patents

Method and apparatus for forming deposited film

Info

Publication number
JP3402952B2
JP3402952B2 JP23921396A JP23921396A JP3402952B2 JP 3402952 B2 JP3402952 B2 JP 3402952B2 JP 23921396 A JP23921396 A JP 23921396A JP 23921396 A JP23921396 A JP 23921396A JP 3402952 B2 JP3402952 B2 JP 3402952B2
Authority
JP
Japan
Prior art keywords
sccm
deposited film
cylindrical substrate
substrate
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23921396A
Other languages
Japanese (ja)
Other versions
JPH1092748A (en
Inventor
伸史 土田
博明 新納
大介 田澤
聡 古島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23921396A priority Critical patent/JP3402952B2/en
Publication of JPH1092748A publication Critical patent/JPH1092748A/en
Application granted granted Critical
Publication of JP3402952B2 publication Critical patent/JP3402952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体デバイスとし
ての電子写真用感光体デバイス、画像入力用ラインセン
サー、撮像デバイス、光起電力デバイスなどに有用な、
非単結晶質の機能性堆積膜を良好に形成し得るプラズマ
CVDによる堆積膜形成方法及び装置に関する。
The present invention is useful for electrophotographic photosensitive devices as semiconductor devices, image input line sensors, imaging devices, photovoltaic devices, and the like.
The present invention relates to a deposited film forming method and apparatus by plasma CVD capable of favorably forming a non-single crystalline functional deposited film.

【0002】[0002]

【従来の技術】半導体などで使用されているプラズマ処
理装置はそれぞれの用途に応じてさまざまな方法があ
る。例えば堆積膜の形成では、高周波電力によるプラズ
マCVD法を用いた電子写真用感光体としてのアモルフ
ァスシリコン系半導体膜であり、その特徴を生かす装
置、方法が使用されており、更に、近年膜特性向上に対
する要望も強くなっており、さまざまな検討がされてい
る。
2. Description of the Related Art There are various methods for plasma processing apparatuses used in semiconductors and the like, depending on their respective applications. For example, in the formation of a deposited film, an amorphous silicon semiconductor film is used as a photoconductor for electrophotography, which uses a plasma CVD method with high frequency power, and an apparatus and method that make use of its characteristics are used. The demand for is increasing, and various studies are being made.

【0003】例えば特開昭63−14875号公報には
カソード電極の長さ(L)とアノード電極からカソード
電極迄の距離(d)を5≦L/d≦40とすることで安
定で均一なプラズマ放電が得られ、膜の均一性及び膜質
が向上する技術が開示されている。
For example, in Japanese Patent Laid-Open No. 63-14875, the length (L) of the cathode electrode and the distance (d) from the anode electrode to the cathode electrode are set to 5 ≦ L / d ≦ 40 so that they are stable and uniform. A technique is disclosed in which plasma discharge is obtained and the film uniformity and film quality are improved.

【0004】更に、特公昭62−37111号公報には
高周波電力を放電面に面している電極面積に対して0.
3Wcm2 以上とし、全ガス流量を放電室の内容積との
比で0.01min-1以上にすることで高感度、高抵抗
のアモルファスシリコン膜が得られる技術が開示されて
いる。
Further, in Japanese Patent Publication No. 62-37111, high frequency power is applied to the electrode surface facing the discharge surface in an amount of 0.
A technique is disclosed in which an amorphous silicon film having high sensitivity and high resistance can be obtained by setting the total gas flow rate to 3 Wcm 2 or more and the total gas flow rate to 0.01 min -1 or more with respect to the internal volume of the discharge chamber.

【0005】これらの技術により、電子写真用感光体の
電気的、光学的、光導電的特性及び使用環境特性が向上
し、それに伴って画像品質も向上してきた。
These techniques have improved the electrical, optical and photoconductive characteristics of the electrophotographic photoconductor and the use environment characteristics, and the image quality has been improved accordingly.

【0006】一方、近年複写機がオフィスで使用される
場合、小型化による省スペース化が進んでおり、それに
伴って電子写真用感光体も小型化が要望されてぃる。更
には近年プリンターの使用頻度が増加したことから、従
来複写機で使用されてきた直径80mm程度の電子写真
用感光体よりも小径のアモルファスシリコン感光体の需
要も増大している。そこで、電子写真用感光体として従
来よりも小径な直径40mm程度のアモルファスシリコ
ン感光体の作製を行ったところ、従来の径の場合とは異
なる以下のような現象が発生する場合があることが判明
した。
On the other hand, when a copying machine is used in an office in recent years, space-saving due to miniaturization is progressing, and accordingly, electrophotographic photoconductors are also required to be miniaturized. Further, since the frequency of use of printers has increased in recent years, demand for amorphous silicon photoconductors having a diameter smaller than that of electrophotographic photoconductors having a diameter of about 80 mm which have been conventionally used in copying machines is also increasing. Therefore, when an amorphous silicon photoconductor having a diameter of about 40 mm, which is smaller than the conventional one, was manufactured as a photoconductor for electrophotography, it was found that the following phenomenon different from the conventional case may occur. did.

【0007】即ち従来よりも小径なる電子写真用感光体
では成膜中に円筒状基体表面温度の上昇が急なため、膜
が歪み易くなり膜剥れが生じ易くなることが分かった。
作製した電子写真用感光体に膜剥れが生じると、電子写
真用感光体としては使用できなくなり生産性を大きく低
下させコストアップの原因となる。
That is, it has been found that the electrophotographic photosensitive member having a smaller diameter than that of the conventional one has a tendency that the temperature of the cylindrical substrate surface rises rapidly during the film formation, so that the film is easily distorted and the film is easily peeled off.
If film peeling occurs in the produced electrophotographic photoconductor, it cannot be used as an electrophotographic photoconductor and productivity is greatly reduced, which causes a cost increase.

【0008】更には、母線方向の堆積膜の膜質に関して
も分布が発生し易く、電子写真用感光体においては濃度
ムラ、感度ムラ、画像のがさつきといった現象として現
れた。近年では複写機本体の高性能化が進み、デジタル
機やカラー機の普及に伴い、電子写真用感光体はこれま
で以上に高画質、高品質化が求められる様になってお
り、従来以上の堆1積膜の特性が求められていることか
ら、堆積膜の膜質の分布を小さくして堆積膜の特性を向
上することは重要である。
Further, the film quality of the deposited film in the direction of the generatrix is apt to be distributed, and it appears as a phenomenon such as density unevenness, sensitivity unevenness, and image roughness in the electrophotographic photoreceptor. In recent years, as the performance of copiers has advanced and digital and color machines have become widespread, electrophotographic photoreceptors are required to have higher image quality and quality than ever before. Since the characteristics of the deposited film are required, it is important to reduce the distribution of the quality of the deposited film and improve the characteristics of the deposited film.

【0009】[0009]

【発明が解決しようとする課題】したがって、本発明の
目的は従来よりも小径なる電子写真用感光体を作製する
際に、膜剥れの低減を可能にし、且つ、母線方向の堆積
膜の膜質分布を低減して濃度ムラ、感度ムラ、画像のが
さつきが無い良好な電子写真用感光体の製造を可能にす
る堆積膜形成方法及び装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to reduce film peeling when producing an electrophotographic photosensitive member having a smaller diameter than before, and to improve the film quality of the deposited film in the generatrix direction. It is an object of the present invention to provide a deposited film forming method and apparatus capable of manufacturing a good electrophotographic photosensitive member which has a reduced distribution and is free from density unevenness, sensitivity unevenness, and image roughness.

【0010】[0010]

【課題を解決するための手段】上記目的は以下の手段に
よって達成される。
The above object can be achieved by the following means.

【0011】すなわち本発明は、排気手段と原料ガス供
給手段を備えた真空気密可能な堆積室内に基体加熱ヒー
ターを固定し、該基体加熱ヒーターを内包するように、
放電電極を兼ねた補助基体を取りつけた直径45mm以
下の円筒状基基体を回転可能に設置し、前記円筒状基体
を外包しほぼ同軸上に設けられたカソード電極との間に
高周波電力を印加することによりグロー放電を生じさせ
て、前記円筒状基体上にシリコンを含む堆積膜を形成す
るプラズマCVD法による同軸型堆積膜形成方法又は装
置において、グロー放電面に面している前記円筒状基体
の表面積をSl、前記カソード電極の表面積をS2、前
記カソード電極に印加する電力をP、SiH4ガス流量
をfとしたとき、下記のA式且つB式 5W≦P/(S2/S1)≦70W………(A) 5×l0-3W/sccm≦P/(f・S2 /S1)≦7×l0-1W/sccm ………(B) を満たすことを特徴とする堆積膜形成方法を提案するも
のであり、前記円筒状基体上に光導電層、表面保護層の
少なくとも二層で構成された光受容部材を形成するこ
と、前記円筒状基体上に、下部阻止層、光導電層、表面
保護層の少なくとも三層で構成された光受容部材を形成
することを含む。
That is, according to the present invention, a substrate heating heater is fixed in a vacuum-tight deposition chamber equipped with an evacuation means and a source gas supply means, and the substrate heating heater is included.
A cylindrical base substrate having a diameter of 45 mm or less, to which an auxiliary substrate also serving as a discharge electrode is attached, is rotatably installed, and high-frequency power is applied between the cylindrical substrate and the cathode electrode which is provided on the same axis as the outer casing. In the coaxial type deposition film forming method or apparatus by the plasma CVD method for generating a glow discharge to form a deposition film containing silicon on the cylindrical substrate, the cylindrical substrate facing the glow discharge surface is formed. When the surface area is Sl, the surface area of the cathode electrode is S2, the electric power applied to the cathode electrode is P, and the SiH4 gas flow rate is f, the following formula A and formula 5W≤P / (S2 / S1) ≤70W ... (A) 5 × 10 -3 W / sccm ≦ P / (f · S 2 / S1) ≦ 7 × 10 -1 W / sccm (B) With And forming a photoreceptive member composed of at least two layers of a photoconductive layer and a surface protective layer on the cylindrical substrate, a lower blocking layer, a photoconductive layer, and a surface protective layer on the cylindrical substrate. Forming a light receiving member composed of at least three layers.

