JPS6042766A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS6042766A
JPS6042766A JP58151027A JP15102783A JPS6042766A JP S6042766 A JPS6042766 A JP S6042766A JP 58151027 A JP58151027 A JP 58151027A JP 15102783 A JP15102783 A JP 15102783A JP S6042766 A JPS6042766 A JP S6042766A
Authority
JP
Japan
Prior art keywords
space
deposition
active species
active
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58151027A
Other languages
Japanese (ja)
Other versions
JPS6253587B2 (en
Inventor
Masaaki Hirooka
広岡 政昭
Kyosuke Ogawa
小川 恭介
Shunichi Ishihara
俊一 石原
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58151027A priority Critical patent/JPS6042766A/en
Priority to DE19843429899 priority patent/DE3429899A1/en
Priority to GB08420725A priority patent/GB2148328B/en
Priority to FR848412872A priority patent/FR2555614B1/en
Publication of JPS6042766A publication Critical patent/JPS6042766A/en
Publication of JPS6253587B2 publication Critical patent/JPS6253587B2/ja
Priority to US07/161,386 priority patent/US4835005A/en
Priority to US08/469,676 priority patent/US5910342A/en
Priority to US08/477,269 priority patent/US5645947A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To maintain a good film characteristic without using plasma reaction and to increase the rate of deposition by introduction separately an active seed obtd. from a specific silicon halide and a mixture of active seed botd. from a silane compd. and hydrogen into a deposition space and forming deposited films on a substrate. CONSTITUTION:An active seed (a) obtd. by decomposing the silicon halide expressed by Six2n+2(n=1, 2-) and a mixture composed of an active seed (b) obtd. from a silane compd. having a cyclic structure of silicon and an active seed of hydrogen are respectively separately introduced into a deposition space 1 and deposited films are formed on a substrate 101. The active seeds (a), (b) and H active seed are formed by introducing gaseous raw materials of the kinds, amt., etc. meeting the characteristics required for the deposited films, for example, an itermediate layer 102, a photoconductive layer 103, a surface layer, etc. into decomposition spaces 2, 3 and exciting the same by excitation energy such as heat, light or the like. Such seeds are introduced into the space 1 and are used for formation of the deposited films. The active seeds (a), (b) are formed in the spaces 2, 3 separate from the space 1 in the abovementioned way and since no plasma is used, the equipment is simplified and the rate of deposition is increased, by which mass production is made easy and the good film characteristic is maintained.

Description

【発明の詳細な説明】 本発明は、機能性膜、殊に半導体デバイス或いは電子写
真用の感光デバイスなどの用途に有用な堆積膜の形成法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a functional film, particularly a deposited film useful for applications such as semiconductor devices or photosensitive devices for electrophotography.

例エバアモルファスシリコン膜の形成Kid、真空蒸着
法、プラズマCVD法、C’VD法、反応性スパッタリ
ング法、イオンブレーティング法、光CVD法などが試
みられており、一般的には、プラズマCVD法が広く用
いられ、企業化されている。
Examples: Formation of Evaporative Amorphous Silicon Film Kid, vacuum evaporation method, plasma CVD method, C'VD method, reactive sputtering method, ion blasting method, photo-CVD method, etc. have been tried, and generally the plasma CVD method is used. is widely used and commercialized.

両年らアモルファスシリコンで構成される堆積膜は電気
的、光学的特性及び、繰返し使用での疲労特性あるいは
使用環境特性、更には均一性、再現性を含めて生産性、
量産性の点において、更に総合的な特性の向上を図る余
地がある。
In both years, deposited films composed of amorphous silicon have excellent electrical and optical properties, fatigue properties during repeated use, use environment properties, and productivity, including uniformity and reproducibility.
In terms of mass production, there is room to further improve the overall characteristics.

従来から一般化されているプラズマCVD法によるアモ
ルファスシリコン堆積膜の形成に於ての反応プロセスは
、従来のCVD法に比較してかなり複雑であり、その反
応機構も不明な点が少なくなかった。又、その堆積膜の
形成パラメーターも多く(例えば、基板温度、導入ガス
の流量と比、形成時の圧力、高周波電力、電極構造1反
応容器の構造、排気速度、プラズマ発生方式など)、こ
れらの多くのパラメータの組み合せによるため、時には
プラズマが不安定な状態になり、形成された堆積膜に著
しい悪影響を与えることが、少なくなかった。そのうえ
、装置特有のパラメーターを装置ごとに選定しなければ
ならず、したがって製造条件を一般化することがむずか
しいというのが実状であった。
The reaction process in forming an amorphous silicon deposited film by the conventionally popular plasma CVD method is considerably more complicated than that of the conventional CVD method, and there are many aspects of the reaction mechanism that are unclear. In addition, there are many formation parameters for the deposited film (e.g., substrate temperature, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure 1 reaction vessel structure, pumping speed, plasma generation method, etc.). Due to the combination of many parameters, the plasma sometimes becomes unstable, which often has a significant adverse effect on the deposited film formed. Furthermore, the actual situation is that parameters unique to each device must be selected for each device, making it difficult to generalize manufacturing conditions.

一方、アモルファスシリコン膜として電気的。On the other hand, it is electrically active as an amorphous silicon film.

光学的特性が各用途を+1分に満足させ得るものを発現
させるためには、現状ではプラズマCVD法によって形
成することが最良とされている。
In order to develop optical properties that can satisfy each application by +1 minute, it is currently considered best to form by plasma CVD.

両生ら、堆積膜の応用用途によっては、大面積化、膜厚
均一性、膜品質の均一性を十分満足させて、再現性のあ
る量産化を図らねばならないため、プラズマCVD法如
よるアモルファスシリコン堆積膜の形成においては、量
産装置に多大な設備投資が必要となり、またその量産の
為の管理項目も複雑になり、管理許容幅も狭くな如、装
置の調整も微妙であることから、これらのことが今後改
善すべき問題点として指摘されている。
Depending on the application of the deposited film, it is necessary to fully satisfy the requirements of large area, uniform film thickness, and uniform film quality, and to achieve mass production with reproducibility. In the formation of deposited films, a large amount of equipment investment is required for mass production equipment, and the management items for mass production are also complicated. This has been pointed out as an issue that should be improved in the future.

他方通常のCVD法による従来の技術では、高湿を必要
とし、実用可能な特性を有する堆積膜が得られていなか
った。
On the other hand, the conventional technique using the normal CVD method requires high humidity and has not been able to provide a deposited film with practically usable characteristics.

上述の如く、アモルファスシリコン膜の形成に於て、そ
の実用可能な特性、均一性を維持させながら低コストな
装置で量産化できる形成方法を開発することが切望され
ている。
As mentioned above, in forming an amorphous silicon film, there is a strong desire to develop a method of forming an amorphous silicon film that can be mass-produced using low-cost equipment while maintaining its practically usable characteristics and uniformity.

