JPS63223178A - Production of amorphous silicon film - Google Patents

Production of amorphous silicon film

Info

Publication number
JPS63223178A
JPS63223178A JP62056113A JP5611387A JPS63223178A JP S63223178 A JPS63223178 A JP S63223178A JP 62056113 A JP62056113 A JP 62056113A JP 5611387 A JP5611387 A JP 5611387A JP S63223178 A JPS63223178 A JP S63223178A
Authority
JP
Japan
Prior art keywords
glow discharge
film
rate
decomposition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056113A
Other languages
Japanese (ja)
Inventor
Toshiki Yamazaki
山崎 敏規
Tatsuo Nakanishi
達雄 中西
Yuji Marukawa
丸川 雄二
Satoshi Takahashi
智 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP62056113A priority Critical patent/JPS63223178A/en
Publication of JPS63223178A publication Critical patent/JPS63223178A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To produce an amorphous silicon film having desired characteristics at a desired rate of film formation, by decomposing a silicon compd. fed together with a carrier gas by glow discharge at a specified rate of decomposition within a specified residence time so as to attain a specified rate of deposition. CONSTITUTION:A gaseous mixture contg. at least a silicon compd. such as SiH4 and a carrier gas such as Ar is fed and the silicon compd. is decomposed by glow discharge to form an amorphous silicon film on a substrate. The decomposition by glow discharge is carried out under conditions satisfying the formula [where Dr is the rate of deposition of the amorphous silicon film, etaA is the rate of decomposition of the silicon compd., FA is the flow rate of the silicon compd. fed, FB is the flow rate of the carrier gas fed, V is the volume of a glow discharge space and (l) and the distance between the substrate and a glow discharge electrode] so as to regulate the rate of decomposition of the silicon compd. in the glow discharge space to 20-90% and the average residence time of the gaseous mixture in the glow discharge space to 0.1-1.2sec.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、アモルファスシリコン系膜の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing an amorphous silicon film.

口、従来技術 近年、アモルファス膜は優れた物理的、機械的、化学的
性質を有していることから注目されるようになっている
。特にアモルファスシリコン(以下、a−3iと称す。
BACKGROUND OF THE INVENTION In recent years, amorphous films have attracted attention because of their excellent physical, mechanical, and chemical properties. In particular, amorphous silicon (hereinafter referred to as a-3i).

)系半導体膜は感光体の感光層、太陽電池、薄膜トラン
ジスタ、光センサ等の多種類の用途を有する。こうした
a−3i系半導体膜の形成は、水素化シリコンガス等の
シリコン化合物のグロー放電分解による方法、即ちいわ
ゆるプラズマCVD法によって行われている。とりわけ
、水素化a−3i膜は大面積を有するデバイス材料とし
て注目を集めている。
)-based semiconductor films have a variety of uses, such as photosensitive layers of photoreceptors, solar cells, thin film transistors, and optical sensors. Formation of such an a-3i semiconductor film is performed by a method using glow discharge decomposition of a silicon compound such as hydrogenated silicon gas, that is, a so-called plasma CVD method. In particular, hydrogenated a-3i films are attracting attention as a device material having a large area.

プラズマCVD法によって例えば円筒上の基体表面にa
−3i系半導体膜を形成する方法とじては、次のような
方法が考えられる。即ち、第1図に示すように、グロー
放電装置3の真空槽4内では、ドラム状の基板1が垂直
に回転可能にセントされ、ヒーター7で基板1を内側か
ら所定温度に加熱し得るようになっている。基板1に対
向してその周囲に、円筒状高周波電極9が配され、この
電極Sには全面にほぼ均一にガス専出口5が設けられて
いる。基板1を電極9に対向する電極とし、両者の間に
高周波電極8によりグロー放電が生ぜしめられる。なお
、図中の13は水素化シリコンガスであるSiH,の供
給源、14はAr等のキャリアガス供給源、15は不純
物ガス(例えばB z HbまたはPH3)供給源、1
7は各流量計である。このグロー放電装置において、ま
ず支持体である例えばA1%板1の表面を清浄化した後
に定温度、特に100〜350℃(望ましくは150〜
300℃)に加熱保持する。次いで、高純度の不活性ガ
スをキャリアガスとして、S i H4ガス若しくはS
iF4ガス、並びに必要とあれば不純物ガスとしてCT
IいB z Hb等を適宜ガス混合室18を経ば13.
56M1lz)を印加する。これによって、上記各反応
ガスを電極9と基板1との間でグロー放電分解し、a−
3iまたは不純物ドープドa−3i:ITとして基板1
上に堆積させる。
For example, a cylindrical substrate surface is coated with a by plasma CVD method.
The following method can be considered as a method for forming a -3i semiconductor film. That is, as shown in FIG. 1, a drum-shaped substrate 1 is vertically rotatably placed in a vacuum chamber 4 of a glow discharge device 3, and a heater 7 is used to heat the substrate 1 from the inside to a predetermined temperature. It has become. A cylindrical high-frequency electrode 9 is disposed around and facing the substrate 1, and the electrode S is provided with gas exclusive ports 5 almost uniformly over its entire surface. The substrate 1 is used as an electrode opposite to the electrode 9, and a glow discharge is generated between the two by the high frequency electrode 8. In addition, 13 in the figure is a supply source of SiH, which is hydrogenated silicon gas, 14 is a carrier gas supply source such as Ar, 15 is an impurity gas (for example, B z Hb or PH3) supply source, 1
7 is each flow meter. In this glow discharge device, first, the surface of the support, for example, the A1% plate 1, is cleaned, and then the temperature is maintained at a constant temperature, particularly from 100 to 350°C (preferably from 150 to 150°C).
Heat and maintain at 300°C. Next, using a high purity inert gas as a carrier gas, S i H4 gas or S
iF4 gas and CT as impurity gas if necessary
13. IBzHb, etc. are passed through the gas mixing chamber 18 as appropriate.
56M1lz) is applied. As a result, each of the above reaction gases is decomposed by glow discharge between the electrode 9 and the substrate 1, and a-
3i or impurity doped a-3i: substrate 1 as IT
deposit on top.

ところで、一般にプラズマCVD法によって形成される
膜は、スパッタ法や蒸着法等信の方法によって形成され
る膜に較べて良質であるが、製膜速度が上記他の方法の
それに較べて可成り遅いという生産上の問題点を有して
いる。また、形成された膜中の微結晶化や欠陥の防止、
膜質の向上が望まれており、特にa−3’i系膜を使用
した電子写真感光体において、光感度、帯電能、耐久性
等の特性向上が望まれている。更に、薄膜形成過程にお
いて、原料ガスから薄膜への変換効率を向上させ、a−
3i粉体の生成を抑制することも望まれている。
By the way, films formed by the plasma CVD method are generally of better quality than films formed by other methods such as sputtering or vapor deposition, but the film forming speed is considerably slower than that of the other methods mentioned above. There are production problems. In addition, prevention of microcrystalization and defects in the formed film,
It is desired to improve film quality, and in particular, in electrophotographic photoreceptors using a-3'i-based films, improvements in characteristics such as photosensitivity, charging ability, and durability are desired. Furthermore, in the thin film formation process, the conversion efficiency from raw material gas to thin film is improved, and a-
It is also desirable to suppress the formation of 3i powder.