【0012】また本発明は、排気手段と原料ガス供給手
段を備えた真空気密可能な堆積室内に基体加熱ヒーター
を固定し、該基体加熱ヒーターを内包するように、放電
電極を兼ねた補助基体を取りつけた直径45mm以下の
円筒状基体を回転可能に設置し、前記円筒状基体を外包
しほぼ同軸上に設けられたカソード電極との間に高周波
電力を印加することによりグロー放電を生じさせて、前
記円筒状基体上にシリコンを含む堆積膜を形成するプラ
ズマCVD法による同軸型堆積膜形成装置において、グ
ロー放電面に面している前記円筒状基体の表面積(S
1)に対する前記カソード電極の表面積(S2)の比と
前記カソード電極に印加する電力(P)を下記のA式を
満たすように設定し、 5W≦P/(S2/S1)≦70W………(A) 且つ、堆積室に導入するSiH4ガス流量(f)を、下
記のB式を満たすように 5×l0-3W/scccm≦P/(f・S2/S1)≦7×10-1W/scc m………(B) 設定したことを特徴とする堆積膜形成装置を提案するも
のであり、前記円筒状基体上に、光導電層、表面保護層
の少なくとも二層で構成された光受容部材を形成するこ
と、前記円筒状基体上に、下部阻止層、光導電層、表面
保護層の少なくとも三層で構成された光受容部材を形成
することを含む。
Further, according to the present invention, a substrate heating heater is fixed in a vacuum-tight deposition chamber provided with an exhaust means and a source gas supply means, and an auxiliary substrate also serving as a discharge electrode is included so as to include the substrate heating heater. The mounted cylindrical substrate having a diameter of 45 mm or less is rotatably installed, and high-frequency power is applied between the cylindrical substrate and a cathode electrode which is provided on the same axis and which is provided on the same axis. In a coaxial type deposited film forming apparatus by a plasma CVD method for forming a deposited film containing silicon on the cylindrical substrate, the surface area (S) of the cylindrical substrate facing the glow discharge surface
The ratio of the surface area (S2) of the cathode electrode with respect to 1) and the electric power (P) applied to the cathode electrode are set so as to satisfy the following expression A, and 5 W ≦ P / (S2 / S1) ≦ 70 W ... (A) In addition, the SiH4 gas flow rate (f) introduced into the deposition chamber is set to satisfy the following formula B: 5 × 10 −3 W / scccm ≦ P / (f · S2 / S1) ≦ 7 × 10 −1 W / scc m ... (B) The present invention proposes a deposited film forming apparatus characterized by being set, and comprising at least two layers of a photoconductive layer and a surface protective layer on the cylindrical substrate. Forming a light-receiving member, and forming a light-receiving member composed of at least three layers of a lower blocking layer, a photoconductive layer and a surface protective layer on the cylindrical substrate.

【0013】[0013]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。
The present invention will be described in more detail below.

【0014】従来の直径108mm、80mmの円筒状
基体を用いてグロー放電によってアモルファスシリコン
感光体を作製する場合には、成膜中に円筒状基体表面温
度の上昇が急激に上昇するという現象は殆ど生じなかっ
た。しかし、直径を45mm以下にした円筒状基体を用
いてグロー放電によってアモルファスシリコン感光体を
作製した場合、成膜中に円筒状基体表面温度の上昇が急
激に上昇し膜が歪み易くなるため、膜剥れが生じるとい
う現象が認められることが分かった。そこで、本発明者
は放電による円筒状基体表面温度の上昇に関与している
パラメーターとして考えられる、カソード電極に印加す
る電力の様々な密度に注目しそ鋭意検討を行った。その
結果、グロー放電面に面している円筒状基体の表面積
(S1)に対するカソード電極の表面積(S2)の比:
S2/Slに対して、カソード電極に印加する電力
(P)の比、即ちグロー放電面に面している円筒状基体
とカソード電極の表面積比に対する電力密度:P/(S
2/Sl)が成膜中の円筒状基体表面温度の上昇に大き
く関与しているとの知見を得た。即ち、P/(S2/S
1)を特定することで膜剥れに効果があることが分かっ
た。
When an amorphous silicon photoconductor is manufactured by glow discharge using a conventional cylindrical substrate having a diameter of 108 mm and 80 mm, the phenomenon that the surface temperature of the cylindrical substrate rapidly rises during film formation is almost always observed. Did not happen. However, when an amorphous silicon photoconductor is manufactured by glow discharge using a cylindrical substrate having a diameter of 45 mm or less, the temperature of the cylindrical substrate surface rises rapidly during film formation, and the film is easily distorted. It was found that the phenomenon of peeling occurred. Therefore, the present inventor has made diligent studies by paying attention to various densities of electric power applied to the cathode electrode, which are considered as parameters involved in the increase in the surface temperature of the cylindrical substrate due to discharge. As a result, the ratio of the surface area (S2) of the cathode electrode to the surface area (S1) of the cylindrical substrate facing the glow discharge surface:
The ratio of the power (P) applied to the cathode electrode to S2 / S1, that is, the power density to the surface area ratio of the cylindrical substrate facing the glow discharge surface and the cathode electrode: P / (S
It was found that 2 / Sl) is greatly involved in the increase in the surface temperature of the cylindrical substrate during film formation. That is, P / (S2 / S
It was found that the film peeling was effective by specifying 1).

【0015】更に、直径を45mm以下にした円筒状基
体を用いてグロー放電によってアモルファスシリコン感
光体を作製した場合、母線方向の堆積膜の膜質に関して
分布が発生し易い原因について本発明者等は、電子写真
感光体の製造過程に何か問題が生じているのではないと
考え放電状態に注目して検討を行った。そして、プラズ
マの発光強度を測定したところ、母線方向における発光
強度に時折振らつきが生じプラズマ状態が不安定になる
現象が生じていることが分かった。本発明者はこの発光
強度が時折振らつくことによる影響で膜質に分布が生じ
てしいるのではないかと考えた。
Further, when an amorphous silicon photoconductor is produced by glow discharge using a cylindrical substrate having a diameter of 45 mm or less, the inventors of the present invention have been concerned with the cause that the distribution of the film quality of the deposited film in the generatrix direction tends to occur. We considered that there was no problem in the manufacturing process of the electrophotographic photosensitive member, and conducted a study focusing on the discharge state. When the emission intensity of plasma was measured, it was found that the emission intensity in the generatrix direction sometimes fluctuated and the plasma state became unstable. The inventors of the present invention considered that the distribution of the film quality might be caused by the influence of the occasional fluctuation of the emission intensity.

【0016】そこで、放電状態に影響するパラメーター
として考えられるカソード電極に印加する電力の様々な
密度及びSiH4ガス流量について鋭意検討を行った。
その結果、SiH4ガス流量に対する上記のグロー放電
面に面している円筒状基体とカソード電極の表面積比に
対する電力密度:P/(S2/Sl)を特定すること
で、母線方向において発光強度が時折振らつくことが低
減され、母線方向の堆積濃の膜質分布も低減されること
が分かった。その結果、濃度ムラ、感度ムラ、画像のが
さつきが改善された良好な堆積膜が得られることが分か
った。
Therefore, various studies were conducted on various densities of electric power applied to the cathode electrode and SiH4 gas flow rates, which are considered as parameters affecting the discharge state.
As a result, by specifying the power density: P / (S2 / Sl) with respect to the surface area ratio of the cylindrical substrate facing the glow discharge surface to the SiH4 gas flow rate and the cathode electrode, the emission intensity is occasionally increased in the busbar direction. It was found that the fluctuation was reduced and the film quality distribution of the deposition concentration in the bus line direction was also reduced. As a result, it was found that a good deposited film with improved density unevenness, sensitivity unevenness, and image roughness was obtained.

【0017】以上のように、グロー放電面に面している
円筒状基体とカソード電極の表面積比に対する電力密
度:P/(S2/Sl)及びSiH4ガス流量(f)に
対する上記のグロー放電面に面している円筒状基体及び
カソード電極の表面積比に対する電力密度:P/(S2
/Sl)の比:P/(f・S2/Sl)が下記のA式且
つB式を満たすように特定することで本発明の効果は得
られる。
As described above, the power density with respect to the surface area ratio of the cylindrical substrate facing the glow discharge surface and the cathode electrode: P / (S2 / Sl) and the SiH4 gas flow rate (f), the above glow discharge surface. Power density to surface area ratio of facing cylindrical substrate and cathode electrode: P / (S2
The effect of the present invention can be obtained by specifying the ratio of / Sl: P / (f · S2 / Sl) so as to satisfy the following expressions A and B.