これ等のことは、他の機能性膜、例えば窒化シリコン膜
、炭化シリコン膜、酸化シリコン膜に於ても各々同様の
ことがいえる。
The same can be said of other functional films, such as silicon nitride films, silicon carbide films, and silicon oxide films.

本発明は、上述したプラズマCVD法の欠点を除去する
と同時に、従来の形成方法によらない新規な堆積膜形成
法を提供するものである。
The present invention eliminates the drawbacks of the plasma CVD method described above, and at the same time provides a new method for forming a deposited film that does not rely on conventional forming methods.

本発明の目的は堆積膜を形成する堆積空間(A)に於て
、プラズマ反応を用いないで形成される膜の特性を保持
し、堆積速度の向上を図わながら膜形成条件の管理の簡
素化、膜の量産化を容易に達成させることである。
The purpose of the present invention is to maintain the characteristics of a film formed without using a plasma reaction in a deposition space (A) in which a deposited film is formed, to improve the deposition rate, and to simplify the management of film forming conditions. The objective is to easily achieve mass production of membranes.

本発明は、所望の基板上に所望の堆積膜を形成する堆積
空間内に、5inX、H+2(n= 1.2.−− )
で表わされるハロゲン化ケイ素を分解することにより得
られる活性種(a)と硅素の環状構造を有するシラン化
合物から得られる活性種(b)と水素の活性種との混合
物とを、夫々別々に導入することにより、堆積膜を形成
することを特徴とするものである。
In the present invention, 5inX, H+2 (n=1.2.--) is placed in a deposition space for forming a desired deposited film on a desired substrate.
Introducing separately an active species (a) obtained by decomposing a silicon halide represented by , an active species (b) obtained from a silane compound having a silicon cyclic structure, and a mixture of hydrogen active species. The method is characterized in that a deposited film is formed by doing so.

本発明の方法では、所望の堆積膜を形成する堆積空間(
7V)でプラズマを使用しないので、堆積膜の形成パラ
メータ二が導入する活性種の導入量、基板及び堆積空間
内の温度、堆積空間内の内圧となり、したがって堆積膜
形成のコントロールが容易になり、再現性、量産性のあ
る堆積膜を形成させることができる。
In the method of the present invention, a deposition space (
7V) and does not use plasma, the formation parameters of the deposited film are the amount of active species introduced, the temperature in the substrate and the deposition space, and the internal pressure in the deposition space, and therefore the deposited film formation can be easily controlled. A deposited film can be formed with reproducibility and mass production.

本発明では、堆積空間(A)に導入される分解空間CB
)からの活性種は、その寿命が150秒以上あるものが
、所望に従って選択されて使用され、この活性種の構成
要素が堆積空間(A)で形成させる堆積膜を構成する主
成分を構成するものとなる。又、分解空間(C)から導
入される活性種は短寿命の゛ものである。この活性種は
堆積空間(A)で堆積膜を形成する際、同時に分解空間
(B)から堆積空間(A)に導入され、形成される堆積
膜の主構成成分となる構成要素を含む活性種と化学的に
相互作用する。その結果、所望の基板上に所望の堆積膜
が容易に形成される。
In the present invention, the decomposition space CB introduced into the deposition space (A)
), those having a lifetime of 150 seconds or more are selected and used as desired, and the constituent elements of this active species constitute the main components constituting the deposited film formed in the deposition space (A). Become something. Furthermore, the active species introduced from the decomposition space (C) have a short lifespan. When this active species forms a deposited film in the deposition space (A), it is simultaneously introduced into the deposition space (A) from the decomposition space (B), and active species containing constituent elements that will be the main components of the deposited film to be formed are introduced into the deposition space (A) from the decomposition space (B). chemically interacts with As a result, a desired deposited film can be easily formed on a desired substrate.

本発明の方法によれば、堆積空間(A)内でプラズマを
生起させないで、形成される堆積膜はエツチング作用或
いは、その他の例えば異常放電作用などによる悪影響を
受けることは実質的にない。
According to the method of the present invention, plasma is not generated in the deposition space (A), and thus the deposited film that is formed is substantially not affected by etching effects or other adverse effects such as abnormal discharge effects.

又、本発明によれば堆積空間(A)の雰囲気温度、基板
温度を所望に従って任意に制御することにより、より安
定したCVD法とすることができる。
Further, according to the present invention, a more stable CVD method can be achieved by arbitrarily controlling the atmospheric temperature of the deposition space (A) and the substrate temperature as desired.

本発明の方法が従来のCVD法と違う点の1つは、あら
かじめ堆積空間(A)とは異なる空間に於いて活性化さ
れた活性種を使うことである。
One of the differences between the method of the present invention and the conventional CVD method is that active species activated in advance in a space different from the deposition space (A) are used.

このことにより、従来のCVD法より堆積速度を飛躍的
に伸ばすことが出来、加えて堆積膜形成の際の基板温度
も一層の低温化を図ることが可能になり、膜品質の安定
した堆積膜を工業的に大量に、しかも低コストで提供出
来る。
As a result, the deposition rate can be dramatically increased compared to the conventional CVD method, and in addition, the substrate temperature during deposition film formation can be further lowered, resulting in a deposited film with stable film quality. can be provided industrially in large quantities and at low cost.

本発明の方法では、分解空間(C) K導入する原料ガ
スとして環状構造を有するシラン化合物を用いることに
より、活性種に分解するときの分解速度を大幅に向上さ
せることができ、また分解を低エネルギーでおこなうこ
とができる。
In the method of the present invention, by using a silane compound having a cyclic structure as the raw material gas introduced into the decomposition space (C), the decomposition rate when decomposing into active species can be greatly improved, and the decomposition can be reduced. It can be done with energy.

また、従来に比べて、堆積膜を形成する際の堆積速度を
飛躍的に向上させることができる。したがって、堆積膜
の形成において、安定でしかも量産化を容易にすること
ができるものである。
Furthermore, compared to the conventional method, the deposition rate when forming a deposited film can be dramatically improved. Therefore, the deposited film can be formed stably and mass-produced easily.

本発明に於て、分解空間(B)に導入される原材料とし
ては、一般式5inX2n+2(n:□、 2.1.−
 、)で表わされるもの、例えばSiF、 、 Si、
F6.5i3F、 。
In the present invention, the raw material introduced into the decomposition space (B) has the general formula 5inX2n+2 (n: □, 2.1.-
, ), for example, SiF, , Si,
F6.5i3F, .

S’2cls * S’tClsFsなどが挙げられる
Examples include S'2cls*S'tClsFs.

上述したものに、分解空間(B)で熱、光、放電などの
分解エネルギーを加えることにより、活性種が生成され
る。
Active species are generated by adding decomposition energy such as heat, light, and discharge to the above-described material in the decomposition space (B).