しかしながら、従来は、放電中の化学反応や薄膜の堆積
過程については充分に解明されておらず、a−3i系半
導体膜形成のための設備及び操作上の諸条件は経験的に
各装置毎に決定しているのが実情であり、各種の製膜条
件(製膜パラメータ)を制御しながら速い製膜速度で高
品質の膜を形成する試みは未だ成功をみるに至っていな
い。
However, until now, the chemical reactions during discharge and the thin film deposition process have not been fully elucidated, and the equipment and operational conditions for forming a-3i semiconductor films have been empirically determined for each device. However, attempts to form high-quality films at high film-forming speeds while controlling various film-forming conditions (film-forming parameters) have not yet been successful.

そのため、各製膜パラメータを適宜に制御しながら、上
記した膜形成上の問題点を解決しうるような膜製造方法
の開発が望まれている。
Therefore, it is desired to develop a film manufacturing method that can solve the above-mentioned problems in film formation while appropriately controlling each film forming parameter.

ハ9発明の目的 本発明の目的は、製膜条件を適切に制御しながら、所望
の特性を有する膜を所望の製膜速度で製造でき、また原
料ガスから薄膜への変換効率を高めて粉体の生成を抑制
できるようなアモルファスシリコン系膜の製造方法を提
供することである。
C.9 Purpose of the Invention An object of the present invention is to be able to produce a film having desired characteristics at a desired film forming rate while appropriately controlling film forming conditions, and to increase the conversion efficiency from raw material gas to a thin film. An object of the present invention is to provide a method for manufacturing an amorphous silicon film that can suppress the formation of amorphous silicon.

二9発明の構成 本発明は、少なくともシリコン化合物及びキャリアガス
を含むガスを供給し、グロー放電分解によって基体上に
アモルファスシリコン系膜を形成するアモルファスシリ
コン系膜の製造方法において、下記(1)式が満たされ
た条件下で、グロー放電空間内での前記シリコン化合物
の分解率が20〜90%となりかつ前記グロー放電空間
内での前記ガスの平均滞留時間が0.1〜1.2秒とな
るように、前記グロー放電分解を行うことを特徴とする
アモルファスシリコン系膜の製造方法に係るものである
29. Constitution of the Invention The present invention provides a method for producing an amorphous silicon film in which an amorphous silicon film is formed on a substrate by glow discharge decomposition by supplying a gas containing at least a silicon compound and a carrier gas. Under the conditions where the following is satisfied, the decomposition rate of the silicon compound in the glow discharge space is 20 to 90%, and the average residence time of the gas in the glow discharge space is 0.1 to 1.2 seconds. The present invention relates to a method for manufacturing an amorphous silicon film characterized by performing the glow discharge decomposition.

(1)式: %式%] 〔ただし、D、は前記アモルファスシリコン系膜の堆積
速度、η、は前記シリコン化合物の分解率、FAは前記
シリコン化合物の供給流量、F、は前記キャリアガスの
供給流量、■はグロー放電空間の体積、lは前記基体と
グロー放電電極との間の距離である。〕 本発明者は、グロー放電分解によるa−3i系膜の堆積
過程を検討した結果、膜堆積速度がシリコン化合物の分
解により生じた活性種の基体への拡散輸送量に比例する
ことを見出した。
(1) Formula: % formula %] [where D is the deposition rate of the amorphous silicon film, η is the decomposition rate of the silicon compound, FA is the supply flow rate of the silicon compound, and F is the rate of the carrier gas. The supply flow rate, ■ is the volume of the glow discharge space, and l is the distance between the substrate and the glow discharge electrode. ] As a result of studying the deposition process of a-3i-based films by glow discharge decomposition, the present inventor found that the film deposition rate is proportional to the amount of diffusion and transport of active species generated by decomposition of silicon compounds to the substrate. .

即ち、本発明者の得た知見によれば、シリコン系膜の膜
堆積速度は、単位時間あたりのシリコン化合物の分解f
f1(Eと表記する。)と拡散輸送による活性種の基体
への到達率(Fと表記する。)との積に比例するのであ
る。この点について詳述する。まず、上記E及びFはそ
れぞれ下記[11)式、CITI)弐で表わされるとす
る。
That is, according to the knowledge obtained by the present inventors, the film deposition rate of a silicon-based film is determined by the decomposition f of a silicon compound per unit time.
It is proportional to the product of f1 (denoted as E) and the rate of arrival of active species to the substrate by diffusion transport (denoted as F). This point will be explained in detail. First, it is assumed that the above E and F are each expressed by the following formula [11], CITI)2.

E−η、・FA −−一一−−−−−−−・−(11)
F=FT−酊Tンl−・−・−・−・ [Ir[)ここ
で、ηヶはシリコン化合物の分解率、F。
E−η,・FA −−1−−−−−−・−(11)
F=FT−醊Ttonl−・−・−・−・[Ir[) Here, η is the decomposition rate of the silicon compound, F.

はシリコン化合物の供給流量、Dは活性種の拡散係数、
τはグロー放電空間での活性種の平均滞留時間、では基
体とグロー放電電極との間の距離でである。
is the supply flow rate of silicon compound, D is the diffusion coefficient of active species,
τ is the average residence time of the active species in the glow discharge space, and is the distance between the substrate and the glow discharge electrode.

更に、D及びτが下記(IV)式、〔73式で表わされ
ると仮定する。
Furthermore, it is assumed that D and τ are expressed by the following equation (IV), [73].

D cc 1 / P ・−・−−−−−−(TV )
TocPv/ (Fs +FA)−−−−−’−(V)
ここで、■はグロー放電空間の体積、FBはキャリアガ
スの供給流量である。
D cc 1/P ・-・----(TV)
TocPv/ (Fs +FA)-----'-(V)
Here, ■ is the volume of the glow discharge space, and FB is the supply flow rate of the carrier gas.

膜堆積速度をDrとすると、上記CIT)〜〔73式よ
り、下記〔13式が得られる。
If the film deposition rate is Dr, then the following equation 13 is obtained from the above equations CIT) to 73.

D 、、Cl577 A ・F A −Jv/ IJ’
T”;”薯? A−一一−〔I〕これにより、グロー放
電装置の設計条件及び操作条件、即ちFA、Fi 、V
、1等の各製膜パラメータの値を変化させることにより
、定量的に膜堆積速度を決定できることが理解される。
D,,Cl577A・FA-Jv/IJ'
T";"薯? A-11-[I] Thereby, the design conditions and operating conditions of the glow discharge device, namely FA, Fi, V
, 1, etc., it is understood that the film deposition rate can be quantitatively determined by changing the values of each film forming parameter.

また、後述するように、シリコン化合物の分解率ηヶも
各製膜パラメータにより定量的に決定しうる値である。
Further, as will be described later, the decomposition rate η of the silicon compound is also a value that can be quantitatively determined by each film forming parameter.