【0018】 5W≦P/(S2/S1)≦70W ̄……(A) 5×l0-3W/sccm≦P/(f・S2/Sl)≦7×l0-1W/sccm ………(B) 以下、図面を用いて本発明の堆積膜の形成方法及び装置
について詳細に説明する。
5W ≦ P / (S2 / S1) ≦ 70W− (A) 5 × 10 -3 W / sccm ≦ P / (f · S2 / Sl) ≦ 7 × 10 −1 W / sccm ... (B) Hereinafter, the method and apparatus for forming a deposited film of the present invention will be described in detail with reference to the drawings.

【0019】図1は本発明の堆積膜の形成方法に用いる
装置の一例を模式的に示したものであり、電子写真用感
光体のような円筒状基体に堆積膜を形成するのに好適な
ものである。図1において、100は堆積膜を形成する
ための堆積室であり、排気口110を介して不図示の排
気装置に接続されている。106は原料ガスを堆積室に
導入するための原料ガス導入口であり、不図示のガス供
給系から原料ガスを堆積室内に導入する。102は円筒
状基体であり、補助基体103にセットされて上部を回
転軸105によって保持されている。回転軸105は堆
積室に回転可能に取りつけられている。104は円筒状
基体を所定の温度に加熱するための基体加熱用ヒーター
であり、堆積室内に固定されている。円筒状基体102
は、回転軸105を介して駆動モーター107により回
転され、周方向の膜厚の均一化を図る。109は高周波
を発生する高周波電源であり、高周波出力は108の整
合器を介してカソード電極101に印加されるように配
線されている。図に示したようにカソード電極101は
堆積室100の内壁を兼ねていても良い。本発明の堆積
膜形成方法においては、グロー放電面に面している円筒
状基体104の表面積(S1)に対するカソード電極1
01の表面積(S2)の比:S2/S1に対して、カソ
ード電極101に印加する電力(P)の比:P/(S2
/Sl)を5W≦P/(S2/Sl)≦70Wにするこ
とが好ましい。上記範囲外では膜剥れの低減に対する効
果が小さい。
FIG. 1 schematically shows an example of an apparatus used in the method for forming a deposited film of the present invention, which is suitable for forming a deposited film on a cylindrical substrate such as an electrophotographic photoreceptor. It is a thing. In FIG. 1, reference numeral 100 denotes a deposition chamber for forming a deposited film, which is connected to an exhaust device (not shown) via an exhaust port 110. Reference numeral 106 is a raw material gas inlet for introducing the raw material gas into the deposition chamber, and introduces the raw material gas into the deposition chamber from a gas supply system (not shown). Reference numeral 102 denotes a cylindrical base, which is set on the auxiliary base 103 and is held by the rotating shaft 105 at the upper portion. The rotating shaft 105 is rotatably attached to the deposition chamber. Reference numeral 104 denotes a substrate heating heater for heating the cylindrical substrate to a predetermined temperature, which is fixed in the deposition chamber. Cylindrical substrate 102
Is rotated by a drive motor 107 via a rotary shaft 105 to make the film thickness in the circumferential direction uniform. Reference numeral 109 is a high frequency power source for generating a high frequency, and the high frequency output is wired so as to be applied to the cathode electrode 101 via the matching unit 108. As shown in the figure, the cathode electrode 101 may also serve as the inner wall of the deposition chamber 100. In the deposited film forming method of the present invention, the cathode electrode 1 with respect to the surface area (S1) of the cylindrical substrate 104 facing the glow discharge surface.
The ratio of the power (P) applied to the cathode electrode 101 to the ratio of the surface area (S2) of 01: S2 / S1: P / (S2
/ Sl) is preferably 5W ≦ P / (S2 / Sl) ≦ 70W. Outside the above range, the effect of reducing film peeling is small.

【0020】図2は他の一例を示しており、補助基体2
03を上部から吊り下げる形で保持している以外は図1
と同様である。図2の様に補助基体203を上部から吊
り下げる形にした場合は、補助基体203の内面が基体
加熱用ヒーター204だけになって補助基体203と基
体加熱用ヒーター204間の空間が広がるので、円筒状
基体の小径化の範囲が広がり好適である。
FIG. 2 shows another example of the auxiliary substrate 2.
03 except that it is held in the form of hanging from above.
Is the same as. When the auxiliary substrate 203 is hung from above as shown in FIG. 2, the inner surface of the auxiliary substrate 203 is the only heater 204 for heating the substrate, and the space between the auxiliary substrate 203 and the heater 204 for heating the substrate expands. This is suitable because the range of diameter reduction of the cylindrical substrate is widened.

【0021】円筒状基体102、202及び補助基体1
03、203は、使用目的に応じた材質を有するもので
あれば良い。材質においては銅、アルミニューム、金、
銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリ
ブデン、チタン、ステンレスが電気伝導が良好のため好
適である。さらにこれらの材料の中の2種以上の複合材
料も耐熱性が向上するために望ましい。
Cylindrical substrates 102 and 202 and auxiliary substrate 1
03 and 203 should just have a material according to the purpose of use. In terms of material, copper, aluminum, gold,
Silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, and stainless steel are preferable because they have good electric conductivity. Furthermore, a composite material of two or more of these materials is also desirable because it has improved heat resistance.

【0022】カソード電極101、201の材質として
は銅、アルミニューム、金、銀、白金、鉛、ニッケル、
コバルト、鉄、クロム、モリブデン、チタン、ステンレ
スなどが熱伝導が良く、電気伝導も良いので好適であ
る。これらの材料の中の2種以上の複合材料なども好適
に用いられる。又、加工の容易さから形状は円筒形状が
好ましいが、必要に応じて楕円形、多角形形状を用いて
も良い。
The materials for the cathode electrodes 101 and 201 are copper, aluminum, gold, silver, platinum, lead, nickel,
Cobalt, iron, chromium, molybdenum, titanium, stainless steel and the like are preferable because they have good thermal conductivity and good electrical conductivity. A composite material of two or more of these materials is also preferably used. Further, the shape is preferably a cylindrical shape for ease of processing, but an elliptical shape or a polygonal shape may be used if necessary.

【0023】カソード電極101、201は必要に応じ
て冷却手段を設けても良い。具体的な冷却手段として
は、水、空気、液体チッ素、ペルチェ素子などによる冷
却が必要に応じて用いられる。
The cathode electrodes 101 and 201 may be provided with a cooling means if necessary. As a specific cooling means, cooling with water, air, liquid nitrogen, a Peltier element, or the like is used as necessary.

【0024】使用される高周波電源109、209の発
振周波数は通常13.56MHzが使用されることが多
く好適であるが特に限定は無い。又、出力は、装置に適
した電力を発生することが出来ればいかなる出力のもの
でも好適に使用出来る。更に、高周波電源の出力変動率
はいかなる値であっても良い。
The oscillating frequency of the high-frequency power sources 109 and 209 used is usually 13.56 MHz, which is often preferable, but it is not particularly limited. Further, any output can be suitably used as long as it can generate electric power suitable for the device. Further, the output fluctuation rate of the high frequency power supply may be any value.

【0025】使用される整合器108、208は高周波
電源と負荷の整合を取ることができるものであればいか
なる構成のものでも好適に使用出来る。又、整合を取る
方法としては、自動的に調整されるものが製造時の煩雑
さを避けるために好適であるが、手動で調整されるもの
であっても本発明の効果に全く影響はない。又、整合器
が配置される位置に関しては整合が取れる範囲において
どこに設置してもなんら問題はないが、整合器からカソ
ード間の配線のインダクタンスを出来るだけ小さくする
ような配置とした方が広い負荷条件で整合を取ることが
可能になるため望ましい。
The matching units 108 and 208 used can be suitably used in any configuration as long as they can match the high frequency power source and the load. Further, as a method for obtaining matching, an automatically adjusted method is suitable for avoiding complications during manufacturing, but even a manually adjusted method has no influence on the effect of the present invention. . Regarding the position where the matching device is placed, there is no problem wherever it is installed within the range where matching can be achieved, but it is better to place it so that the inductance of the wiring between the matching device and the cathode is as small as possible. It is desirable because it will be possible to match the conditions.

【0026】図1の装置における堆積膜の形成は次の手
順のように行われる。
Formation of a deposited film in the apparatus shown in FIG. 1 is performed according to the following procedure.

【0027】先ず、旋盤を用いて表面を鏡面加工した円
筒状基体102を補助基体103に取りつけ、堆積室1
00内の回転軸105に取りつける。
First, the cylindrical substrate 102 whose surface is mirror-finished by using a lathe is attached to the auxiliary substrate 103, and the deposition chamber 1
It is attached to the rotary shaft 105 in 00.