この活性種を堆積空間(A)へ導入する0この際、活性
種の寿命が150秒以上あることが必要で、堆積効率及
び堆積速度の上昇を促進させ、堆積空間(A)に於て、
分解空間(C)から導入される活性種との活性化反応の
効率を増し、その際、必要であれば、プラズマなどの放
電エネルギーを使用しないで、堆積空間内あるいは基板
上に熱、光などのエネルギーを与えることで、所望の堆
積膜の形成が達成される。
In this case, it is necessary that the active species have a lifetime of 150 seconds or more to promote the increase in deposition efficiency and deposition rate.
To increase the efficiency of the activation reaction with the active species introduced from the decomposition space (C), if necessary, heat, light, etc. may be applied in the deposition space or on the substrate without using discharge energy such as plasma. Formation of the desired deposited film is achieved by applying energy of .

本発明に於いて、分解空間(C)に導入され、活性種を
生成させる原料としては硅素の環状構造を有するシラン
化合物、例えば(SiHt)s−(SiH,)、 、 
(SiH,)、、 (SiH,)、・54H−8LH8
など、あるいは、水素および高次鎖状シラン化合物、も
しくはSiH4との併用が挙げられる。
In the present invention, the raw material introduced into the decomposition space (C) to generate active species is a silane compound having a silicon cyclic structure, such as (SiHt)s-(SiH, ),
(SiH,), (SiH,), 54H-8LH8
Alternatively, a combination of hydrogen and a higher-order chain silane compound, or SiH4 may be used.

本発明に於て堆積空間(A)に於ける分解空間(B)か
ら導入される活性種の量と分解空間(C)から導入され
る活性種の量の割合は、堆積条件。
In the present invention, the ratio of the amount of active species introduced from the decomposition space (B) to the amount of active species introduced from the decomposition space (C) in the deposition space (A) depends on the deposition conditions.

活性種の種類などで決められるが、10:1〜1:10
(導入流禁比)が適当であり、8:2〜4:6が好まし
い。
It is determined by the type of active species, etc., but it is 10:1 to 1:10.
(Introduction and exclusion ratio) is appropriate, and preferably 8:2 to 4:6.

本発明に於て分解空間(B)、及び分解空間(C)で活
性種を生成させる方法としてFi、各々の条件、装置を
考慮して放電エネルギー、熱エネルギー、光エネルギー
などの励起エネルギーが使用される。
In the present invention, as a method for generating active species in the decomposition space (B) and the decomposition space (C), excitation energy such as discharge energy, thermal energy, light energy, etc. is used in consideration of Fi, each condition, and equipment. be done.

次に本発明の堆積膜製造方法によって形成される電子写
真用像形成部材の典型的な例を挙げて本発明を説明する
Next, the present invention will be explained with reference to a typical example of an electrophotographic image forming member formed by the deposited film manufacturing method of the present invention.

第1図は、本発明によって得られる典型的な光導電部材
の構成例を説明する為の模式図である。
FIG. 1 is a schematic diagram for explaining an example of the structure of a typical photoconductive member obtained by the present invention.

第1図に示す光導電部材100は、電子写真用像形成部
材として適用させ得るものであって、光導電部材用とし
ての支持体101の上に、必要に応じて設けられる中間
層102と表面層104、光導電層103とで構成され
る層構造を有している。
A photoconductive member 100 shown in FIG. 1 can be applied as an electrophotographic image forming member, and includes an intermediate layer 102 and a surface layer provided on a support 101 for use as a photoconductive member, if necessary. It has a layered structure composed of a layer 104 and a photoconductive layer 103.

支持体101としては、導電性でも電気絶縁性であって
も良い。導電性支持体としては、例えば、NiCr、ス
テy L/ ス、、 kl 、 Cr 、 Mo 、 
Au 。
The support 101 may be electrically conductive or electrically insulating. Examples of the conductive support include NiCr, STYS, Kl, Cr, Mo,
Au.

Ir、Nb、Ta、V、Ti、Pt、Pd等の金属又は
これ等の合金が挙げられる。
Examples include metals such as Ir, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof.

電気絶縁性支持体としては、ポリエステル。Polyester is used as an electrically insulating support.

ス ポリエチレン、ポリカーボネート、セルローズアセテー
ト、ポリプロピレン、ポリ塩化ビニル。
polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride.

ボlJ塩化ビニリデン、ポリスチレン、ポリアミド等の
合成樹脂のフィルム又はシート、ガラス。
Films or sheets of synthetic resins such as vinylidene chloride, polystyrene, polyamide, and glass.

セラミック、紙等が通常使用される0とれ等の電気絶縁
性支持体は、好適には少なくともその一方の表面が導電
処理され、該導電処理された表面側に他の層が設けられ
るのが望ましい。
It is preferable that at least one surface of an electrically insulating support such as ceramic, paper, etc., which is usually used is electrically conductive treated, and that another layer is provided on the electrically conductive treated surface side. .

例えば、ガラスであれば、その表面がNiCr 。For example, if it is glass, its surface is NiCr.

Ae、 Cr、Mo、 Au、 Ir、 Nb、 Ta
、 V、 Ti 、 Pt、 Pd。
Ae, Cr, Mo, Au, Ir, Nb, Ta
, V, Ti, Pt, Pd.

In2O,、8nOt、 ITO(In2O,+ Sn
O,)等の薄膜を設けること1・てよって導電処理され
、或いはポリエステルフィルム等の合成樹脂フィルムで
あれば、NiCr 、 Al2 、 Ag 、 Pb 
、 Zn 、 Ni 、 Au 、 Or 、 Mo 
、 Ir 。
In2O,, 8nOt, ITO(In2O, + Sn
Providing a thin film such as O, ) 1. If it is conductive treated or a synthetic resin film such as polyester film, NiCr, Al2, Ag, Pb
, Zn, Ni, Au, Or, Mo
, Ir.

Nb、Ta、V、Ti、Pt等の金属で真空蒸着、電子
ビーム蒸着、スパッタリング等で処理し、又は前記金属
でラミネート処理して、その表面が導電処理される。支
持体の形状としては、円筒状、ベルト状、板状等、任意
の形状とし得、所望によって、その形状は決定されるが
、例えば、第1図の光導電部材lOOを電子写真用僧形
成部材トして使用するのであれば連続高速複写の場合に
は、無端ベルト状又は円筒状とするのが望ましい。
The surface is treated with a metal such as Nb, Ta, V, Ti, or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal to make the surface conductive. The shape of the support may be any shape such as a cylinder, a belt, or a plate, and the shape is determined as desired. For example, the photoconductive member lOO shown in FIG. If it is to be used as a member for continuous high-speed copying, it is desirable to have an endless belt shape or a cylindrical shape.