従って、本発明により、所望の製膜速度でa−3i系膜
を形成することが可能となり、高品質の膜を最大限に高
速で製造しうるようにグロー放電装置を調整、制御する
ことが可能となる。
Therefore, according to the present invention, it is possible to form an a-3i film at a desired film formation speed, and it is possible to adjust and control the glow discharge device so that a high quality film can be manufactured at maximum speed. It becomes possible.

ホ、実施例 次に、本発明を円筒電極型プラズマCVD装置に適用し
た実施例について説明する。
E. Example Next, an example in which the present invention is applied to a cylindrical electrode type plasma CVD apparatus will be described.

第1図のグロー放電分解装置3において、円筒状基体1
の半径をr、基体1と高周波電極9との距離をlとする
と、放電空間の容積■と2、rとの間には次の関係が成
り立つ。
In the glow discharge decomposition device 3 shown in FIG.
When the radius of is r and the distance between the base 1 and the high-frequency electrode 9 is l, the following relationship holds between the discharge space volume 2 and 2,r.

VcK(6+r)2−R2=7! (l+2  r)T 式が得られる。VcK(6+r)2-R2=7! (l+2r)T The formula is obtained.

D r CIニア7 A 、F A 7フ]−/F7薯
ζ−−−〜−・−−−−−一 C■〕 〔■〕弐に示されているように、円筒電極型プラズマC
VD装置においても膜堆積速度を制御しうる。この実験
結果を以下に示す。
As shown in [■]2, cylindrical electrode type plasma C
The film deposition rate can also be controlled in a VD device. The results of this experiment are shown below.

第1図のグロー放電装置3を使用し、排気口10に接続
する図示しない真空ポンプを作動させて真空槽4内を排
気した。次に、ボンベ13からSiH4ガスを流IFs
   (上記のFAにあたる)で供給露H↑ し、ボンベ14からアルゴン(Ar)ガスを流量200
 secm(standard c、c、 per m
1nute)で供給し、円筒電極型プラズマCVD装置
内へ導入した。また、高周波電源8からの高周波供給電
力R1を400 Wとし、アルミニウム製基体1と電極
9との距離2を2.Qcm、3.0 (J、4.Qcm
とし、基体1の半径r= 5 cmとし、電極9の長さ
しを55cmとした。排気口10と真空ポンプとの間に
設けたバタフライバルブ11を調節して真空槽4内の圧
力、即ち反応圧Pを0.5〜1.5 Torrに変化さ
せて、基体1の表面にa−3i膜を形成した。四重種型
質量分析計55を使用してS i H4分解率η、  
(上記のη41H今 にあたる)を測定すると共に、アルミニウム製基体1上
のa−3t膜堆積速度Dr (μm/hr)をフィッシ
ャースコープで測定した。なお、この実験では不純物ガ
スは使用していない。
Using the glow discharge device 3 shown in FIG. 1, the inside of the vacuum chamber 4 was evacuated by operating a vacuum pump (not shown) connected to the exhaust port 10. Next, the SiH4 gas is flowed from the cylinder 13 at IFs.
(corresponding to the above FA), supply dew H↑, and supply argon (Ar) gas from cylinder 14 at a flow rate of 200.
secm (standard c, c, per m
1nute) and introduced into a cylindrical electrode type plasma CVD apparatus. Further, the high frequency power supply R1 from the high frequency power source 8 is 400 W, and the distance 2 between the aluminum base 1 and the electrode 9 is 2. Qcm, 3.0 (J, 4.Qcm
The radius r of the base 1 was 5 cm, and the length of the electrode 9 was 55 cm. By adjusting the butterfly valve 11 provided between the exhaust port 10 and the vacuum pump, the pressure inside the vacuum chamber 4, that is, the reaction pressure P, is changed from 0.5 to 1.5 Torr, and a -3i film was formed. Using a quadruple seed mass spectrometer 55, the S i H4 decomposition rate η,
(corresponding to the above η41H) was measured, and the a-3t film deposition rate Dr (μm/hr) on the aluminum substrate 1 was measured using a Fisher scope. Note that no impurity gas was used in this experiment.

SiH<分解率η□は、四重種型質量分析計(MSQ−
150A型 日本真空技術(株)製)を用いて、高周波
電源R10ON時とOFF時のSiH4量を測定し、次
式より求めた。
SiH<decomposition rate η□ is determined using a quadruple species mass spectrometer (MSQ-
Using a model 150A (manufactured by Japan Vacuum Technology Co., Ltd.), the amount of SiH4 was measured when the high frequency power source R10 was turned on and off, and was determined from the following formula.

−−−−−(■〕 ここで、5IH2、Ar”は、それぞれm / e =
30.40のマススペクトルのピーク値である。即ち、
5iHnをマススペクトル測定すると5iHzにピーク
が表わ〆れるため、このピーク値をもって放電空間中の
5IH4の存在量を割り出したものである。
-------(■) Here, 5IH2, Ar" are each m / e =
The peak value of the mass spectrum is 30.40. That is,
When a mass spectrum of 5iHn is measured, a peak appears at 5iHz, and this peak value is used to determine the amount of 5IH4 present in the discharge space.

測定結果は、第2図、第3図に示す通りである。The measurement results are as shown in FIGS. 2 and 3.

第2図は1/PI!に対してDr7f了πフ7及びηS
iHヤの値をプロットしたものである。
Figure 2 is 1/PI! For Dr7f, πf7 and ηS
This is a plot of the values of iH.

第2図から明らかなように、各データは同一の曲線上に
分布しており、従ってo r 74Tコゴ正77エ’7
 s r 11.、あるいはDr cc yy s=H
,・pフッが成り立つ。
As is clear from Figure 2, each data is distributed on the same curve.
s r 11. , or Dr cc yy s=H
,・pfu holds true.

ここでF Si)+4 (即ち、前記〔43式における
FA)及びFAr(即ち、前記〔43式におけるF!+
)は一定であるから、前記した〔43式は実験結果によ
って確証されたといえる。換言すれば、a−3i系膜の
形成過程における製膜速度Drは、シリコン化合物の分
解率η1、電極間距離!、基体半径rにより定量的に制
御可能となったのである。
Here, F Si)+4 (i.e., FA in the above [43 formula)] and FAr (i.e., F!+ in the above [43 formula])
) is constant, so it can be said that the above-mentioned formula [43] has been confirmed by the experimental results. In other words, the film forming rate Dr in the process of forming the a-3i film is determined by the decomposition rate η1 of the silicon compound and the distance between the electrodes! , it became possible to quantitatively control the base radius r.

第3図は、1 / P l =0.5(Torr−am
) −’の条件下での測定結果を示したものである。こ
こで、η5ins=0.632の条件に設定されており
、この条件設定はFSi□ヤ=0.873Rf’・00
の関係を保持することによって実現できる。
FIG. 3 shows that 1/P l =0.5 (Torr-am
) shows the measurement results under the conditions of -'. Here, the condition is set as η5ins=0.632, and this condition setting is FSi□Y=0.873Rf'・00
This can be achieved by maintaining the relationship.

第3図においては、上記の各条件を保持しなからFS 
x 114 % RrO値を増加した場合のFs+o4
とDr/、/Tコ”TT7了との相関を示した。
In Figure 3, the FS is
x 114% Fs+o4 when increasing RrO value
It showed a correlation between Dr/, /Tco”TT7Ryo.