【0028】次に、排気口110を介して不図示の排気
装置により堆積室100内を一旦排気した後、不図示の
原料ガス導入バルブを開き加熱用の不活性ガス、例えば
アルゴンガスを原料ガス導入口106より堆積室100
内に導入し、堆積室100内が所望の圧力になるように
排気装置の排気速度及び加熱用ガスの流量を調整する。
その後、駆動用モーター107により円筒状基体102
を回転させながら不図示の温度コントローラーを作動さ
せて円筒状基体102を基体加熱用ヒーター104によ
り加熱する。尚、図1の堆積膜形成装置では円筒状基体
を回転可能な構成になっているが、本発明の効果が円筒
状基体を回転させなければ得られないというものではな
く、静止状態でも本発明の効果は得られる。円筒状基体
102が所望の温度も加熱されたところで不図示の原料
ガス導入バルブを閉じ、堆積室内ヘのガス流入を止め
る。
Next, the inside of the deposition chamber 100 is temporarily evacuated by an exhaust device (not shown) through the exhaust port 110, and then a raw material gas introduction valve (not shown) is opened to supply an inert gas for heating, eg, argon gas, to the raw material gas. From the inlet 106 to the deposition chamber 100
And the flow rate of the heating gas is adjusted so that the inside of the deposition chamber 100 has a desired pressure.
Then, the cylindrical motor 102 is driven by the driving motor 107.
While rotating, the temperature controller (not shown) is operated to heat the cylindrical substrate 102 by the substrate heating heater 104. In the deposited film forming apparatus shown in FIG. 1, the cylindrical substrate is rotatable, but the effect of the present invention is not obtained unless the cylindrical substrate is rotated, and the present invention can be achieved even in a stationary state. The effect of is obtained. When the cylindrical substrate 102 is heated to a desired temperature, a raw material gas introduction valve (not shown) is closed to stop the gas flow into the deposition chamber.

【0029】堆積膜の形成は不図示の原料ガス導入バル
ブを開として原料ガス導入口106から所定の原料ガ
ス、例えばシランガス、水素ガス、メタンガス、などの
材料ガスを、またジボランガス、ホスフィンガスなどの
ドーピングガスを不図示のミキシングパネルにより混合
した後に堆積室100内に導入し、所望の圧力に維持す
るよう排気速度を調整する。圧力が安定した後、高周波
電源109より整合器Ю8を介して例えば周波数13.
56MHzの電力を供給し、グロー放電を生起させる。
このとき整合器108を調整し、反射波が最小となるよ
うに調整する。高周波の入射電力から反射電力を差し引
いた値を所望の値に調整し、所望の膜厚を形成したとこ
ろで電力の供給を停止し、原料ガスの堆積室100ヘの
流入を止めて堆積室内を一旦項真空に引き上げて層の形
成を終える。この間、周方向の膜厚均等化のために円筒
状基体は回転させながら堆積膜形成を行うことが望まし
い。そして種々の機能を有する堆積膜を積層する場合に
は、上記操作を繰り返し行う。図2の装置を用いた場合
も上述の図1の装置を用いた場合と同様に堆積膜の形成
を行えば良い。本発明においてa−Si:H膜を作製す
る際、SiH4ガス流量(f)に対する前述のP/(S
2/S1)の比:P/(f・S2/Sl)を5×lO-3
W/sccm≦P/(f・S2/Sl)≦7×10-1
/sccmにすることが好ましい。上記範囲外では母線
方向の膜質分布の低減にたいする効果が小さい。
To form the deposited film, a raw material gas introduction valve (not shown) is opened to supply a predetermined raw material gas such as silane gas, hydrogen gas, methane gas, etc. from the raw material gas introduction port 106, and diborane gas, phosphine gas, etc. The doping gas is mixed by a mixing panel (not shown) and then introduced into the deposition chamber 100, and the exhaust speed is adjusted so as to maintain a desired pressure. After the pressure is stabilized, the high frequency power supply 109 causes a frequency of 13.
Power of 56 MHz is supplied to cause glow discharge.
At this time, the matching unit 108 is adjusted so as to minimize the reflected wave. The value obtained by subtracting the reflected power from the high frequency incident power is adjusted to a desired value, the power supply is stopped when the desired film thickness is formed, the flow of the source gas into the deposition chamber 100 is stopped, and the inside of the deposition chamber is temporarily stopped. The vacuum is pulled to complete the formation of the layer. During this period, it is desirable to form the deposited film while rotating the cylindrical substrate in order to equalize the film thickness in the circumferential direction. When stacking deposited films having various functions, the above operation is repeated. When the apparatus of FIG. 2 is used, the deposited film may be formed similarly to the case of using the apparatus of FIG. When the a-Si: H film is formed in the present invention, the above P / (S) with respect to the SiH4 gas flow rate (f) is used.
2 / S1) ratio: P / (f · S2 / Sl) is 5 × 10-3
W / sccm ≦ P / (f · S2 / Sl) ≦ 7 × 10 −1 W
/ Sccm is preferable. Outside the above range, the effect of reducing the film quality distribution in the generatrix direction is small.

【0030】以下、実験例、実施例により本発明の効果
を具体的に説明するが、本発明はこれによって何等限定
されるものではない。 (実験例1)図1に示した堆積膜形成装置において発振
周波数13.56MHzの高周波電源109を用いて、
アルミニューム製の直径45mmの円筒状基体102に
a−Si:H膜を形成し、電子写真用感光体を作製し
た。本実験例では、放電面に面しているアルミニューム
製の円筒状基体102の表面積(S1)、アルミニュー
ム製で円筒状のカソード電極101の表面積(S2)、
高周波電源109からカソード電極101に印加される
電力(P)についてP/(S2/S1)を(a)3W、
(b)5W、(c)10W、(d)25W、(e)50
W、(f)70W、(g)75W、(h)400Wと変
化させ、表2に示した条件に従って電子写真用感光体を
作製した。SiH4ガス流量(f)に対するP/(S2
/Sl)の比:P/(f・S2/S1)は下部阻止層、
光導電層、表面保護層でそれぞれ以下の表1ようになっ
ている。
The effects of the present invention will be specifically described below with reference to experimental examples and examples, but the present invention is not limited to these. (Experimental Example 1) In the deposited film forming apparatus shown in FIG. 1, a high frequency power source 109 having an oscillation frequency of 13.56 MHz was used.
An a-Si: H film was formed on a cylindrical substrate 102 made of aluminum and having a diameter of 45 mm to prepare an electrophotographic photoreceptor. In this experimental example, the surface area (S1) of the aluminum-made cylindrical substrate 102 facing the discharge surface, the surface area of the aluminum-made cylindrical cathode electrode 101 (S2),
Regarding the power (P) applied from the high frequency power source 109 to the cathode electrode 101, P / (S2 / S1) is (a) 3 W,
(B) 5W, (c) 10W, (d) 25W, (e) 50
W, (f) 70 W, (g) 75 W, (h) 400 W were changed to prepare an electrophotographic photoreceptor according to the conditions shown in Table 2. P / (S2 for SiH4 gas flow rate (f)
/ Sl) ratio: P / (f · S2 / S1) is the lower blocking layer,
The photoconductive layer and the surface protective layer are as shown in Table 1 below.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 下部阻止層…SiH4 200sccm H2 300sccm NO 8sccm B2H6 2000ppm(SiH4に対して) 内圧 40Pa 膜厚 1μm 光導電層……SiH4 400sccm H2 800sccm 内圧 53Pa 膜厚 20μm 表面保護層…SiH4 110sccm CH4 400sccm 内圧 40Pa 膜厚 0.6μm (実験例2)図2に示した堆積膜形成装置において発振
周波数13.56MHzの高周波電源209を用いて、
アルミニューム製の直径45mmの円筒状基体202に
a−Si:H膜を形成し、電子写真用感光体を作製し
た。本例では、実験例1でP/(S2/Sl)=8Wと
して下部阻止層、光導電層、表面保護層の各SiH4ガ
ス流量を同じ流量に揃え、且つ、下部阻止層、光導電
層、表面保護層のSiH4ガス流量を変化させてSiH
4ガス流量(f)に対するP/(S2/Sl)の比:P
/(f・S2/S1)を4×l0-3W/sccm、5×
l0-3W/sccm、2×l0-2W/sccm、8×l
-2W/sccm、7×10-1W/sccm、8×l0
-1W/sccmと変化させた以外は実験例1と同様に、
表2に示した条件に従って電子写真用感光体を作製し
た。
Table 2 Lower blocking layer ... SiH4 200 sccm H2 300 sccm NO 8 sccm B2H6 2000 ppm (relative to SiH4) Internal pressure 40 Pa film thickness 1 μm Photoconductive layer ... SiH4 400 sccm H2 800 sccm Internal pressure 53 Pa film thickness 20 μm Surface protection layer ... SiH4 400 sccm CH. 40 Pa Film thickness 0.6 μm (Experimental Example 2) In the deposited film forming apparatus shown in FIG. 2, a high frequency power source 209 with an oscillation frequency of 13.56 MHz was used.
An a-Si: H film was formed on a cylindrical base body 202 made of aluminum and having a diameter of 45 mm to prepare an electrophotographic photoreceptor. In this example, P / (S2 / Sl) = 8 W in Experimental Example 1 was used, and the SiH4 gas flow rates of the lower blocking layer, the photoconductive layer, and the surface protective layer were adjusted to the same flow rate, and the lower blocking layer, the photoconductive layer, and By changing the SiH4 gas flow rate of the surface protection layer, SiH
Ratio of P / (S2 / Sl) to 4 gas flow rate (f): P
/ (F · S2 / S1) is 4 × 10 −3 W / sccm, 5 ×
10 -3 W / sccm, 2x10 -2 W / sccm, 8xl
0 -2 W / sccm, 7x10 -1 W / sccm, 8x10
-1 W / sccm was changed to the same as in Experimental Example 1,
Electrophotographic photoreceptors were prepared according to the conditions shown in Table 2.