中間層102は例えばシリコン原子及び炭素原子又は窒
素原子又は酸素原子又はハロゲン原子(X)を含む、非
光導電性のアモルファス材料で構成され、支持体101
の側から光導電層103中へのキャリアの流入を効果的
に阻止し且つ電磁波の照射によって光導電層103中に
生じ、支持体101の側に向って移動するフォトキャリ
アの光導電層103の側から支持体101の側への通過
を容易に許す機能を有するものである。
The intermediate layer 102 is made of a non-photoconductive amorphous material containing, for example, silicon atoms and carbon atoms, nitrogen atoms, oxygen atoms, or halogen atoms (X), and is
This effectively prevents carriers from flowing into the photoconductive layer 103 from the side of the photoconductive layer 103 and prevents photocarriers generated in the photoconductive layer 103 and moving toward the side of the support 101 by electromagnetic wave irradiation. It has a function of easily allowing passage from the side to the side of the support body 101.

中間層102を形成する場合には、光導電層103の形
成まで連続的に行うことが出来る。
When forming the intermediate layer 102, it can be performed continuously up to the formation of the photoconductive layer 103.

その場合には、中間層形成用の原料ガスを、必要に応じ
てHe、Ar等の稀釈ガスと所定量の混合比で混合して
、各々を所定の分解空間(B)と分解空間(C)とに導
入し、所望の励起エネルギーを夫々の空間に加えて、各
々の活性種を生成させ、それらを支持体101の設置し
である真空堆積用の堆積空間(A)に導入し、導入され
た各々の活性種の作用で前記支持体101上に中間Fi
z 102を形成させれば良い。
In that case, the raw material gas for forming the intermediate layer is mixed with a diluting gas such as He or Ar at a predetermined mixing ratio as needed, and each is mixed in a predetermined decomposition space (B) and decomposition space (C). ) and apply desired excitation energy to each space to generate each active species, and introduce them into the deposition space (A) for vacuum deposition where the support 101 is installed. Intermediate Fi is formed on the support 101 by the action of each activated species.
z 102 may be formed.

中間層102を形成用の原料ガスに成り得るものとして
有効に使用される分解空間(C)に導入される活性種を
生成する有効な出発物質は。
An effective starting material for generating active species is introduced into the decomposition space (C) which can be effectively used as a raw material gas for forming the intermediate layer 102.

H,、SiとHとを構成原子とする硅素の環状構造を有
するシラン化合物、例えば、(St)(、)、。
H,, a silane compound having a silicon cyclic structure containing Si and H as constituent atoms, for example, (St)(,).

(SiH2)いあるいはそれらと水素および5i2H,
(SiH2) or them and hydrogen and 5i2H,
.

st、H,などの高次鎖状シランもしくは8iH,と併
用したもの、Nを構成原子とする、或いはNとHとを構
成原子とする例えば窒素(Nx)、アンモニア(N)I
、)、ヒドラジン(H2NNH2) 、アジ化水素(H
N、)、アジ化アンモニウム(NH4N3)等のガス状
の又はガス化し得る窒素、窒化物及びアジ化物等の窒素
化合物、CとHを構成原子とする例えば炭素数1〜5の
飽和炭化水素、炭素数2〜5のエチレン系炭化水素、炭
素数2〜4のアセチレン系炭化水素等、具体的には、飽
和炭化水素としてはメタy (C)t、) 、 工p 
y (C,H6) 、 7” 。
those used in combination with higher-order chain silanes such as st, H, or 8iH, those containing N as a constituent atom, or those containing N and H as constituent atoms, such as nitrogen (Nx), ammonia (N) I
), hydrazine (H2NNH2), hydrogen azide (H
N, ), gaseous or gasifiable nitrogen such as ammonium azide (NH4N3), nitrogen compounds such as nitrides and azides, saturated hydrocarbons containing C and H as constituent atoms, e.g. having 1 to 5 carbon atoms, Ethylene hydrocarbons having 2 to 5 carbon atoms, acetylenic hydrocarbons having 2 to 4 carbon atoms, etc. Specifically, saturated hydrocarbons include meta y (C) t, ), engineering p
y (C, H6), 7”.

パン(C,H,) 、 n−ブタ7 (n C+H+o
)eペンタン(C3H,t)、エチレン系炭化水素とし
ては、エチレン(CtL)−プロピレン(C−He)−
ブテン−1(C4H3)−ブテン−2(C4HII) 
−イソブチレン(C4H3)−ペンテン(C,H,。)
、アセチレン系炭化水素としては、アセチレン(C,H
い、メチルアセチレン(C−H4)−ブチン(C4H6
)等、更に、これ等の他に例えば、酸素(02)、オゾ
ン(0,)、−酸化炭素(CO)S二酸化炭素(COJ
−一酸化窒素(NO)。
Bread (C, H,), n-buta 7 (n C+H+o
)e Pentane (C3H,t), ethylene hydrocarbons include ethylene (CtL)-propylene (C-He)-
Butene-1(C4H3)-Butene-2(C4HII)
-isobutylene (C4H3)-pentene (C,H,.)
, acetylene hydrocarbons include acetylene (C, H
Methylacetylene (C-H4)-butyne (C4H6)
) etc. In addition to these, for example, oxygen (02), ozone (0,), -carbon oxide (CO)S carbon dioxide (COJ
- Nitric oxide (NO).

二酸化窒素(NO2)、−酸化二窒素(N、O)等を挙
げることが出来る。
Nitrogen dioxide (NO2), dinitrogen oxide (N, O), etc. can be mentioned.

これらの中間層102形成用の出発物質は、所定の原子
が構成原子として、形成される中間層102中に含まれ
る様に、層形成の際に適宜選択されて使用される。
These starting materials for forming the intermediate layer 102 are appropriately selected and used during layer formation so that predetermined atoms are included in the formed intermediate layer 102 as constituent atoms.

一方、中間層102を形成する際に分゛解空間(B)に
導入されて活性種を生成し得る出発物質としては、Si
F4.84.F’、等が有効なものとして挙げられ、こ
れ等は高温下で容易にSir、の如き活性種を生成する
On the other hand, the starting material that can be introduced into the decomposition space (B) and generate active species when forming the intermediate layer 102 is Si.
F4.84. Effective examples include F', etc., which easily generate active species such as Sir at high temperatures.

中間層102の層厚としては、好ましくは、3O−10
0OA、より好適には50〜6ooλとされるのが望ま
しい。
The thickness of the intermediate layer 102 is preferably 3O-10
It is desirable that it be 0OA, more preferably 50 to 6oooλ.