第3図から解るように、Dr/R]丁ワ7QCF s 
= H,/p弓i 11. + F Ar ’、あるい
はDrCCFs=、、。
As can be seen from Figure 3, Dr/R] Dingwa 7QCF s
= H, /p bow i 11. +F Ar', or DrCCFs=,.

・汀コ]■7丁24F 341ζ]]−πの閏、堡が成
立し、従ってa−3i系膜の形成過程における製膜速度
Drは、前記〔43式で表わされるようなF SiHヶ
依存性を示すことが確証されたといえる。
・Tanko] ■7cho24F 341ζ]] - π leap and barrier are established, therefore, the film forming rate Dr in the process of forming a-3i film depends on F SiH as expressed by the above [Equation 43] It can be said that it has been confirmed that it indicates gender.

以上の実験結果より、グロー放電分解によるa−3i系
膜の堆積速度は、シリコン化合物の分解による活性種の
基体への拡散輸送量に比例することが理解される。
From the above experimental results, it is understood that the deposition rate of the a-3i film due to glow discharge decomposition is proportional to the amount of diffusion and transport of active species to the substrate due to the decomposition of the silicon compound.

なお、5iHaのグロ」放電分解によるa−3i系膜の
形成過程は、次のように考えられる。
Incidentally, the process of forming an a-3i film by the groin discharge decomposition of 5iHa is thought to be as follows.

まず、 ! SiH,+e(高速)−3iH,+e(低速)−・・・
・・・−・−〔■〕 によってS i Haが励起され、励起されたS ll
−1aは、 4S iHへ一+S i’+S 1)−1’+s iH
,+s i H3+5H2・−一−−−−・−(X) のように分解し、生成したSiH’:  (n=Q〜3
)が基体表面に堆積してa−3i膜を形成するものと考
えられる。
first, ! SiH, +e (high speed) -3iH, +e (low speed) -...
...--- [■] S i Ha is excited, and the excited S ll
-1a is 4S iH to +S i'+S 1) -1'+s iH
, +s i H3+5H2・−1−−−・−(X) SiH′ generated by decomposing as follows: (n=Q~3
) is thought to be deposited on the substrate surface to form an a-3i film.

但し、eは電子、*は励起された状態を表わす。However, e represents an electron, and * represents an excited state.

こうした反応の進行の度合、即ちSiH4の分解率η、
i0.。は、放電予定空間内(グロー放電空間内)での
SiH,及びキャリアガスからなる原料ガスの滞留時間
τ(sec)により左右される。即ち、グロー放電空間
の容積をV(cJ)とすると、次式%式% ここで、To 、P oはそれぞれ標準状態における温
度、圧力であり、T、Pはそれぞれ放電予定であっても
成り立つ。
The degree of progress of this reaction, that is, the decomposition rate η of SiH4,
i0. . is influenced by the residence time τ (sec) of the raw material gas consisting of SiH and carrier gas in the planned discharge space (in the glow discharge space). That is, if the volume of the glow discharge space is V (cJ), then the following formula % Formula % Here, To and P o are the temperature and pressure in the standard state, respectively, and T and P hold true even if discharge is scheduled. .

また、グロー放電空間の容積■は空間の形状及び寸法に
よって容易に算出しうる値である。即ち、第1図の円筒
電極型グロー放電装置においては、■の値は次のように
なる。
Further, the volume (2) of the glow discharge space is a value that can be easily calculated based on the shape and dimensions of the space. That is, in the cylindrical electrode type glow discharge device of FIG. 1, the value of ■ is as follows.

V=2π14(f+r)” −rす =2 πL ff (l+2 r) −−−−−(XH
)SiH4の放電予定空間内における滞留時間τが長け
れば、S s Haの分解率η8.7も太き(なる。即
ち、両者間には近似的に次の関係が成立する。
V=2π14(f+r)” −rsu=2 πL ff (l+2 r) −−−−−(XH
) If the residence time τ of SiH4 in the scheduled discharge space is long, the decomposition rate η8.7 of S s Ha also becomes thick (becomes). That is, the following relationship approximately holds true between the two.

ηsiH+CC1e −” −−−−−−−−(X m
 )ただし、kは定数である。
ηsiH+CC1e −” −−−−−−−(X m
) However, k is a constant.

以上述べてきたように、SiH4の分解率η5.N。As mentioned above, the decomposition rate η5 of SiH4. N.

はP−β、r、R,、V、F AIF、F SiH4の
値を変化させることにより種々変更しろる。従って、前
記〔43式で示した製膜速度Drを決定するパラメータ
ーはすべて定量的に制御可能となり、所望の製膜速度で
a−8i系膜を製造することが可能となるのである。
can be variously changed by changing the values of P-β, r, R,, V, F AIF, and F SiH4. Therefore, all the parameters that determine the film-forming rate Dr shown in the above formula [43] can be controlled quantitatively, making it possible to manufacture the a-8i film at a desired film-forming speed.

本発明においては、a−3i系膜の製膜過程において、
シリコン化合物の分解率η。を20%〜90%の間に限
定したことが重要である。この範囲は、40%〜85%
の間とするのがより好ましい。即ち、膜堆積速度Drは
前記〔I〕式、〔■〕式に示したように分解率η、と比
例するので、本発明において分解率η、を上記の範囲に
限定することにより膜堆積速度Drを定量的に所望の範
囲に設定でき、均一で所定の品質を有するa−3i系膜
を所望の生産性をもって再現性良く製造できるのである
In the present invention, in the process of forming an a-3i film,
Decomposition rate η of silicon compounds. It is important to limit the amount to between 20% and 90%. This range is 40% to 85%
It is more preferable to set it between. That is, since the film deposition rate Dr is proportional to the decomposition rate η as shown in equations [I] and [■], in the present invention, by limiting the decomposition rate η to the above range, the film deposition rate can be increased. Dr can be quantitatively set within a desired range, and an a-3i film having a uniform, predetermined quality can be produced with desired productivity and good reproducibility.

Drccη1の関係より、η1が大きい程、Drの値も
大きくなり生産性が良い。しかし、η34.やが特に9
0%を超えて大きすぎると、アモルファス相中に微晶質
相が含まれ、a−3i系膜の均質性が損なわれる。こう
した膜を感光体に用いた場合には帯電能の低下を招く。
According to the relationship of Drcc η1, the larger η1 is, the larger the value of Dr is, and the better the productivity. However, η34. Especially 9
If it is too large, exceeding 0%, a microcrystalline phase will be included in the amorphous phase, and the homogeneity of the a-3i film will be impaired. When such a film is used in a photoreceptor, the charging ability is lowered.

また、η、が20%未満と小さすぎると、膜形成速度D
rの低下の他、a−3i:H膜中においてはS i H
z結合を行う水素が増えるため、光感度が低下し、必要
露光量が増加する。
Moreover, if η is too small, less than 20%, the film formation rate D
In addition to the decrease in r, in the a-3i:H film, S i H
Since more hydrogen undergoes z-bonding, photosensitivity decreases and the required exposure amount increases.