【0033】実験例1及び実験例2で作製した電子写真
用感光体を以下に示す方法により評価した。 (1)膜剥れ 実験例1及び実験例2の各々について電子写真感光体を
100本作製し、膜剥れが生じた本数について比較実験
例1を基準として以下のように評価した。
The electrophotographic photoreceptors produced in Experimental Examples 1 and 2 were evaluated by the following methods. (1) Film peeling For each of Experimental Example 1 and Experimental Example 2, 100 electrophotographic photosensitive members were produced, and the number of film peeling was evaluated based on Comparative Experimental Example 1 as follows.

【0034】 ◎ 実験例1の(h)より非常に良好 ○ 実験例1の(h)より良好 △ 実験例1の(h)と同等 (2)電子写真特性 作製した各々の感光体を電子写真装置(キヤノン製NP
6030を実験用に改造)にセットして、電子写真特性
を評価した。 帯電ムラ 帯電器に+6KVの高電圧を印加してコロナ帯電を行な
い、電子写真感光体の暗部表面電位を表面電位計により
現像器位置で測定する。そして、電子写真用感光体の軸
方向に5点測定し、このときの電位ムラを評価する。 感度ムラ 電子写真感光体を、一定の暗部表面電位に帯電させる。
そして直ちにフィルターを用いて550nm以下の波長
域の光を除いたハロゲンランプ光を照射し、電子写真感
光体の明部表面電位が所定の値になるように光量を調整
する。このときに必要な光量をハロゲンランプの点灯電
圧から換算する。そして感度を電子写真用感光体の軸方
向に5点測定し、このときの感度ムラを評価する。
◎ Very good than (h) of Experimental example 1 ○ Better than (h) of Experimental example △ Equivalent to (h) of Experimental example 1 (2) Electrophotographic characteristics Device (Canon NP
6030 was modified for the experiment) and electrophotographic characteristics were evaluated. Non-uniform charging: A high voltage of +6 KV is applied to the charging device to perform corona charging, and the surface potential of the dark portion of the electrophotographic photosensitive member is measured at the developing device position by a surface potential meter. Then, five points are measured in the axial direction of the electrophotographic photosensitive member, and the potential unevenness at this time is evaluated. Uneven sensitivity The electrophotographic photoreceptor is charged to a constant dark surface potential.
Immediately thereafter, a halogen lamp light excluding light in the wavelength range of 550 nm or less is irradiated by using a filter, and the light amount is adjusted so that the bright surface potential of the electrophotographic photosensitive member becomes a predetermined value. The amount of light required at this time is converted from the lighting voltage of the halogen lamp. Then, the sensitivity is measured at five points in the axial direction of the electrophotographic photoreceptor, and the sensitivity unevenness at this time is evaluated.

【0035】帯電ムラ、感度ムラのそれぞれについて、
以下のランクに区分した。
For each of the charging unevenness and the sensitivity unevenness,
It was divided into the following ranks.

【0036】 ◎ 非常に良好 ○ 良好 △ 実用上問題無し × 実用上問題有り 画像のがさつき ハーフトーンチャート(部品番号:FY9−9042−
020)を用いて画像を形成し、得られたハーフトーン
画像を詳細に観察し、限度見本と比較して以下のランク
に区分して評価した。
◎ Very good ○ Good △ Practically no problem × Practically problematic Halftone chart with image roughness (Part number: FY9-9042-
No. 020) was used to form an image, and the obtained halftone image was observed in detail, and compared with a limit sample to be evaluated according to the following ranks.

【0037】 ◎ ガサツキが全く見られず、非常に良好 ○ ややガサツキがわずかに見られるが良好 △ ガサツキがやや多いが、従来レベル × ガサツキが多く、実用上問題あり 以上の実験例1の評価結果を表3に、実験例2の評価結
果を表4に示す。
◎ No rustiness was observed at all, it was very good. ○ Some rustiness was slightly observed, but it was good. △ There was a lot of rashness, but there was a lot of conventional level × rashiness, and there was a problem in practical use. Is shown in Table 3, and the evaluation results of Experimental Example 2 are shown in Table 4.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 表3より、P/(S2/S1)を5W以上70W以下に
することで膜剥れに効果があることが分かり、表3より
P/(f・S2/S1)を5×10ー3W/sccm〜7
×10-1W/sccmにすることで帯電ムラ、感度ム
ラ、画像のがさつきに効果があることが分かった。そし
て、実験例1及び実験例2の結果、即ち表3及び表4か
らP/(S2/S1)を5W以上70W以下にし、且
つ、P/(f・S2/S1)を5×10-3W/sccm
以上7×10-1W/sccm以下にすることで本発明の
効果が得られることが分かった。
[Table 4] From Table 3, it is found that setting P / (S2 / S1) to 5 W or more and 70 W or less has an effect on film peeling, and from Table 3, P / (f · S2 / S1) is 5 × 10 −3 W / Sccm ~ 7
It was found that by setting the density to × 10 -1 W / sccm, uneven charging, uneven sensitivity, and image roughness are effective. Then, from the results of Experimental Example 1 and Experimental Example 2, that is, Table 3 and Table 4, P / (S2 / S1) was set to 5 W or more and 70 W or less, and P / (f · S2 / S1) was set to 5 × 10 −3. W / sccm
It was found that the effects of the present invention can be obtained by setting the above to 7 × 10 -1 W / sccm or less.

【0040】[0040]

【実施例】【Example】

(実施例1)図1の堆積膜形成装置において、発振周波
数13.56MHzの高周波電源109を用いて、アル
ミニューム製の直径45mm,40mm,30mm及び
25mmの円筒状基体102にa−Si:H膜を形成
し、電子写真用感光体を作製した。本実験例では、放電
面に面しているアルミニューム製の円筒状基体102の
表面積(S1)、アルミニューム製で円筒状のカソード
電極101の表面積(S2)、高周波電源109からカ
ソード電極101に印加される電力(P)についてP/
(S2/S1)=30Wとなるようにして、表2に示し
た条件に従って電子写真用感光体を作製した。SiH4
ガス流量(f)に対するP/(S2/S1)の比:P/
(f・S2/S1)は下部阻止層、光導電層、表面保護
層でそれぞれ、1.5×10-1W/sccm,7.5×
10-2W/sccm,2.7×10 -1W/sccmとな
っている。
(Example 1) In the deposited film forming apparatus of FIG.
Using a high frequency power supply 109 of several 13.56 MHz,
Minium diameter 45mm, 40mm, 30mm and
Forming an a-Si: H film on a 25 mm cylindrical substrate 102
Then, a photoconductor for electrophotography was produced. In this experimental example, discharge
Of the aluminum-made cylindrical substrate 102 facing the surface.
Surface area (S1), cylindrical cathode made of aluminum
Surface area of electrode 101 (S2), high frequency power supply 109
Regarding the power (P) applied to the sword electrode 101, P /
Shown in Table 2 so that (S2 / S1) = 30W
An electrophotographic photosensitive member was produced according to the above conditions. SiH4
Ratio of P / (S2 / S1) to gas flow rate (f): P /
(F · S2 / S1) is lower blocking layer, photoconductive layer, surface protection
1.5 × 10 each in layers-1W / sccm, 7.5x
10-2W / sccm, 2.7 × 10 -1W / sccm
ing.

【0041】作製した電子写真用感光体を、実験例1と
同様に膜剥れ、帯電ムラ、感度ムラ、画像のがさつきに
ついて評価したところ、いずれの電子写真用感光体も実
験例1の(b),(c),(d),(e),(f)と同
様に良好な結果が得られた。更に得られた感光体を実験
用に改造したキヤノン製複写機NP−6030に設置し
画像を出したところ、ハーフトーン画像にムラはなく、
均一な画像が得られた。更に文字原稿を複写したとこ
ろ、黒濃度が高く鮮明な画像が得られた。また写真原稿
の複写においても原稿に忠実な画像を得ることが出来
た。 (実施例2)図2の堆積膜形成装置において、発振周波
数13.56MHzの高周波電源209を用いて、アル
ミニューム製の直径45mm,40mm,30mm及び
25mmの円筒状基体102にa−Si:H膜を形成
し、電子写真用感光体を作製した。本実施例では、放電
面に面しているアルミニューム製の円筒状基体102の
表面積(S1)、アルミニューム製で円筒状のカソード
電極101の表面積(S2)、高周波電源209からカ
ソード電極201に印加される電力(P)について10
1の表面積(S2)、高周波電源209からカソード電
極201に印加される電力(P)についてP/(S2/
S1)=65Wとなるようにして、表5に示した条件に
従って電子写真用感光体を作製した。SiH4ガス流量
(f)に対するP/(S2/S1)の比:P/(f・S
2/S1)は下部阻止層、光導電層、表面保護層でそれ
ぞれ、4.3×10-1W/sccm,3.3×10-1
/sccm,3.3×10-1W/sccm→6.5×1
-1W/sccmとなっている。
The electrophotographic photoconductors produced were evaluated for film peeling, charging unevenness, sensitivity unevenness, and image roughness in the same manner as in Experimental Example 1. All electrophotographic photoconductors of Experimental Example 1 ( Good results were obtained as in b), (c), (d), (e) and (f). Furthermore, when the obtained photoconductor was installed in a Canon copying machine NP-6030 which was modified for an experiment and an image was produced, there was no unevenness in the halftone image.
A uniform image was obtained. Further, when a character original was copied, a clear image with high black density was obtained. Also, in copying a photo original, an image faithful to the original could be obtained. (Embodiment 2) In the deposited film forming apparatus of FIG. 2, a high frequency power source 209 having an oscillation frequency of 13.56 MHz was used to a-Si: H on a cylindrical substrate 102 made of aluminum and having a diameter of 45 mm, 40 mm, 30 mm and 25 mm. A film was formed and an electrophotographic photoreceptor was produced. In this embodiment, the surface area (S1) of the aluminum-made cylindrical substrate 102 facing the discharge surface, the surface area of the aluminum-made cylindrical cathode electrode 101 (S2), the high frequency power source 209 to the cathode electrode 201. Applied power (P) 10
The surface area (S2) of 1 and the electric power (P) applied from the high frequency power source 209 to the cathode electrode 201 are P / (S2 /
An electrophotographic photosensitive member was produced according to the conditions shown in Table 5 so that S1) = 65 W. Ratio of P / (S2 / S1) to SiH4 gas flow rate (f): P / (f · S
2 / S1) is a lower blocking layer, a photoconductive layer, and a surface protective layer, which are 4.3 × 10 −1 W / sccm and 3.3 × 10 −1 W, respectively.
/ Sccm, 3.3 × 10 −1 W / sccm → 6.5 × 1
It is 0 -1 W / sccm.