光導電層103は、電子写真用僧形成部材としての機能
を十分に発揮することができるような光導電特性を持つ
ように、シリコン原子を母体とし、ハロゲン(X)を含
み、必要に応じて水素(H)ヲ含trアモルファスシリ
コンa−8iX(H)で構成される。光導電層103の
形成も、中間層102と同様に、分解空間(B)K S
iF、、Si、F、fz トcr)原料ガスが導入され
、高温下にてこれ等を分解することで活性種が生・成さ
れる。この活性種は堆積空間(A)に導入される。他方
、分解空間(C)には(SiHt)a、 (S’H2)
41 (S’H2)a などの原料ガスが導入され、所
定の励起エネルギーにより活性種が生成される。この活
性種は堆積空間(A)に導入され、分解空間(B)から
の活性種と化学的相互作用を起し、所望の光導電層10
3が堆積される。
The photoconductive layer 103 is made of silicon atoms, contains halogen (X), and optionally contains a halogen (X) so as to have photoconductive properties that can fully exhibit its function as a photoconductive member for electrophotography. It is composed of amorphous silicon a-8iX (H) containing hydrogen (H). Similarly to the intermediate layer 102, the photoconductive layer 103 is formed in the decomposition space (B) K S
iF, Si, F, fz and cr) raw material gases are introduced and activated species are produced by decomposing them at high temperatures. This active species is introduced into the deposition space (A). On the other hand, in the decomposition space (C), (SiHt)a, (S'H2)
A raw material gas such as 41 (S'H2)a is introduced, and active species are generated by a predetermined excitation energy. This active species is introduced into the deposition space (A) and chemically interacts with the active species from the decomposition space (B) to form the desired photoconductive layer 10.
3 is deposited.

光導電層103の層厚としては、適用するものの目的に
適合させて所望に従って適宜決定される。
The thickness of the photoconductive layer 103 is appropriately determined according to the purpose of the application.

第1図に示される光導電層103の層厚としては、光導
電層1.03の機能及び中間層102の機能が各々有効
に活されてる様に中間層102との層厚関係に於いて適
宜所望に従って決められるものであり、通常の場合、中
間層1020層厚に対して数百〜数千倍以上の層厚とさ
れるのが好ましいものである。
The layer thickness of the photoconductive layer 103 shown in FIG. It can be determined as appropriate and desired, and in normal cases, it is preferably several hundred to several thousand times or more thicker than the thickness of the intermediate layer 1020.

具体的な値としては、好ましくけ1〜100μ、より好
適には2〜50μの範囲とされるのが望ましい。
A specific value is preferably in the range of 1 to 100μ, more preferably in the range of 2 to 50μ.

第1図に示す光導電部材の光導電層中に含有されるl]
又はXのMは(X=Fなどのハロゲン原子)好ましくは
1〜40 atomic 9i; 、より好適には5〜
30 atomlc%とされるのが望マージい。
l contained in the photoconductive layer of the photoconductive member shown in FIG. 1]
Or M of X (halogen atom such as X=F) is preferably 1 to 40 atomic 9i; more preferably 5 to
It is preferable to set it to 30 atomlc%.

第1図の光導電部材の表面層104は必要に応じて中間
層102.及び光導電層103と同様に形成される。シ
リコンカーバイド膜テあれば、例えば、分解空間(B)
に5iF4を1分解空間(C)に(SiH2)、とC艮
とH2あるいは(Sil(、)、と5iH2(CH,)
2などの原料ガスを導入し、各々、分解エネルギーで励
起させて夫々の活性種を夫々の空間で生成し、それ等を
別々に堆積空間(A)へ導入させることにより表面層1
04が堆積される0又、表面層104としては、窒化シ
リコン、酸化シリコン膜などのバンドギャップの広い堆
積膜が好ましく、光導電層103から表面層104へそ
の膜組成を連続的に変えることも可能である。表面層1
04の層厚は好ましくは0.01μ〜5μ、より好まし
くは、0.05μ〜1μの範囲が望ましいb 光導電層103を必要に応じてn型又はp型とするには
、層形成の際に、n型不純物又は、n型不純物、或いは
両不純物を形成される層中にその量を制御し乍らドーピ
ングしてやる事によって成される。
The surface layer 104 of the photoconductive member shown in FIG. and is formed in the same manner as the photoconductive layer 103. If there is a silicon carbide membrane, for example, the decomposition space (B)
5iF4 into one decomposition space (C) (SiH2), and C and H2 or (Sil(,), and 5iH2(CH,)
The surface layer 1 is formed by introducing raw material gases such as 2 and 2, excitation with decomposition energy to generate respective active species in the respective spaces, and introducing them separately into the deposition space (A).
Further, as the surface layer 104, a deposited film with a wide band gap such as silicon nitride or silicon oxide film is preferable, and the film composition may be changed continuously from the photoconductive layer 103 to the surface layer 104. It is possible. surface layer 1
The layer thickness of 04 is preferably in the range of 0.01μ to 5μ, more preferably in the range of 0.05μ to 1μ.b To make the photoconductive layer 103 n-type or p-type as necessary, during layer formation. This is accomplished by doping an n-type impurity, or both impurities, into the layer to be formed while controlling the amount thereof.

光導電層中にドーピングされる不純物としては、n型不
純物として、周期律表第■族Aの元素、例えば、B 、
 、kl 、 Ga 、 In 、 ’r/等が好適な
ものとして挙げられ、n型不純物としては、周期律表第
V族Aの元素、例えばN、P、As、 Sb、Bi等が
好適なものとして挙げられるが、殊にB。
The impurities doped into the photoconductive layer include elements of group A of the periodic table, such as B, as n-type impurities,
, kl, Ga, In, 'r/, etc. are preferred, and as the n-type impurity, elements of Group V A of the periodic table, such as N, P, As, Sb, Bi, etc. are preferred. However, especially B.

Ga 、 P、 Sb等が最適である。Ga, P, Sb, etc. are optimal.

本発明に於いて所望の伝導型を有する為に光導電層10
3中にドーピングされる不純物の量は、所望される電気
的・光学的特性に応じて適宜決定されるが、周期律表第
■族Aの不純物の場合3 X 10 atomic%以
下の量範囲でドーピングしてやれば良く、周期律表第■
族Aの不純物の場合には5 X 10 、 atomi
c%以下の量範囲でドーピングしてやれば良い。
In the present invention, the photoconductive layer 10 has a desired conductivity type.
The amount of impurities to be doped into 3 is appropriately determined depending on the desired electrical and optical properties, but in the case of impurities in group Ⅰ A of the periodic table, the amount range is 3 x 10 atomic% or less. All you have to do is dope, and the periodic table ■
In the case of group A impurities, 5 X 10, atomi
Doping may be carried out in an amount of c% or less.

光導電層103中に不純物をドーピングするには、j−
形成の際に不純物導入用の原料物質をガス状態で分解空
間(B)あるいは(C)中に導入してやれば良い。その
際には、分解空間(B)の方ではなく、分解空間(C)
方へ導入し、そこからその活性種を堆積空間(A)に導
入する方が好ましい。この様な不純物導入用の原料物質
としては、常温常圧でガス状態の又は、少なくとも層形
成条件下で容易にガス化し得るものが採用される。
To dope impurities into the photoconductive layer 103, j-
At the time of formation, a raw material for introducing impurities may be introduced in a gaseous state into the decomposition space (B) or (C). In that case, instead of the decomposition space (B), the decomposition space (C)
It is preferable to introduce the active species into the deposition space (A) from there. As the raw material for introducing such impurities, those that are in a gaseous state at room temperature and normal pressure, or that can be easily gasified at least under layer-forming conditions, are employed.

その扉な不純物導入用の出発物質として具体的には、P
HHt PJ(4、PF3 、 PF5 e PCl5
 * AsH++ * AsF55AsF、 、 As
Cl!、 、 SbH,、SbF、 、 13iH,、
BF、 、 BCl!、 、 BBr、。
Specifically, as a starting material for introducing impurities, P
HHt PJ (4, PF3, PF5 e PCl5
*AsH++ *AsF55AsF, , As
Cl! , , SbH,, SbF, , 13iH,,
BF, , BCl! , ,BBr,.

B2Flla 、B<Hlo−BJ(o 、BsHu、
BaH+o、”aH+y、 AlCl5 *等を挙げる
ことが出来る。
B2Flla, B<Hlo-BJ(o, BsHu,
Examples include BaH+o, ``aH+y, AlCl5*, etc.

実施例1 第2図に示す装置使い、以下の如き操作によってドラム
状の電子写真用像形成部材を作成したO 第2図において、lは堆積空間(A) s 2は分解空
間(13)、3は分解空間(C)、4は電気炉、5は固
体Si粒、6はSi−坑の導入管、7は活性種導入管、
8は電気炉、9は活性種の原料物質導入管、lOは活性
種導入管、11はモーター、12は加熱ヒーター、13
は吹き出し管、14は吹き出し管、15はMシリンダー
、16q排気パルプを示している。
Example 1 Using the apparatus shown in FIG. 2, a drum-shaped electrophotographic image forming member was produced by the following operations. In FIG. 2, l is a deposition space (A), s is a decomposition space (13), 3 is a decomposition space (C), 4 is an electric furnace, 5 is a solid Si particle, 6 is an Si-well introduction pipe, 7 is an active species introduction pipe,
8 is an electric furnace, 9 is an active species raw material introduction tube, IO is an active species introduction tube, 11 is a motor, 12 is a heating heater, 13
14 is a blowout pipe, 15 is an M cylinder, and 16q is an exhaust pulp.

堆積空間(A)1にMシリンダー15をつり下げその内
側に加熱ヒーター12を備え、モーター11によシ回転
できるようにし、分解空間(B)2からの活性種を導入
する導入管7を経て、吹き出し管13と、分解空間(C
)3からの活性種を導入する導入管10を経て、吹き出
し管14を備える。
An M cylinder 15 is suspended in the deposition space (A) 1 and equipped with a heating heater 12 inside, so that it can be rotated by a motor 11, and the active species from the decomposition space (B) 2 are introduced through the introduction pipe 7. , the blowout pipe 13, and the decomposition space (C
) A blowout tube 14 is provided through an introduction tube 10 for introducing active species from 3.

分解空間(B)2に固体81粒5を詰めて、電気炉4に
より加熱し、1100℃に保ち、Siを溶融し、そこへ
ボンベからSiF、の導入管6により、Si1%を吹き
込むことにより、SiF、の活性種を生成させ、導入管
7を経て、堆積空間(A)1の吹き出し管13へ導入す
る。一方、分解空間(C)3に導入管9から(SiH2
)a を導入し、電気炉8により300℃に加熱し、S
iH,、SiH、SiH,、Hなどの活性種を生成させ
、導入管10から吹き出し管14へ導入子る。このとき
、導入管10の長さは、装置上、可能な限り短縮し、そ
の活性種の有効効率を落さないようにする。堆積空間(
A)内のMシリンダーは280℃にヒーター12により
加熱、保持され、回転させ、排ガスは排気パルプ16を
通じて排気される。このようにして光導電層103が形
成されるが、同様に中間層102、表面層104も形成
される。
The decomposition space (B) 2 is filled with 81 solid particles 5, heated in an electric furnace 4, maintained at 1100°C to melt Si, and 1% Si is injected into it from a cylinder through an SiF introduction pipe 6. , SiF, are generated and introduced into the blow-off pipe 13 of the deposition space (A) 1 via the introduction pipe 7. On the other hand, (SiH2
) a was introduced, heated to 300°C in an electric furnace 8, and S
Active species such as iH, SiH, SiH, and H are generated and introduced from the inlet tube 10 to the blowout tube 14. At this time, the length of the introduction tube 10 is shortened as much as possible based on the equipment, so as not to reduce the effective efficiency of the active species. Deposition space (
The M cylinder in A) is heated and maintained at 280° C. by a heater 12 and rotated, and exhaust gas is exhausted through an exhaust pulp 16. In this way, the photoconductive layer 103 is formed, and the intermediate layer 102 and surface layer 104 are also formed in the same way.

実施例2 一般的なプラズマCVD法により、 Sig とSiH
4およびH7から第2図の堆積空間(A) 1に13.
56MHzの高周波装置を備えて光導電層103を形成
した。
Example 2 Using a general plasma CVD method, Sig and SiH
4 and H7 to the deposition space (A) 1 in Figure 2 to 13.
A photoconductive layer 103 was formed using a 56 MHz high frequency device.

実施例3 実施例1と′1司様に堆積膜を形成するが、分解空間(
C)3に導入する原料ガスを3iH4と(SiH,)。
Example 3 A deposited film is formed in the same manner as in Example 1 and '1, but the decomposition space (
C) The raw material gas introduced into 3 is 3iH4 and (SiH,).

として、電気炉によって加熱する代わりに13.56M
Hzのプラズマ反応を発生させ、プラズマ状態を作り、
各種シランの活性種及びHの活性種を吹き出し管14へ
導入して、ドラム状の電子写真用像形成部材を作成した
13.56M instead of heating by electric furnace.
Generates a Hz plasma reaction and creates a plasma state,
The active species of various silanes and the active species of H were introduced into the blowing tube 14 to produce a drum-shaped electrophotographic image forming member.

実施例4 実施例1と同様に堆積膜を形成するが、分解空間(C)
に導入する原料ガスを(S ’Ht)< s (8’H
Ja wルとし、電気炉で320℃に加熱し、各種のシ
ランの活性種及び水素の活性種を生成させて、ドラム状
の電子写真用像形成部材を作成した。
Example 4 A deposited film is formed in the same manner as in Example 1, but the decomposition space (C)
The raw material gas introduced into (S 'Ht) < s (8'H
A drum-shaped electrophotographic image forming member was prepared by heating the sample to 320° C. in an electric furnace to generate various active species of silane and active species of hydrogen.