本発明においては、η1の値の制御を通じて膜堆積速度
1)rの制御が可能であり、従って上記のような問題は
生じない。
In the present invention, the film deposition rate 1)r can be controlled by controlling the value of η1, and therefore the above problem does not occur.

また、本発明においては、a−3i系膜の製膜過程にお
いて、グロー放電空間内での原料ガスの平均滞留時間τ
が0.1〜1.2秒となるようにしたことが重要である
。このτの値は、0.25〜1.0秒の範囲とすれば更
に好ましい。即ち、τとシリコン化合物の分解率η、と
の間に上記(XTI[]式の関係が成り立つため、τの
値を上記の範囲とすることにより、分解率η、の値を上
記したような範囲に容易に設定でき、従って均一で良好
な品質を有するa−3i系膜を所望の生産性で再現性良
く製造できる。しかも、τは前記[XI)式、(XI[
I)式に示すように定量的に予め所望の値に設定できる
ものである。感光体の性能面からみると、τが0.1秒
未満では小さすぎてηヶが小となり、Drの低下と共に
光感度が著しく劣化する。また、τが1.2秒を超える
と、η、が大きすぎて帯電電位が却って低下してしまう
In addition, in the present invention, in the film forming process of the a-3i film, the average residence time τ of the raw material gas in the glow discharge space
It is important that the time is 0.1 to 1.2 seconds. It is more preferable that the value of τ be in the range of 0.25 to 1.0 seconds. That is, since the relationship of the above (XTI[] formula holds between τ and the decomposition rate η of silicon compounds), by setting the value of τ within the above range, the value of the decomposition rate η can be adjusted as described above. Therefore, it is possible to manufacture a-3i film having uniform and good quality with desired productivity and good reproducibility.Moreover, τ can be easily set within the above-mentioned formula [XI], (XI[
As shown in formula I), it can be quantitatively set to a desired value in advance. From the viewpoint of the performance of the photoreceptor, if τ is less than 0.1 seconds, η becomes too small and η becomes small, and as the Dr decreases, the photosensitivity deteriorates significantly. Moreover, when τ exceeds 1.2 seconds, η is too large and the charging potential is rather reduced.

第4図は、本発明に使用しうる他のプラズマCVD装置
2を示すものである。
FIG. 4 shows another plasma CVD apparatus 2 that can be used in the present invention.

全体の構成は第1図の装置と殆ど同じである(第4図中
、第1図と同一符号を付されたものは同一機能部材を示
している)。第1図の装置と異なる点は、真空槽19の
底部に拡大された内径を有する排気室I2を設けたこと
である。これにより真空槽1日の排気側の内容積が大き
くなり、真空槽19の内部に導入されたシリコン化合物
ガス、キャリアガス等を排気口11から外部に吸引し、
槽内部の圧力を所定の値に保持する際に、より均一で安
定した吸引が可能である。
The overall configuration is almost the same as the device shown in FIG. 1 (in FIG. 4, the same reference numerals as in FIG. 1 indicate the same functional members). The difference from the apparatus shown in FIG. 1 is that an exhaust chamber I2 having an enlarged inner diameter is provided at the bottom of the vacuum chamber 19. As a result, the internal volume of the vacuum chamber 1 on the exhaust side increases, and the silicon compound gas, carrier gas, etc. introduced into the vacuum chamber 19 are sucked out from the exhaust port 11.
More uniform and stable suction is possible when the pressure inside the tank is maintained at a predetermined value.

第5図は、本発明に使用可能な平板型のグロー放電装置
を示したものである。
FIG. 5 shows a flat plate type glow discharge device that can be used in the present invention.

この装置45の真空槽44内では、平板状基板40が基
板保持部41上に固定され、ヒーター42で基板40を
所定温度に加熱し得るようになっている。基板40に対
向して、全面に亘ってほぼ均一にガス導出口が設けられ
た高周波電極17が配され基板40との間にグロー放電
が生ぜしめられる。なお、図中の20.21.22.2
3.27.28.29.36.38は各バルブ、31は
5il14又はガス状シリコン化合物の供給源、32は
不純物ガス(例えばB2H4,PIT3など)の供給源
、33はAr又はH2等のキャリアガス供給源である。
In a vacuum chamber 44 of this device 45, a flat substrate 40 is fixed on a substrate holder 41, and a heater 42 can heat the substrate 40 to a predetermined temperature. A high-frequency electrode 17 having gas outlet ports provided substantially uniformly over the entire surface is disposed facing the substrate 40, and a glow discharge is generated between the high-frequency electrode 17 and the substrate 40. In addition, 20.21.22.2 in the figure
3.27.28.29.36.38 are each valve, 31 is a supply source of 5il14 or gaseous silicon compound, 32 is a supply source of impurity gas (for example, B2H4, PIT3, etc.), and 33 is a carrier such as Ar or H2. It is a gas supply source.

このグロー放電装置において、まず支持体である例えば
/1基板40の表面を清浄化した後に真空槽44内に配
置し、真空槽44内のガス圧が1O−6Torrとなる
ようにバルブ36を調節して排気し、かつ基板40を所
定温度、特に100〜350℃(望ましくは150〜3
00℃)に加熱保持する。次いで、高純度の不活性ガス
をキャリアガスとして、51114ガス若しくはS i
 F 4ガス、並びに必要とあれば不純物ガスとしてC
H4、BzHh等を通り高周波電圧(例えば13.56
MHz)を印加する。これによって、上記各反応ガスを
電極43と基板40との間でグロー放電分解し、a−3
iまたは不純物ドープドa−3i:Hとして基板4o上
に堆積させる。堆積膜厚はクリステツブ(Taylor
−Ilobson社製)で測定した。
In this glow discharge device, first, the surface of the support, e.g. /1 substrate 40, is cleaned and then placed in a vacuum chamber 44, and the valve 36 is adjusted so that the gas pressure in the vacuum chamber 44 is 10-6 Torr. and evacuate the substrate 40 to a predetermined temperature, particularly 100 to 350°C (preferably 150 to 350°C).
00°C). Next, using a high purity inert gas as a carrier gas, 51114 gas or Si
F4 gas and C as an impurity gas if necessary
High frequency voltage (e.g. 13.56
MHz) is applied. As a result, each of the above reaction gases is decomposed by glow discharge between the electrode 43 and the substrate 40, and a-3
i or impurity doped a-3i:H on the substrate 4o. Deposited film thickness is determined by Christeb (Taylor).
- Ilobson).

このグロー放電装置においては、基体40と高周波電極
43との距離をβとすると、放電空間の容積Vとlとの
間には次の関係が成り立つ。
In this glow discharge device, assuming that the distance between the base 40 and the high-frequency electrode 43 is β, the following relationship holds between the discharge space volume V and l.

v cc /!−・−・〜−−−−(XIV)(XrV
)式を〔I〕式に代入すると、次の[XV)式が得られ
る。
vcc/! −・−・〜−−−−(XIV)(XrV
) is substituted into the formula [I], the following formula [XV) is obtained.

D r ’C7) n  ・F a/ffゴTフ]−下
−−−−(XV)また、第5図において基板40に平行
な面でグロー放電空間を切ったときの切断面の面積をS
とすると、放電空間の容積Vは次のように表わされる。
D r 'C7) n ・F a/ff GoT] -Bottom----(XV) Also, in Fig. 5, when the glow discharge space is cut on a plane parallel to the substrate 40, the area of the cut surface is S
Then, the volume V of the discharge space is expressed as follows.

v=s−g−・・−・−・−[XVI)これを前記(X
 I )式に代入すれば、平行平板型グロー放電分解装
置においては、ガスの平均滞留時間τは次式で表わされ
ることが解る。
v=s-g-...----[XVI) This is expressed as (X
By substituting into equation I), it can be seen that in the parallel plate type glow discharge decomposition device, the average residence time τ of gas is expressed by the following equation.

TPo    1/60(F、+FA)(FAは〔X■
〕弐のFS r IIMに、FIlはF Arにそれぞ
れ該当する。) これによりガスの平均滞留時間τは、前記した同心円筒
型グロー放電装置の場合と同様に制御可能であることが
理解される。
TPo 1/60 (F, +FA) (FA is [X■
] Two FS r IIM and FIl correspond to F Ar. ) From this, it is understood that the average residence time τ of the gas can be controlled in the same manner as in the case of the concentric cylindrical glow discharge device described above.

また、平板型のグロー放電装置においても、FA、FB
、■、β等の各製膜パラメータの値を変化させることに
より、定量的に膜堆積速度を決定でき、従って前記の円
筒型グロー放電装置の説明において既述したと同様の効
果を奏しうろことが理解される。
Also, in flat plate type glow discharge devices, FA, FB
By changing the values of each film forming parameter such as , ■, β, etc., the film deposition rate can be determined quantitatively, and therefore the same effect as that already mentioned in the explanation of the cylindrical glow discharge device can be achieved. is understood.

なお、前記〔I〕式は、いわゆる同心円筒型、平行平板
型以外の形状の装置であっても原理的に同様であり、成
立するものと考えられる。
It should be noted that the above formula [I] is considered to hold true even in devices having shapes other than the so-called concentric cylindrical type and parallel plate type.

本発明で製造されるアモルファスシリコン系薄膜として
は、a−3i:Hla−8i : F。
The amorphous silicon thin film produced in the present invention is a-3i:Hla-8i:F.

a−3i:)I+F、ボロンドープドP型a−3i:H
(B)、リンドープドn型a−3i : Tl (P)
、a−3i:C等を例示することができる。
a-3i:) I+F, boron doped P type a-3i:H
(B), phosphorus-doped n-type a-3i: Tl (P)
, a-3i:C, etc. can be exemplified.

また、本発明に用いるシリコン化合物としては、例えば
S s Ha 、S l zHいS i F4 、S 
1HFs等、通常用いられるすべてのシリコン供給源が
使用可能である。
In addition, examples of the silicon compound used in the present invention include S s Ha , S l zH S i F4 , S
All commonly used silicon sources can be used, such as 1HFs.

キャリアガスとしては、例えばアルゴン、水素等が使用
できる。
As the carrier gas, for example, argon, hydrogen, etc. can be used.

更に、a−3t系膜を形成する基体としては、導電性物
質、絶縁性物質及び半導体物質のいずれもが使用可能で
ある。
Furthermore, any of conductive materials, insulating materials, and semiconductor materials can be used as the substrate on which the a-3T film is formed.

基体上に設けられるa−3i系層は単層でな(とも差し
支えなく、他のa−3t系膜を介して基体上に別のa−
3t系膜を形成し、互いに異なる複数のa−3t系膜を
積層しても良い。例えば、基体上にa−3iC:H膜を
設け、その上にa−3t:H膜を設ける場合や、基体上
にa−3i:H膜を設け、その上にa−3iC:)I膜
を設けるような場合である。
The a-3i layer provided on the substrate must be a single layer (although there is no problem with the formation of another a-3i layer on the substrate via another a-3t layer).
A 3t-based film may be formed and a plurality of mutually different a-3t-based films may be laminated. For example, when an a-3iC:H film is provided on a substrate and an a-3t:H film is provided on it, or an a-3i:H film is provided on a substrate and an a-3iC:)I film is provided on it. This is a case where the

次に、本発明の方法により製造されたa−3i系膜を用
いて電子写真感光体を製造し、その特性を調べた。
Next, an electrophotographic photoreceptor was manufactured using the a-3i film manufactured by the method of the present invention, and its characteristics were investigated.

一方例1〜7、比較例1.2 第4図の円筒電極型プラズマCVD装置を用いて、第6
図に示す構成の各電子写真感光体(実施例1〜7、比較
例1.2)をそれぞれ製造した。
On the other hand, Examples 1 to 7 and Comparative Examples 1.2 and 6.
Each electrophotographic photoreceptor (Examples 1 to 7, Comparative Example 1.2) having the configuration shown in the figure was manufactured.

まず、平滑な表面を持つ清浄なAa支持体をグロー放電
装置の反応(真空)槽内に設置した。反応槽内を10−
 ’Torr台の高真空度に排気し、支持体温度を20
0℃に加熱した後高純度Arガスを導入し、0.5 T
orrの背圧のもとて周波数13.65M1lZ、電力
密度0.04W/cnlの高周波電力を印加し、15分
間の予備放電を行った。次いで、5i11.及びB 2
11 。
First, a clean Aa support with a smooth surface was placed in a reaction (vacuum) chamber of a glow discharge device. Inside the reaction tank 10-
' Evacuate to a high vacuum level on a Torr stand and lower the support temperature to 20
After heating to 0°C, high purity Ar gas was introduced and the temperature was 0.5 T.
A high frequency power having a frequency of 13.65 M1lZ and a power density of 0.04 W/cnl was applied under a back pressure of 0.05 m, and a preliminary discharge was performed for 15 minutes. Then 5i11. and B 2
11.

からなる反応ガスを導入し、流量比を調節した(A r
 + S I H4+ B2H4)混合ガスをグロー放
電分解することにより、電荷ブロッキング機能を担うa
−3i : HJI (B) 50、電荷発注、電位保
持及び電荷輸送機能を担うa−3i:11層(B)51
をそれぞれの堆積速度で所定厚さに製膜した。
A reaction gas consisting of A r was introduced and the flow rate ratio was adjusted (A r
+ S I H4+ B2H4) a that plays a charge blocking function by decomposing the mixed gas by glow discharge
-3i: HJI (B) 50, a-3i:11 layer (B) 51 responsible for charge ordering, potential holding and charge transport functions
A film was formed to a predetermined thickness at each deposition rate.

しかる後、3iH4及びCH4を供給し、流量比を調節
した(A r + S i H4+ Cl−1a)混合
ガスをグロー放電分解し、所定厚さのa −S i C
: )1表面改質層52を更に設け、電子写真感光体を
完成させた。
Thereafter, 3iH4 and CH4 were supplied and the flow rate ratio was adjusted (A r + Si H4 + Cl-1a), and the mixed gas was decomposed by glow discharge to form a-Si C of a predetermined thickness.
: ) 1 A surface modified layer 52 was further provided to complete the electrophotographic photoreceptor.

各層の構成は次の通りである。The structure of each layer is as follows.