【0042】[0042]

【表5】 電子写真用感光体の製造条件 下部阻止層…SiH4 150sccm SiF4 2sccm H2 500sccm B2H6 1500ppm(SiH4に対して) NO 10sccm CH4 5sccm 内圧 40Pa 膜厚 2μm 光導電層……SiH4 200sccm SiF4 1sccm H2 1000sccm B2H6 2ppm(SiH4に対して) NO 1sccm CH4 1sccm 内圧 53Pa 膜厚 30μm 表面保護層…SiH4 200sccm→100sccm→100sccm SiF4 5sccm B2H6 10ppm(SiH4に対して) NO 3sccm CH4 50sccm→600sccm→700sccm 内圧 40Pa 膜厚 0.5μm 作製した電子写真用感光体を、実験例1と同様に膜剥
れ、帯電ムラ、感度ムラ、画像のがさつきについて評価
したところ、いずれの電子写真用感光体も実験例1の
(b),(c),(d),(e),(f)と同様に良好
な結果が得られた。更に得られた感光体を実験用に改造
したキヤノン製複写機NP−6030に設置し画像を出
したところ、ハーフトーン画像にムラはなく、均一な画
像が得られた。更に文字原稿を複写したところ、黒濃度
が高く鮮明な画像が得られた。また写真原稿の複写にお
いても原稿に忠実で鮮明な画像を得ることが出来た。 (実施例3)図2の堆積膜形成装置において、発振周波
数13.56MHzの高周波電源209を用いて、アル
ミニューム製の直径45mm,40mm,30mm及び
25mmの円筒状基体202にa−Si:H膜を形成
し、電子写真用感光体を作製した。本実施例では、放電
面に面しているアルミニューム製の円筒状基体202の
表面積(S1)、アルミニューム製で円筒状のカソード
電極201の表面積(S2)、高周波電源209からカ
ソード電極201に印加される電力(P)についてP/
(S2/S1)=15Wとなるようにして、表6に示し
た条件に従って電子写真用感光体を作製した。SiH4
ガス流量(f)に対するP/(S2/S1)の比:P/
(f・S2/S1)は下部阻止層、光導電層、表面保護
層でそれぞれ、1×10-1W/sccm,7.5×10
-2W/sccm,7.5×10-2W/sccm→1.5
×10-1W/sccmとなっている。
[Table 5] Manufacturing conditions of electrophotographic photoreceptor Lower blocking layer ... SiH4 150 sccm SiF4 2 sccm H2 500 sccm B2H6 1500 ppm (relative to SiH4) NO 10 sccm CH4 5 sccm Internal pressure 40 Pa film thickness 2 μm Photoconductive layer ... SiH4 200 sccm SiF4 1 sccm H2 sccm B2H6 2ppm (for SiH4) NO 1sccm CH4 1sccm Internal pressure 53Pa Film thickness 30μm Surface protection layer ... SiH4 200sccm → 100sccm → 100sccm SiF4 5sccm B2H6 10ppm (for SiH4) NO 3sccm CH4 50sccm → 600sccm → 600sccm 0.5 μm The produced electrophotographic photosensitive member was subjected to film peeling, charging unevenness, When the unevenness and the roughness of the image were evaluated, good results were obtained for all the electrophotographic photoconductors as in (b), (c), (d), (e) and (f) of Experimental Example 1. Was obtained. Further, the obtained photoconductor was placed in a Canon copying machine NP-6030 which was modified for experiments and an image was produced. As a result, a uniform image was obtained without unevenness in the halftone image. Further, when a character original was copied, a clear image with high black density was obtained. Also, when copying a photo original, it was possible to obtain a clear image that was faithful to the original. (Embodiment 3) In the deposited film forming apparatus shown in FIG. 2, a high-frequency power source 209 having an oscillation frequency of 13.56 MHz was used to a-Si: H on a cylindrical substrate 202 made of aluminum and having a diameter of 45 mm, 40 mm, 30 mm and 25 mm. A film was formed and an electrophotographic photoreceptor was produced. In the present embodiment, the surface area (S1) of the aluminum-made cylindrical substrate 202 facing the discharge surface, the surface area of the aluminum-made cylindrical cathode electrode 201 (S2), and the high-frequency power source 209 to the cathode electrode 201. Applied power (P) P /
An electrophotographic photosensitive member was produced according to the conditions shown in Table 6 so that (S2 / S1) = 15 W. SiH4
Ratio of P / (S2 / S1) to gas flow rate (f): P /
(F · S2 / S1) is a lower blocking layer, a photoconductive layer, and a surface protective layer, which are 1 × 10 −1 W / sccm and 7.5 × 10, respectively.
-2 W / sccm, 7.5 × 10 -2 W / sccm → 1.5
It is × 10 -1 W / sccm.

【0043】[0043]

【表6】 電子写真用感光体の製造条件 下部阻止層…SiH4 150sccm SiF4 5sccm H2 500sccm B2H6 1500ppm(SiH4に対して) NO 10sccm CH4 5sccm 内圧 40Pa 膜厚 2μm 光導電層……SiH4 200sccm SiF4 3sccm H2 800sccm B2H6 3ppm(SiH4に対して) 内圧 15Pa 膜厚 30μm 表面保護層…SiH4 200sccm→100sccm→100sccm SiF4 10sccm CH4 0sccm→500sccm→500sccm 内圧 30Pa 膜厚 0.5μm 作製した電子写真用感光体を、実験例1と同様に膜剥
れ、帯電ムラ、感度ムラ、画像のがさつきについて評価
したところ、いずれの電子写真用感光体も実験例1の
(b),(c),(d),(e),(f)と同様に良好
な結果が得られた。更に得られた感光体を実験用に改造
したキヤノン製複写機NP−6030に設置し画像を出
したところ、ハーフトーン画像にムラはなく、均一な画
像が得られた。更に文字原稿を複写したところ、黒濃度
が高く鮮明な画像が得られた。また写真原稿の複写にお
いても忠実で鮮明な画像を得ることが出来た。 (実施例4)図1の堆積膜形成装置において、発振周波
数13.56MHzの高周波電源109を用いて、アル
ミニューム製の直径45mm,40mm,30mm及び
25mmの円筒状基体102にa−Si:H膜を形成
し、電子写真用感光体を作製した。本実験例では、放電
面に面しているアルミニューム製の円筒状基体102の
表面積(S1)、アルミニューム製で円筒状のカソード
電極101の表面積(S2)、高周波電源109からカ
ソード電極101に印加される電力(P)についてP/
(S2/S1)=20Wとなるようにして、表7に示し
た条件に従って電子写真用感光体を作製した。SiH4
ガス流量(f)に対するP/(S2/S1)の比:P/
(f・S2/S1)は下部阻止層、光導電層、表面保護
層でそれぞれ、6.7×10-2W/sccm,2×10
-1W/sccm,5×10-1W/sccmとなってい
る。
[Table 6] Manufacturing Conditions of Electrophotographic Photoreceptor Lower blocking layer: SiH4 150 sccm SiF4 5 sccm H2 500 sccm B2H6 1500 ppm (relative to SiH4) NO 10 sccm CH4 5 sccm Internal pressure 40 Pa film thickness 2 μm photoconductive layer ... SiH4 200 sccm SiF4 3 sccm Hsc B2H6 3 ppm (relative to SiH4) Internal pressure 15 Pa Film thickness 30 μm Surface protective layer ... SiH4 200 sccm → 100 sccm → 100 sccm SiF4 10 sccm CH4 0 sccm → 500 sccm → 500 sccm Internal pressure 30 Pa Film thickness 0.5 μm Experimental example 1 Film peeling, charging unevenness, sensitivity unevenness, and image roughness were evaluated in the same manner as in (1) above. , (C), (d), (e), and (f), good results were obtained. Further, the obtained photoconductor was placed in a Canon copying machine NP-6030 which was modified for experiments and an image was produced. As a result, a uniform image was obtained without unevenness in the halftone image. Further, when a character original was copied, a clear image with high black density was obtained. In addition, a faithful and clear image could be obtained even when copying a photo original. (Embodiment 4) In the deposited film forming apparatus shown in FIG. 1, a high-frequency power source 109 having an oscillation frequency of 13.56 MHz was used to a-Si: H on a cylindrical substrate 102 made of aluminum and having a diameter of 45 mm, 40 mm, 30 mm and 25 mm. A film was formed and an electrophotographic photoreceptor was produced. In the present experimental example, the surface area (S1) of the aluminum-made cylindrical substrate 102 facing the discharge surface, the surface area of the aluminum-made cylindrical cathode electrode 101 (S2), the high frequency power supply 109 to the cathode electrode 101. Applied power (P) P /
An electrophotographic photosensitive member was produced according to the conditions shown in Table 7 so that (S2 / S1) = 20 W. SiH4
Ratio of P / (S2 / S1) to gas flow rate (f): P /
(F · S2 / S1) is a lower blocking layer, a photoconductive layer, and a surface protective layer, respectively, 6.7 × 10 -2 W / sccm, 2 × 10
−1 W / sccm and 5 × 10 −1 W / sccm.