実施例5 実施例Iと同様に堆積膜を形成するが、分解空間(13
)に導入する原料ガスを5i2F、とし、また分解空間
(C)に導入する原料ガスを(SiH,)5としs ’
rll:気炉によって300℃に加熱し、各種シランの
活性種及び水素の活性種を生成させ、ドラム状の電子写
真用像形成部材を作成した。
Example 5 A deposited film is formed in the same manner as in Example I, but the decomposition space (13
), and the raw material gas introduced into the decomposition space (C) is (SiH,)5, s'
rll: It was heated to 300° C. in an air furnace to generate active species of various silanes and active species of hydrogen, thereby producing a drum-shaped electrophotographic image forming member.

実施例6 実施例】と同様に堆積膜を形成するが、分解空間(C)
に心入する原料ガスをSi、I丸/(Sil(、)。
Example 6 A deposited film is formed in the same manner as in Example, but the decomposition space (C) is
The raw material gas to be added to Si, I circle/(Sil(,).

とし、@i電気炉310℃に加熱し、各種シランの活性
種及び水素の活性種を生成させて、ドラム状の電子写真
用像形成部材を作成した。
The mixture was heated to 310° C. in an electric furnace to generate active species of various silanes and active species of hydrogen, thereby producing a drum-shaped electrophotographic image forming member.

上記した実施例1,2,3,4.5.6のドラム状の電
子写真用像形成部材の製造条件と性能を第1表に示す。
Table 1 shows the manufacturing conditions and performance of the drum-shaped electrophotographic image forming members of Examples 1, 2, 3, 4, 5, and 6 described above.

実施例1,3,4,5..6の中間層102は分解空間
(B)にS I I”4、分解空間(C)に(SiH2
)a/H2/NO/)132H,(容量%でNo 2%
、B、H60,2%)を各々導入し各々の励起エネルギ
ーで活性種を生成し、堆積空間(A)へ導入して形成し
、中間層102の層厚は2’000人とする。
Examples 1, 3, 4, 5. .. The intermediate layer 102 of 6 is SiH2 in the decomposition space (B) and (SiH2) in the decomposition space (C).
) a/H2/NO/) 132H, (No 2% in volume %)
, B, H60.2%) are respectively introduced to generate active species with each excitation energy, and introduced into the deposition space (A) to form the intermediate layer 102. The thickness of the intermediate layer 102 is 2'000.

実施例2の場合も実施例1.3と同様な組成の(S +
H,)、 /Ht /N O/ B2H6のガスを用い
てプラズマCVD法で中間層102を形成し、その層厚
を2000人とする。
In the case of Example 2, (S +
The intermediate layer 102 is formed by plasma CVD using gases such as H, ), /Ht /N O / B2H6, and its layer thickness is set to 2000 layers.

実施例1,3,4,5.6の表面層104は、分解空間
(B)にSiF、を導入し、また分解空間(C)には(
SiH,)S/C1(4/H,を容量比10:100:
50で導入し、各々の励起熱エネルギーで活性種を生成
し、堆積空間(A)へ導入して形成し、表面層104の
層厚は1000スとする。
In the surface layer 104 of Examples 1, 3, 4, and 5.6, SiF was introduced into the decomposition space (B), and (C) was introduced into the decomposition space (C).
SiH, ) S/C1 (4/H, capacity ratio 10:100:
50, active species are generated by each excitation thermal energy, and are introduced into the deposition space (A) to form the surface layer 104, with a layer thickness of 1000 μm.

実施例2の場合も(SiH2)II /CH,/Hzを
同組成で導入し、プラズマCVD法で表面層104を形
成し、その層厚をl OO0人とする。
In the case of Example 2 as well, (SiH2)II /CH, /Hz with the same composition is introduced, and the surface layer 104 is formed by plasma CVD, and the layer thickness is set to lOO0.

実施例1,2,3,4,5.6のドラム状の電子写真用
像形成部材を、■帯電、露光、転写。
The drum-shaped electrophotographic image forming members of Examples 1, 2, 3, 4, and 5.6 were charged, exposed, and transferred.

によるカールソンプロセスに於いて、θトナーによる熱
定着方式の複写装置に装着し、全面暗部、全面明部ある
いは全面ハーフトーン部のA3サイズの複写を行ない、
画像中に不均一なノイズが発生するか否かについて観察
したものが平均画像欠陥の数である。又、その際にドラ
ムの周方向、母線方向の受容電位の均一性を測定した。
In the Carlson process, it is attached to a copying machine using a heat fixing method using θ toner, and A3 size copies are made of full dark areas, full bright areas, or full halftone areas.
The average number of image defects is the observation as to whether non-uniform noise occurs in the image. At that time, the uniformity of the received potential in the circumferential direction of the drum and in the generatrix direction was also measured.

これらの結果は、第1表に示す。These results are shown in Table 1.

実施例7 第3図において、J7は回転機構を備えた移動式14台
、18は冷却空間、19は加熱空間、20は堆積空間を
示している。
Embodiment 7 In FIG. 3, J7 indicates 14 mobile units equipped with a rotation mechanism, 18 a cooling space, 19 a heating space, and 20 a deposition space.

本実施例は、第3図に示すように、加熱室19、堆積空
間20、冷却室18から成り、各々の空間に、Mシリン
ダー15を回転機構を備えた移動式置台17上に置き、
連続的に1つの堆積空間で多数本のドラム状の電子写真
用像形成部材が作成される装置である。本装置を使用し
て、実施例1と同様な作成方法を試みたところ、堆積空
間の温度、Aeシリンダーの温度、分解空間(B)から
の導入管7を経て吹き出し管13からと、分解空間(C
)からの導入管10を経て吹゛き出し管14かeの各々
の活性種の吹き出し肴を制御することにより、均一で再
現性のある堆積膜をもつドラム状の電子写真用像形成部
材を低コストで量産することができることが確認された
As shown in FIG. 3, this embodiment consists of a heating chamber 19, a deposition space 20, and a cooling chamber 18. In each space, an M cylinder 15 is placed on a movable stand 17 equipped with a rotating mechanism.
This is an apparatus in which a large number of drum-shaped electrophotographic image forming members are continuously produced in one deposition space. Using this device, we attempted a production method similar to Example 1, and found that the temperature of the deposition space, the temperature of the Ae cylinder, the temperature of the deposition space, the temperature of the Ae cylinder, the temperature of the decomposition space (B) from the blowout pipe 13 via the inlet pipe 7, and the decomposition space. (C
) By controlling the flow of active species from the inlet pipe 10 and the outlet pipe 14 to e, a drum-shaped electrophotographic imaging member having a uniform and reproducible deposited film can be produced. It was confirmed that it can be mass-produced at low cost.

プラズマCVD法では、このように1つの堆積空間内で
、多本数のドラム状の電子写真用像形成部材を作成しよ
うとすると、放電の均一性や製造条件の複雑なパラメー
ターの相互の相乗効果もあって、再現性よく均一な堆積
膜をもつドラム状の電子写真用像形成部材を作成するこ
とが、不可能であった。
In the plasma CVD method, when trying to create a large number of drum-shaped electrophotographic image forming members in one deposition space, synergistic effects of complex parameters such as discharge uniformity and manufacturing conditions are required. Therefore, it has been impossible to create a drum-shaped electrophotographic image forming member having a uniform deposited film with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を用いて作成される光導′声部
材の1実施態様例を説明するために、層構造を示した模
式図である。第2図は、本発明の製造法を具現化するた
めの装置の1例を示す模式的説明図である。第3図は本
発明の製造法が工業的に欧産化可能なことを示す具体的
な装置事例を示したものである。A −−+ 月 、 
− 1・・・堆積空間(A)、2・・・分解空間(B)、3
・・・分解空間(C)、4・・・電気炉、5・・固体S
i粒、6・・・SI F”4の導入管、7・・・前駆体
導入管、8・・・電気炉、9・・・活性種の原料物質導
入管、10・・・活性、JJii導入管、11・・・モ
ーター、12・・・加熱ヒーター% 13・・・吹き出
し管、14・・・吹き出し管、15・・・成シリンダー
、16・・・排気バルブ、17川回転機構を(liff
えた移、動式置台、18・・・冷却空間、19・・・加
熱空間、20・・・堆積空間、100・・・光導電部栃
、101・・・支持体、102・・・中間層、103・
・・光導電層、104・・・表面層。
FIG. 1 is a schematic diagram showing a layered structure for explaining one embodiment of a light guide member produced using the method of the present invention. FIG. 2 is a schematic explanatory diagram showing an example of an apparatus for implementing the manufacturing method of the present invention. FIG. 3 shows a specific example of equipment showing that the manufacturing method of the present invention can be industrially produced in Europe. A −−+ month,
- 1...Deposition space (A), 2...Decomposition space (B), 3
...Decomposition space (C), 4...Electric furnace, 5...Solid S
i grain, 6... SIF''4 introduction pipe, 7... Precursor introduction pipe, 8... Electric furnace, 9... Active species raw material introduction pipe, 10... Activity, JJii Inlet pipe, 11...Motor, 12...Heating heater% 13...Blowout pipe, 14...Blowout pipe, 15...Blowout cylinder, 16...Exhaust valve, 17 River rotation mechanism ( liff
18... Cooling space, 19... Heating space, 20... Deposition space, 100... Photoconductive section, 101... Support, 102... Intermediate layer , 103・
...Photoconductive layer, 104...Surface layer.

Claims (1)

【特許請求の範囲】[Claims] 所望の基板上に所望の堆積膜を形成させる堆積空間内に
”’nx2n+2 (n == 1.2.・・・・・・
)で表わされるハロゲン化ケイ素を分解することによっ
て得られる活性種(a)と、硅素の環状構造を有するシ
ラン化合物から得られる活性種(b)と水素の活性種と
の混合物とを、夫々、別々に導入することによって、堆
積膜を形成することを特徴とする堆積膜形成法。
"'nx2n+2 (n == 1.2.....
), a mixture of an active species (a) obtained by decomposing a silicon halide, an active species (b) obtained from a silane compound having a silicon cyclic structure, and an active hydrogen species, respectively. A deposited film forming method characterized by forming a deposited film by separately introducing the deposited films.
JP58151027A 1983-08-16 1983-08-18 Formation of deposited film Granted JPS6042766A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP58151027A JPS6042766A (en) 1983-08-18 1983-08-18 Formation of deposited film
DE19843429899 DE3429899A1 (en) 1983-08-16 1984-08-14 METHOD FOR FORMING A DEPOSITION FILM
GB08420725A GB2148328B (en) 1983-08-16 1984-08-15 Chemical vapour deposition process
FR848412872A FR2555614B1 (en) 1983-08-16 1984-08-16 PROCESS FOR FORMING A FILM ON A SUBSTRATE BY VAPOR DECOMPOSITION
US07/161,386 US4835005A (en) 1983-08-16 1988-02-22 Process for forming deposition film
US08/469,676 US5910342A (en) 1983-08-16 1995-06-06 Process for forming deposition film
US08/477,269 US5645947A (en) 1983-08-16 1995-06-07 Silicon-containing deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151027A JPS6042766A (en) 1983-08-18 1983-08-18 Formation of deposited film

Publications (2)

Publication Number Publication Date
JPS6042766A true JPS6042766A (en) 1985-03-07
JPS6253587B2 JPS6253587B2 (en) 1987-11-11

Family

ID=15509697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151027A Granted JPS6042766A (en) 1983-08-16 1983-08-18 Formation of deposited film

Country Status (1)

Country Link
JP (1) JPS6042766A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199676A (en) * 1984-10-19 1986-05-17 Semiconductor Energy Lab Co Ltd Manufacture of silicon nitride
JPS61179868A (en) * 1985-02-05 1986-08-12 Canon Inc Method of forming accumulated film
JPS61179869A (en) * 1985-02-04 1986-08-12 Canon Inc Method of forming accumulated film
JPS61288074A (en) * 1985-06-17 1986-12-18 Canon Inc Deposited film forming device by cvd method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199676A (en) * 1984-10-19 1986-05-17 Semiconductor Energy Lab Co Ltd Manufacture of silicon nitride
JPS61179869A (en) * 1985-02-04 1986-08-12 Canon Inc Method of forming accumulated film
JPS61179868A (en) * 1985-02-05 1986-08-12 Canon Inc Method of forming accumulated film
JPS61288074A (en) * 1985-06-17 1986-12-18 Canon Inc Deposited film forming device by cvd method

Also Published As

Publication number Publication date
JPS6253587B2 (en) 1987-11-11

Similar Documents

Publication Publication Date Title
US4835005A (en) Process for forming deposition film
US4702934A (en) Electrophotographic photosensitive member, process and apparatus for the preparation thereof
US4657777A (en) Formation of deposited film
AU594107B2 (en) Method for preparation of multi-layer structure film
JPS6041047A (en) Formation of deposited film
JPS62149879A (en) Formation of deposited film
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
JPS6042766A (en) Formation of deposited film
JPS6042765A (en) Formation of deposited film
JPH0517312B2 (en)
US4855210A (en) Electrophotographic photosensitive member, process and apparatus for the preparation thereof
JPS63100183A (en) Formation of deposited film
JPS61247020A (en) Deposition film forming method
JPS63125679A (en) Formation of deposited film
JPS60131971A (en) Formation of deposited film
JP2537191B2 (en) Deposited film formation method
JPS6331552B2 (en)
JPS61291975A (en) Accumulated film formation
JPS63223178A (en) Production of amorphous silicon film
JPH0550743B2 (en)
JPS61247018A (en) Deposition film forming method and deposition film forming equipment
JPS61247019A (en) Deposition film forming method
JPS62154673A (en) Light receiving material
JPH01727A (en) Deposited film formation method
JPS6331551B2 (en)