表面改質層52:C含有量−60原子%(Si十〇=1
00原子%) 膜厚−0,3μm 光導電層51 :Bドーピング量はグロー放電分解法で
F B! H4/ F 5in4 = 0.5vol 
・ppm(H)=30原子%(S i + H=100
原子%) 膜厚−19μm 電荷ブロッキング層50:Bドーピング量はグロー放電
法でF 1&84 / F S i H4= 1500
vol・ppm (H)=30原子%(S i + H=100原子%) 膜厚=1μm また、上記実施例1〜7、比較例1.2の感光体の光導
電層の製膜パラメータは次のように設定した。
Surface modified layer 52: C content - 60 atomic% (Si 〇=1
00 atomic %) Film thickness -0.3 μm Photoconductive layer 51: B doping amount was determined by glow discharge decomposition method. H4/F 5in4 = 0.5vol
・ppm (H) = 30 atomic% (S i + H = 100
atomic%) Film thickness - 19 μm Charge blocking layer 50: B doping amount is F 1 & 84 / F Si H4 = 1500 by glow discharge method
vol.ppm (H) = 30 atomic % (S i + H = 100 atomic %) Film thickness = 1 μm In addition, the film forming parameters of the photoconductive layer of the photoreceptor of Examples 1 to 7 and Comparative Example 1.2 are as follows: It was set as follows.

反応圧カニ P =1.OTorr 電極長さ: L =55.0cm ドラム状基体温度: Ts =250℃ジボラン流量/
シラン流量: F e、H,/ F s=n、 =0.5vol−pp
m高周波供給電圧: Rt =400 Wそして、光導
電層の製膜にあたって、上記各製膜パラメータは一定と
し、シラン流量FS i 11+、アルゴン流ftp’
A−を変えることにより、グロー放電空間内での原料ガ
ス(S i H4+ 82111.+A r)の平均滞
留時間τを種々変化させ、これに応じてシラン分解率η
5.H*を変えた。そして、τ、ηS r 114の値
を測定し、また膜堆積速度Drを測定した。
Reaction pressure crab P = 1. OTorr Electrode length: L = 55.0cm Drum-shaped substrate temperature: Ts = 250℃ diborane flow rate/
Silane flow rate: F e, H, / F s = n, = 0.5 vol-pp
m High frequency supply voltage: Rt = 400 W In forming the photoconductive layer, the above film forming parameters were kept constant, silane flow rate FS i 11+, argon flow ftp'
By changing A-, the average residence time τ of the raw material gas (S i H4+ 82111.+A r) in the glow discharge space is varied, and the silane decomposition rate η is varied accordingly.
5. I changed H*. Then, the values of τ and ηS r 114 were measured, and the film deposition rate Dr was also measured.

更に、各実施例、比較例の感光体について、帯電電位■
。及び感度E 60.:を測定した。各々の測定結果は
第7図に示す通りである。
Furthermore, for the photoconductors of each example and comparative example, the charging potential ■
. and sensitivity E 60. : was measured. The results of each measurement are shown in FIG.

τは前記CX0式に従がい測定した。τ was measured according to the above-mentioned CX0 formula.

膜堆積速度Drは、スソシャースコープ(Fische
r社製)で測定し、シラン分解率η9.l、。は質!分
析計により前記した方法で測定した。
The film deposition rate Dr was measured using a Fische scope.
(manufactured by Company R), and the silane decomposition rate η9. l. Quality! It was measured by the method described above using an analyzer.

感光体特性試験に際しては、上記のようにして作成した
各電子写真感光体をU−Bix 1600改造機に装着
し、温度20℃、相対湿度60%の環境下で、次のよう
にして測定した。
For the photoreceptor characteristics test, each electrophotographic photoreceptor prepared as described above was installed in a modified U-Bix 1600 machine, and measured in the following manner under an environment of a temperature of 20°C and a relative humidity of 60%. .

帯電電位:Vo(V) 感光体への流れ込み電流=150μAの定電流で帯電さ
せた時の感光体表面電位。
Charging potential: Vo (V) Current flowing into the photoreceptor = surface potential of the photoreceptor when charged with a constant current of 150 μA.

感度:E”、:  (fax−sec)600 Vの感
光体表面電位を50Vに減衰させるのに必要な露光量。
Sensitivity: E": (fax-sec) Exposure amount required to attenuate the photoreceptor surface potential of 600 V to 50 V.

色温度3000 Kのハロゲンランプからの照射光をダ
イクロインク・ミラーにより630mm以上の長波長光
成分をシャープカットしたものを露光に用いた。
Light emitted from a halogen lamp with a color temperature of 3000 K was used for exposure, with long wavelength light components of 630 mm or more being sharply cut using a dichroic ink mirror.

また、平均滞留時間の変化に対するシラン分解率η、8
)l+の変化を第8図に示した。
Also, the silane decomposition rate η with respect to the change in average residence time, 8
) The changes in l+ are shown in Figure 8.

更に、平均滞留時間τ、シラン分解率ηSil+4の変
化に対する感光体特性の変化を、それぞれ第9図、第1
0図に示した。
Furthermore, changes in photoreceptor characteristics with respect to changes in average residence time τ and silane decomposition rate ηSil+4 are shown in FIGS. 9 and 1, respectively.
It is shown in Figure 0.

第7図〜第10図から明らかなようにシラン分解率を2
0〜90%(より好ましくは40〜85%)の範囲とし
、また平均滞留時間τを0.1〜1.2秒(より好まし
くは0.25〜1.0秒)の範囲とすることにより、膜
堆積速度を大きくできると共に高品質のa−5i系膜が
得られ、良好な帯電電位特性及び感度特性を有する感光
体の製造が可能となる。
As is clear from Figures 7 to 10, the silane decomposition rate was
By setting the average residence time τ in the range of 0 to 90% (more preferably 40 to 85%) and the average residence time τ in the range of 0.1 to 1.2 seconds (more preferably 0.25 to 1.0 seconds). , it is possible to increase the film deposition rate, obtain a high quality a-5i film, and manufacture a photoreceptor having good charging potential characteristics and sensitivity characteristics.

へ8発明の効果 本発明においては、上記〔I〕式が満たされた条件下で
グロー放電分解を行っているので、製膜条件を適宜に制
御しながら所望の特性を有する膜を所望の製膜速度で製
造でき、また原料から薄膜への変換効率を高めて粉体の
生成を抑制できる。
8. Effects of the Invention In the present invention, glow discharge decomposition is performed under conditions where the above formula [I] is satisfied, so a film having desired characteristics can be produced as desired while controlling the film forming conditions appropriately. It can be manufactured at film speeds, and the conversion efficiency from raw materials to thin films can be increased to suppress the generation of powder.

0.1〜1.2秒の範囲内となるようにグロー放電分解
を行っているので、製膜条件を適切に定量的に制御しな
がら高速度に高品質の膜を形成できる。
Since glow discharge decomposition is carried out within the range of 0.1 to 1.2 seconds, a high quality film can be formed at high speed while controlling the film forming conditions appropriately and quantitatively.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであって、第1図はグ
ロー放電装置の概略断面図、第2図、第3図は各製膜パ
ラメータ及び膜堆積速度の相互の関係を示す各グラフ、 第4図、第5図はそれぞれ他のグロー放電装置の各概略
断面図、 第6図は電子写真感光体の一例を示す一部断面図、 第7図は各電子写真感光体の特性変化を比較して示す図
、 第8図は平均滞留時間とシラン分解率との関係を示すグ
ラフ、 第9図は平均滞留時間の変化に対する電子写真特性の変
化を示すグラフ、 第10図はシラン分解率の変化に対する電子写真特性の
変化を示すグラフ である。 なお、図面に示す符号において、 1−−−−−−・−・・・円筒状基板 2.3.45−・−・−・−一−−−−グロー放電装置
4.19.44− ・−・−−−−−一真空槽5−−−
−−−−−−−−−−・ガス導出ロア、42−・−・−
・−・・・−ヒーター9.43−  ・−−−−m−電
極 8−−−−−−−・・高周波電源 13.14.15−・・−・−−−・−ガス供給源17
.20.21.22.27.28.29.36−−−〜
−・−−−−−−バルブ 40−−−−〜−−−−−−−平板状基板55−−−−
−−〜−−−−質量分析計である。 代理人  弁理士  逢 坂   末 弟1図 第5図
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of a glow discharge device, and FIGS. 2 and 3 are graphs showing the mutual relationship between each film forming parameter and film deposition rate. , Figures 4 and 5 are schematic cross-sectional views of other glow discharge devices, Figure 6 is a partial cross-sectional view showing an example of an electrophotographic photoreceptor, and Figure 7 is a diagram showing changes in characteristics of each electrophotographic photoreceptor. Fig. 8 is a graph showing the relationship between average residence time and silane decomposition rate, Fig. 9 is a graph showing changes in electrophotographic characteristics with respect to changes in average residence time, and Fig. 10 is a graph showing silane decomposition rate. 3 is a graph showing changes in electrophotographic characteristics with respect to changes in ratio. In addition, in the reference numerals shown in the drawings, 1--------... Cylindrical substrate 2.3.45---- Glow discharge device 4.19.44-- −・−−−−−1 vacuum chamber 5−−−
−−−−−−−−−・Gas outlet lower, 42−・−・−
・-------Heater 9.43- ・----m-Electrode 8-------- High frequency power supply 13.14.15-----Gas supply source 17
.. 20.21.22.27.28.29.36---~
-・---------Valve 40------------Flat substrate 55----
-------It is a mass spectrometer. Agent Patent Attorney Aisaka Youngest brother Figure 1 Figure 5

Claims (1)

【特許請求の範囲】 1、少なくともシリコン化合物及びキャリアガスを含む
ガスを供給し、グロー放電分解によって基体上にアモル
ファスシリコン系膜を形成するアモルファスシリコン系
膜の製造方法において、下記〔 I 〕式が満たされた条
件下で、グロー放電空間内での前記シリコン化合物の分
解率が20〜90%となりかつ前記グロー放電空間内で
の前記ガスの平均滞留時間が0.1〜1.2秒となるよ
うに、前記グロー放電分解を行うことを特徴とするアモ
ルファスシリコン系膜の製造方法。 〔 I 〕式: Dr■η_A・F_A・√(V)/l√(F_B+F_
A)〔ただし、Drは前記アモルファスシリコン系膜の
堆積速度、η_Aは前記シリコン化合物の分解率、F_
Aは前記シリコン化合物の供給流量、F_Bは前記キャ
リアガスの供給流量、Vはグロー放電空間の体積、lは
前記基体とグロー放電電極との間の距離である。〕
[Scope of Claims] 1. A method for producing an amorphous silicon film in which an amorphous silicon film is formed on a substrate by glow discharge decomposition by supplying a gas containing at least a silicon compound and a carrier gas, wherein the following formula [I] is Under the satisfied conditions, the decomposition rate of the silicon compound in the glow discharge space is 20 to 90%, and the average residence time of the gas in the glow discharge space is 0.1 to 1.2 seconds. A method for producing an amorphous silicon film, characterized in that the glow discharge decomposition is performed as described above. [I] Formula: Dr■η_A・F_A・√(V)/l√(F_B+F_
A) [where, Dr is the deposition rate of the amorphous silicon film, η_A is the decomposition rate of the silicon compound, F_
A is the supply flow rate of the silicon compound, F_B is the supply flow rate of the carrier gas, V is the volume of the glow discharge space, and l is the distance between the base body and the glow discharge electrode. ]
JP62056113A 1987-03-11 1987-03-11 Production of amorphous silicon film Pending JPS63223178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056113A JPS63223178A (en) 1987-03-11 1987-03-11 Production of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056113A JPS63223178A (en) 1987-03-11 1987-03-11 Production of amorphous silicon film

Publications (1)

Publication Number Publication Date
JPS63223178A true JPS63223178A (en) 1988-09-16

Family

ID=13018026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056113A Pending JPS63223178A (en) 1987-03-11 1987-03-11 Production of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS63223178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
EP1123423A1 (en) * 1998-09-16 2001-08-16 Torrex Equipment Corporation High rate silicon deposition method at low pressures
WO2024154233A1 (en) * 2023-01-17 2024-07-25 株式会社Kokusai Electric Substrate processing method, method for manufacturing semiconductor device, substrate processing device, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
US6444277B1 (en) 1993-01-28 2002-09-03 Applied Materials, Inc. Method for depositing amorphous silicon thin films onto large area glass substrates by chemical vapor deposition at high deposition rates
EP1123423A1 (en) * 1998-09-16 2001-08-16 Torrex Equipment Corporation High rate silicon deposition method at low pressures
EP1123423A4 (en) * 1998-09-16 2005-05-11 Torrex Equipment Corp High rate silicon deposition method at low pressures
WO2024154233A1 (en) * 2023-01-17 2024-07-25 株式会社Kokusai Electric Substrate processing method, method for manufacturing semiconductor device, substrate processing device, and program

Similar Documents

Publication Publication Date Title
US6755151B2 (en) Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
JP3812232B2 (en) Polycrystalline silicon thin film forming method and thin film forming apparatus
JPS62149879A (en) Formation of deposited film
JPH01306565A (en) Formation of deposited film
JPH0459390B2 (en)
JPS63223178A (en) Production of amorphous silicon film
JPS61222121A (en) Functional deposit-film and method and apparatus for manufacturing said film
JPS63223177A (en) Production of amorphous silicon film
JPS6042766A (en) Formation of deposited film
JPS63258016A (en) Manufacture of amorphous thin film
JPS6042765A (en) Formation of deposited film
JPS63234513A (en) Deposition film formation
JPS63223181A (en) Production of amorphous silicon film
RU2769751C1 (en) Device for deposition of ultra-thick layers of polycrystalline silicon
JPS63223179A (en) Production of amorphous silicon film
JPS63223180A (en) Production of amorphous silicon film
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPS637373A (en) Deposited film forming device by plasma cvd method
JPS61247020A (en) Deposition film forming method
JPS6257710B2 (en)
JPH01275761A (en) Deposit film-forming equipment
JP4165855B2 (en) Thin film manufacturing method
JPS6357776A (en) Formation of deposited film
JP2537191B2 (en) Deposited film formation method
JPS63234516A (en) Formation of thin film multilayer structure