【0044】[0044]

【表7】 電子写真用感光体の製造条件 下部阻止層…SiH4 300sccm H2 500sccm B2H6 3000ppm(SiH4に対して) NO 5sccm 内圧 27Pa 膜厚 3μm 光導電層……SiH4 100sccm H2 600sccm B2H6 5ppm(SiH4に対して) NO 1sccm 内圧 20Pa 膜厚 25μm 表面保護層…SiH4 40sccm NH3 400sccm 内圧 15Pa 膜厚 0.3μm 作製した電子写真用感光体を、実験例1と同様に膜剥
れ、帯電ムラ、感度ムラ、画像のがさつきについて評価
したところ、いずれの電子写真用感光体も実験例1の
(b),(c),(d),(e),(f)と同様に良好
な結果が得られた。更に得られた感光体を実験用に改造
したキヤノン製複写機NP−6030に設置し画像を出
したところ、ハーフトーン画像にムラはなく、均一な画
像が得られた。更に文字原稿を複写したところ、黒濃度
が高く鮮明な画像が得られた。また写真原稿の複写にお
いても原稿に忠実で鮮明な画像を得ることが出来た。 (実施例5)図2の堆積膜形成装置において、発振周波
数13.56MHzの高周波電源209を用いて、アル
ミニューム製の直径45mm,40mm,30mm及び
25mmの円筒状基体202にa−Si:H膜を形成
し、電子写真用感光体を作製した。本実施例では、放電
面に面しているアルミニューム製の円筒状基体202の
表面積(S1)、アルミニューム製で円筒状のカソード
電極201の表面積(S2)、高周波電源209からカ
ソード電極201に印加される電力(P)についてP/
(S2/S1)=40Wとなるようにして、表8に示し
た条件に従って電子写真用感光体を作製した。SiH4
ガス流量(f)に対するP/(S2/S1)の比:P/
(f・S2/S1)は、光導電層(第一の領域)、光導
電層(第二の領域)、表面保護層でそれぞれ、2.7×
10-1W/sccm,2.7×10 -1W/sccm,4
×10-1W/sccm→5.7×10-1W/sccm→
6.7×10-1W/sccmとなっている。
[Table 7] Manufacturing conditions for electrophotographic photoreceptors   Lower blocking layer ... SiH4 300 sccm               H2 500sccm               B2H6 3000ppm (relative to SiH4)               NO 5 sccm               Internal pressure 27Pa               Film thickness 3μm   Photoconductive layer: SiH4 100 sccm               H2 600sccm               B2H6 5ppm (relative to SiH4)               NO 1 sccm               Internal pressure 20Pa               Film thickness 25 μm   Surface protection layer: SiH4 40 sccm               NH3 400sccm               Internal pressure 15Pa               Film thickness 0.3 μm The produced electrophotographic photoreceptor was peeled off in the same manner as in Experimental Example 1.
Evaluation of uneven charging, uneven sensitivity, and image roughness
As a result, all of the electrophotographic photoconductors of Experimental Example 1
Good as in (b), (c), (d), (e) and (f)
The results were obtained. Furthermore, the obtained photoconductor was modified for experiments.
Installed on Canon Copier NP-6030 and output images
However, the halftone image has no unevenness and a uniform image.
The image was obtained. When copying a text original, the black density
And a clear image was obtained. Also for copying photo manuscripts
Even though it was, I was able to obtain a clear image that was true to the original. (Example 5) In the deposited film forming apparatus of FIG.
Using a high frequency power source 209 of several 13.56 MHz,
Minium diameter 45mm, 40mm, 30mm and
Form a-Si: H film on 25 mm cylindrical substrate 202
Then, a photoconductor for electrophotography was produced. In this example, the discharge
Of the aluminum-made cylindrical substrate 202 facing the surface.
Surface area (S1), cylindrical cathode made of aluminum
Surface area of electrode 201 (S2), high frequency power source 209
Regarding the power (P) applied to the sword electrode 201, P /
Shown in Table 8 so that (S2 / S1) = 40W.
An electrophotographic photosensitive member was produced according to the above conditions. SiH4
Ratio of P / (S2 / S1) to gas flow rate (f): P /
(F · S2 / S1) is a photoconductive layer (first region), light
2.7 × each in the electric layer (second region) and the surface protective layer
10-1W / sccm, 2.7 × 10 -1W / sccm, 4
× 10-1W / sccm → 5.7 × 10-1W / sccm →
6.7 x 10-1It is W / sccm.

【0045】[0045]

【表8】 電子写真用感光体の製造条件 下部阻止層(第一の領域)…SiH4 150sccm SiF4 5sccm H2 500sccm B2H6 10ppm→2ppm(SiH4 に対して) NO 1sccm CH4 100sccm→0sccm 内圧 30Pa 膜厚 25μm 光導電層(第二の領域)……SiH4 150sccm SiF4 5sccm H2 500sccm B2H6 2ppm(SiH4に対して) 内圧 30Pa 膜厚 3μm 表面保護層… SiH4 100sccm→70sccm→ 60sccm SiF4 1sccm CH4 0sccm→500sccm→5 50sccm 内圧 30Pa 膜厚 0.5μm 作製した電子写真用感光体を、実験例1と同様に膜剥
れ、帯電ムラ、感度ムラ、画像のがさつきについて評価
したところ、いずれの電子写真用感光体も実験例1
(b),(c),(d),(e),(f)と同様に良好
な結果が得られた。
Table 8 Manufacturing conditions of electrophotographic photoreceptor Lower blocking layer (first region) ... SiH4 150 sccm SiF4 5 sccm H2 500 sccm B2H6 10 ppm → 2 ppm (relative to SiH4) NO 1 sccm CH4 100 sccm → 0 sccm Internal pressure 30 Pa Film thickness 25 μm Light Conductive layer (second region) ... SiH4 150 sccm SiF4 5 sccm H2 500 sccm B2H6 2 ppm (relative to SiH4) Internal pressure 30 Pa Film thickness 3 μm Surface protection layer ... SiH4 100 sccm → 70 sccm → 60 sccm SiF4 1 sccm CH4 0 sccm → 50 sccm → 500 sccm The electrophotographic photosensitive member having a thickness of 0.5 μm was evaluated for film peeling, charging unevenness, sensitivity unevenness, and image roughness in the same manner as in Experimental Example 1. , None of the electrophotographic photoreceptor Experimental Example 1
Good results were obtained as in (b), (c), (d), (e), and (f).

【0046】更に得られた感光体を実験用に改造したキ
ヤノン製複写機NP−6030に設置し画像を出したと
ころ、ハーフトーン画像にムラはなく、均一な画像が得
られた。更に文字原稿を複写したところ、黒濃度が高く
鮮明な画像が得られた。また写真原稿の複写においても
原稿に忠実で鮮明な画像を得ることが出来た。
Further, the obtained photoconductor was installed in a Canon copying machine NP-6030 which was modified for an experiment and an image was produced. As a result, a uniform image was obtained without unevenness in the halftone image. Further, when a character original was copied, a clear image with high black density was obtained. Also, when copying a photo original, it was possible to obtain a clear image that was faithful to the original.

【0047】[0047]

【発明の効果】本発明の堆積膜形成方法によれば、従来
よりも小径なる電子写真用感光体を作製する際に、膜剥
れの低減を可能にする堆積膜形成方法を提供することが
できる。
According to the deposited film forming method of the present invention, it is possible to provide a deposited film forming method capable of reducing film peeling when an electrophotographic photoreceptor having a diameter smaller than that of a conventional one is manufactured. it can.

【0048】そして、本発明の堆積膜形成方法によれ
ば、濃度ムラ、感度ムラ、画像のがさつき無い良好な電
子写真用感光体の製造を可能にする。
Further, according to the deposited film forming method of the present invention, it is possible to manufacture a good electrophotographic photosensitive member which is free from uneven density, uneven sensitivity, and image roughness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の堆積膜形成方法を用いて円筒状基体を
成膜するのに供される堆積膜形成装置の一例を示す模式
図である。
FIG. 1 is a schematic view showing an example of a deposited film forming apparatus used for forming a cylindrical substrate by using the deposited film forming method of the present invention.

【図2】本発明の堆積膜形成装置の他の例を示す模式図
である。
FIG. 2 is a schematic view showing another example of the deposited film forming apparatus of the present invention.

【符号の説明】[Explanation of symbols]

100、200 堆積室 101、201 カソード電極 102、202 円筒状基体 103、203 補助基体 104、204 基体加熱用ヒーター 105、205 回転軸 106、206 原料ガス導入口 107、207 駆動用モーター 108、208 整合器 109、209 高周波電源 110、210 排気口 100, 200 deposition chamber 101, 201 cathode electrode 102, 202 cylindrical substrate 103, 203 auxiliary substrate 104, 204 heater for heating substrate 105, 205 rotation axis 106, 206 Raw material gas inlet 107, 207 Drive motor 108, 208 Matching device 109, 209 High frequency power supply 110, 210 exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古島 聡 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平3−64466(JP,A) 特開 平7−233477(JP,A) 特開 平6−252058(JP,A) 特開 平5−291149(JP,A) 実開 平7−10934(JP,U) 実開 平6−50061(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/50 G03G 5/082 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Furushima 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) Reference JP-A-3-64466 (JP, A) JP-A-7 -233477 (JP, A) JP-A-6-252058 (JP, A) JP-A-5-291149 (JP, A) Actual flat 7-10934 (JP, U) Actual flat 6-50061 (JP, U) ) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/205 C23C 16/50 G03G 5/082

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排気手段と原料ガス供給手段を備えた真
空気密可能な堆積室内に基体加熱ヒーターを固定し、該
基体加熱ヒーターを内包するように、放電電極を兼ねた
補助基体を取りつけた直径45mm以下の円筒状基体を
回転可能に設置し、前記円筒状基体を外包しほぼ同軸上
に設けられたカソード電極との間に高周波電力を印加す
ることにょりグロー放電を生じさせて、前記円筒状基体
上にシリコンを含む堆積膜を形成するプラズマCVD法
による同軸型堆積膜形成方法において、グロー放電面に
面している前記円筒状基体の表面積をSl、前記カソー
ド電極の表面積をS2、前記カソード電極に印加する電
力をP、堆積室に導入するSiH4ガス流量をfとした
とき、下記のA式且つB式 5W≦P/(S2/S1)≦70W………(A) 5×l0ー3W/sccm≦P/(f・S2/Sl)≦7×l0-1W/sccm ………(B) を満たすことを特徴とする堆積膜形成方法。
1. A diameter in which a substrate heating heater is fixed in a vacuum-tight deposition chamber equipped with an evacuation unit and a source gas supply unit, and an auxiliary substrate also serving as a discharge electrode is attached so as to enclose the substrate heating heater. A cylindrical substrate having a diameter of 45 mm or less is rotatably installed, and high-frequency power is applied between the cylindrical substrate and a cathode electrode which is provided coaxially and which is provided on the same axis to cause glow discharge to generate a glow discharge. In the method of forming a coaxial type deposited film by a plasma CVD method for forming a deposited film containing silicon on a cylindrical substrate, the surface area of the cylindrical substrate facing the glow discharge surface is Sl, the surface area of the cathode electrode is S2, and the surface area of the cathode electrode is S2. When the power applied to the cathode electrode is P and the flow rate of the SiH4 gas introduced into the deposition chamber is f, the following A and B equations 5W ≦ P / (S2 / S1) ≦ 70W ......... (A 5 × l0 over 3 W / sccm ≦ P / ( f · S2 / Sl) ≦ 7 × l0 -1 W / sccm ......... deposited film forming method characterized by satisfying (B).
【請求項2】 前記円筒状基体上に、光導電層、表面保
護層の少なくとも二層で構成された光受容部材を形成す
る請求項1に記載の堆積膜形成方法。
2. The method for forming a deposited film according to claim 1, wherein a light receiving member including at least two layers of a photoconductive layer and a surface protective layer is formed on the cylindrical substrate.
【請求項3】 前記円筒状基体上に、下部阻止層、光導
電層、表面保護層の少なくとも三層で構成された光受容
部材を形成する請求項1に記載の堆積膜形成方法。
3. The method for forming a deposited film according to claim 1, wherein a light receiving member including at least three layers of a lower blocking layer, a photoconductive layer and a surface protective layer is formed on the cylindrical substrate.
【請求項4】 排気手段と原料ガス供給手段を備えた真
空気密可能な堆積室内に基体加熱ヒーターを固定し、該
基体加熱ヒーターを内包するように、放電電極を兼ねた
補助基体を取りつけた直径45mm以下の円筒状基体を
回転可能に設置し、前記円筒状基体を外包しほぼ同軸上
に設けられたカソード電極との間に高周波電力を印加す
ることによりグロー放電を生じさせて、前記円筒状基体
上にシリコンを含む堆積膜を形成するプラズマCVD法
による同軸型堆積膜形成装置において、グロー放電面に
面している前記円筒状基体の表面積(S1)に対する前
記カソード電極の表面積(S2)の比と前記カソード電
極に印加する電力(P)を下記のA式を満たすように設
定し、 5W≦P/(S2/S1)≦70W………(A) 且つ、堆積室に導入するSiH4ガス流量(f)を、下
記のB式を満たすように 5×l0-3W/sccm≦P/(f・S2/Sl)≦7×l0-1W/sccm ………(B) 設定したことを特徴とする堆積膜形成装置。
4. A diameter in which a substrate heating heater is fixed in a vacuum-tight deposition chamber equipped with an evacuation unit and a source gas supply unit, and an auxiliary substrate also serving as a discharge electrode is attached so as to enclose the substrate heating heater. A cylindrical substrate having a diameter of 45 mm or less is rotatably installed, and high-frequency power is applied between the cylindrical substrate and a cathode electrode that is provided on the same axis as the outer surface of the cylindrical substrate. In a coaxial type deposited film forming apparatus by a plasma CVD method for forming a deposited film containing silicon on a substrate, the surface area (S2) of the cathode electrode relative to the surface area (S1) of the cylindrical substrate facing the glow discharge surface is The ratio and the electric power (P) applied to the cathode electrode are set so as to satisfy the following expression A, and 5 W ≦ P / (S2 / S1) ≦ 70 W ... (A) and lead to the deposition chamber. SiH4 gas flow rate (f), so as to satisfy the following equation B 5 × l0 -3 W / sccm ≦ P / (f · S2 / Sl) ≦ 7 × l0 -1 W / sccm ......... to (B) A deposited film forming apparatus characterized by being set.
【請求項5】 前記円筒状基体上に、光導電層、表面保
護層の少なくとも二層で構成された光受容部材を形成す
る請求項4に記載の堆積膜形成装置。
5. The deposited film forming apparatus according to claim 4, wherein a light receiving member having at least two layers of a photoconductive layer and a surface protective layer is formed on the cylindrical substrate.
【請求項6】 前記円筒状基体上に、下部阻止層、光導
電層、表面保護層の少なくとも三層で構成された光受容
部材を形成する請求項4に記載の堆積膜形成装置。
6. The deposited film forming apparatus according to claim 4, wherein a light receiving member composed of at least three layers of a lower blocking layer, a photoconductive layer and a surface protective layer is formed on the cylindrical substrate.
JP23921396A 1996-09-10 1996-09-10 Method and apparatus for forming deposited film Expired - Fee Related JP3402952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23921396A JP3402952B2 (en) 1996-09-10 1996-09-10 Method and apparatus for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23921396A JP3402952B2 (en) 1996-09-10 1996-09-10 Method and apparatus for forming deposited film

Publications (2)

Publication Number Publication Date
JPH1092748A JPH1092748A (en) 1998-04-10
JP3402952B2 true JP3402952B2 (en) 2003-05-06

Family

ID=17041434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23921396A Expired - Fee Related JP3402952B2 (en) 1996-09-10 1996-09-10 Method and apparatus for forming deposited film

Country Status (1)

Country Link
JP (1) JP3402952B2 (en)

Also Published As

Publication number Publication date
JPH1092748A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JPH11193470A (en) Deposited film forming device and formation of deposited film
EP0785475A2 (en) Light receiving member having a surface protective layer with a specific outermost surface and process for the production thereof
JP3696983B2 (en) Plasma processing method and plasma processing apparatus
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JPH0459390B2 (en)
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
JP3402952B2 (en) Method and apparatus for forming deposited film
US4698288A (en) Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon
JP5058511B2 (en) Deposited film forming equipment
JPH06273956A (en) Production of electrophotographic sensitive body of amorphous silicon system
US4758487A (en) Electrostatographic imaging members with amorphous boron
JP2867150B2 (en) Microwave plasma CVD equipment
JP3710171B2 (en) Method for forming electrophotographic photosensitive member
JP2007119840A (en) Method and device for forming deposited film and electrophotographic photoreceptor using the same
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JPH04247877A (en) Deposited film forming device
JP3412957B2 (en) Method for manufacturing light receiving member
JPH11181571A (en) Formation of deposited coating and device therefor
JPH08277472A (en) Apparatus for production of deposited film and its production
JP3368142B2 (en) Deposition film forming equipment
JP2001319883A (en) Method for producing deposited film
JP2003313668A (en) Process for fabricating semiconductor device
JPH11323564A (en) Deposited film forming apparatus by plasma cvd method and method
JPH08211641A (en) Forming method of amorphous silicon photosensitive body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees