JPH07288194A - Plasma treatment apparatus - Google Patents
Plasma treatment apparatusInfo
- Publication number
- JPH07288194A JPH07288194A JP6079015A JP7901594A JPH07288194A JP H07288194 A JPH07288194 A JP H07288194A JP 6079015 A JP6079015 A JP 6079015A JP 7901594 A JP7901594 A JP 7901594A JP H07288194 A JPH07288194 A JP H07288194A
- Authority
- JP
- Japan
- Prior art keywords
- high frequency
- electrode
- frequency power
- film
- plasma processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体デバイスとしての
電子写真用感光体デバイス、画像入力用ラインセンサ
ー、撮像デバイス、光起電力デバイスなとに有用な結晶
質、非単結晶質の機能性堆積膜を良好に形成し得るプラ
ズマCVD装置、半導体デバイスや、光学素子としての
絶縁膜、金属配線などを好適に形成し得るスパッタ装
置、或いは半導体デバイスなどのエッチング装置などの
プラズマ処理装置に関し、更に詳しくは、特にプラズマ
を励起源として用い基体の処理を行うプラズマ処理装置
及び処理方法であって、特に20MHz以上、450M
Hz以下の高周波を好適に使用可能なプラズマ処理装置
に関する。FIELD OF THE INVENTION The present invention relates to a crystalline or non-single crystalline functional deposition useful for electrophotographic photoreceptor devices as semiconductor devices, image input line sensors, imaging devices, photovoltaic devices, and the like. More specifically, the present invention relates to a plasma CVD apparatus capable of favorably forming a film, a semiconductor device, a sputtering apparatus capable of suitably forming an insulating film as an optical element, a metal wiring, etc., or a plasma processing apparatus such as an etching apparatus for a semiconductor device, etc. Is a plasma processing apparatus and processing method for processing a substrate using plasma as an excitation source.
The present invention relates to a plasma processing apparatus that can suitably use a high frequency of Hz or less.
【0002】[0002]
【従来の技術】半導体などで使用されているプラズマ処
理装置はそれぞれの用途に応じてさまざまな方法があ
る。例えば成膜などではプラズマCVD装置やプラズマ
CVD法を用いた酸化膜、窒化膜の形成やアモルファス
シリコン系の半導体膜、又スパッタリング装置やスパッ
タリング法を用いた金属配線膜、エッチング装置や方法
を用いた微細加工技術などさまざまにその特徴を生かす
装置、方法が使用されている。2. Description of the Related Art There are various methods for plasma processing apparatuses used in semiconductors and the like, depending on their respective applications. For example, in film formation, an oxide film and a nitride film are formed using a plasma CVD apparatus or a plasma CVD method, an amorphous silicon semiconductor film, a metal wiring film using a sputtering apparatus or a sputtering method, an etching apparatus and a method are used. A variety of devices and methods are used that take advantage of their features such as microfabrication technology.
【0003】更に、近年膜質及び処理能力向上に対する
要望も強くなっており、さまざな工夫も検討されてい
る。Further, in recent years, there has been a strong demand for improvement in film quality and processing capacity, and various measures have been studied.
【0004】特に高周波電力を用いたプラズマプロセス
は放電の安定性が高く、酸化膜や窒化膜などの絶縁性の
材料形成にも使用出来るなど、さまざまな利点により使
用されている。In particular, a plasma process using high frequency power has a high discharge stability and can be used for forming an insulating material such as an oxide film or a nitride film.
【0005】従来、プラズマCVDなどのプラズマプロ
セスに用いられている放電用高周波電源の発振周波数は
一般的に13.56MHzが用いられている。この従来
の堆積膜形成に一般的に多く用いられているプラズマC
VD装置の一例を図5に示す。図5に示されるプラズマ
CVD装置は円筒状の電子写真感光体用基体上にアモル
ファスシリコン膜(以下、「a−Si膜」と記す)を形
成する場合に好適な成膜装置である。以下、この装置を
用いたa−Si膜の形成方法を説明する。Conventionally, 13.56 MHz is generally used as the oscillation frequency of the discharge high frequency power source used in plasma processes such as plasma CVD. Plasma C, which is commonly used in the conventional deposition film formation
An example of the VD device is shown in FIG. The plasma CVD apparatus shown in FIG. 5 is a film forming apparatus suitable for forming an amorphous silicon film (hereinafter referred to as “a-Si film”) on a cylindrical electrophotographic photosensitive member substrate. Hereinafter, a method for forming an a-Si film using this apparatus will be described.
【0006】減圧可能な反応容器501を円筒状に形成
し、それを第2の電極506とし、反応容器501内に
対向電極として被成膜基体(電子写真感光体用基体)を
兼ねる第1の電極502が配置されている。第1の電極
502には補助基体507,508が取りつけられてお
り、第1の電極の一部を成している。膜厚及び膜特性の
均一性を向上させるために、第2の電極506の円筒軸
方向の寸法は第1の電極502及び補助基体507,5
08の円筒軸方向の長さと同程度に設定されている。第
1の電極502は内部の加熱ヒーター503により内側
より加熱される。高周波電源512は整合回路511を
介して第2の電極506に1か所のみ接続されている。
505は真空排気口、504はメインバルブ、510は
原料ガス導入バルブ、509は原料ガス導入口である。A reaction vessel 501 capable of depressurizing is formed into a cylindrical shape, which serves as a second electrode 506, and a first electrode which also serves as a counter electrode in the reaction vessel 501 and which also serves as a film-forming substrate (substrate for electrophotographic photoreceptor). An electrode 502 is arranged. Auxiliary substrates 507 and 508 are attached to the first electrode 502 and form a part of the first electrode. In order to improve the uniformity of the film thickness and the film characteristics, the dimension of the second electrode 506 in the cylindrical axis direction is set to the first electrode 502 and the auxiliary bases 507 and 5.
The length is set to be substantially the same as the length 08 of the cylinder in the axial direction. The first electrode 502 is heated from the inside by a heater 503 inside. The high frequency power supply 512 is connected to the second electrode 506 at only one place via the matching circuit 511.
Reference numeral 505 is a vacuum exhaust port, 504 is a main valve, 510 is a source gas introducing valve, and 509 is a source gas introducing port.
【0007】堆積室501内に第1の電極を兼ねる被成
膜基体を設置し、メインバルブ504を開け、排気口5
05を介して堆積室501を一旦排気する。その後原料
ガス導入口510を開し、不活性ガスを導入し、所定の
圧力になるように流量を調整する。加熱用ヒーター50
3に通電し、被成膜基体を100〜400℃の所望の温
度に加熱する。A film-forming substrate also serving as a first electrode is installed in the deposition chamber 501, a main valve 504 is opened, and an exhaust port 5 is provided.
The deposition chamber 501 is once evacuated via 05. After that, the raw material gas introduction port 510 is opened, an inert gas is introduced, and the flow rate is adjusted so as to reach a predetermined pressure. Heating heater 50
3 is energized to heat the film formation substrate to a desired temperature of 100 to 400 ° C.
【0008】その後、原料ガス導入バルブ510を介し
て成膜用の原料ガス、例えばシランガス、ジシランガ
ス、メタンガス、エタンガスなどの材料ガスを、またジ
ボランガス、ホスフィンガスなどのドーピングガスを導
入し、数mTorrから数Torrの圧力に維持するよ
う排気速度を調整する。After that, a raw material gas for film formation, for example, a raw material gas such as silane gas, disilane gas, methane gas, ethane gas, or a doping gas such as diborane gas or phosphine gas is introduced through a raw material gas introduction valve 510, and from several mTorr. Adjust the pumping speed to maintain a pressure of a few Torr.
【0009】高周波電源512より13.56MHzの
高周波電力を整合回路511を介して第2の電極506
に供給して、第2の電極506と第1の電極502との
間にプラズマ放電を発生させ原料ガスを分解することに
より、第1の電極を兼ねた被成膜基体502上にa−S
i膜を堆積する。この間、第1の電極は加熱ヒーター5
03により100〜400℃程度に維持されている。A high frequency power of 13.56 MHz is supplied from a high frequency power supply 512 to a second electrode 506 via a matching circuit 511.
To generate a plasma discharge between the second electrode 506 and the first electrode 502 to decompose the raw material gas, so that a-S is deposited on the film formation substrate 502 which also serves as the first electrode.
Deposit i-film. During this time, the first electrode is the heater 5
03, the temperature is maintained at about 100 to 400 ° C.
【0010】必要に応じて不図示の回転機構により被成
膜基体502を回転させ、周方向の膜厚分布を改善して
も良い。If necessary, the film formation substrate 502 may be rotated by a rotation mechanism (not shown) to improve the film thickness distribution in the circumferential direction.
【0011】この成膜方法で電気写真用感光体の性能を
満足するa−Si膜を得るための堆積速度は、例えば1
時間当たり0.5〜6μm程度の堆積速度であり、それ
以上に堆積速度を上げると感光体としての特性を得るこ
とが出来ない場合がある。又、一般に電子写真用感光体
としてa−Si膜を利用する場合、帯電能を得るために
少なくとも20〜30μmの膜厚が必要であり、電子写
真用感光体を製造するためには長時間を要していた。こ
のため、感光体としての特性を落とさずに製造時間を短
縮する技術が切望されていた。The deposition rate for obtaining an a-Si film satisfying the performance of the electrophotographic photoreceptor by this film forming method is, for example, 1.
The deposition rate is about 0.5 to 6 μm per hour, and if the deposition rate is further increased, the characteristics of the photoconductor may not be obtained. Further, generally, when an a-Si film is used as an electrophotographic photoreceptor, a film thickness of at least 20 to 30 μm is required to obtain charging ability, and it takes a long time to manufacture the electrophotographic photoreceptor. I needed it. Therefore, there has been a strong demand for a technique for reducing the manufacturing time without deteriorating the characteristics of the photoconductor.
【0012】ところで近年、平行平板型のプラズマCV
D装置を用い20MHz以上の高周波電源を用いたプラ
ズマCVD法の報告があり(Plasma Chemistry and Pla
smaProcessing, Vol.7, No.3, (1987) p267-273)、放
電周波数を従来の13.56MHzより高くすることで
堆積膜の性能を落とさずに堆積速度を向上させることが
出来る可能性が示されており、注目されている。又この
放電用周波数を高くする報告はスパッタリングなどでも
なされ、近年広くその優位性が検討されている。By the way, in recent years, a parallel plate type plasma CV is used.
There is a report of a plasma CVD method using a high frequency power source of 20 MHz or more using a D device (Plasma Chemistry and Pla
smaProcessing, Vol.7, No.3, (1987) p267-273), there is a possibility that the deposition rate can be improved without lowering the performance of the deposited film by increasing the discharge frequency higher than the conventional 13.56 MHz. Shown and noted. In addition, reports of increasing the frequency for discharge have also been made by sputtering, etc., and its superiority has been widely studied in recent years.
【0013】そこで、堆積速度向上のために放電周波数
を従来の13.56MHzより高い周波数の高周波電力
に替え、成膜手順は従来と同様の方法で成膜を行うと確
かに従来より高い堆積速度で作成することが出来ること
は確認出来た。しかし、この場合、13.56MHzの
放電周波数では問題にならなかった以下のような問題が
新たに発生する場合があることが判明した。Therefore, in order to improve the deposition rate, the discharge frequency is changed to a high frequency power having a frequency higher than the conventional 13.56 MHz, and the deposition procedure is performed in the same manner as the conventional deposition. It was confirmed that it can be created with. However, in this case, it became clear that the following problems, which were not a problem at the discharge frequency of 13.56 MHz, might newly occur.
【0014】すなわち、被成膜基体を回転させながら成
膜を行うと、確かに従来の膜の特性とほぼ同等の膜が堆
積され、周方向の膜厚分布も当然ながら均一に堆積する
ことが出来る。しかし、成膜炉のコスト低減、メンテナ
ンスの煩雑さを少なくするといった目的で被成膜基体の
回転機構を省略した堆積膜形成装置を使い、被成膜基体
を静止状態で成膜を行うと、周方向の膜厚分布が非常に
大きく発生することが判明した。つまり、被成膜基体を
回転させている時には表面に現れなかったが、実際には
成膜炉内のプラズマ状態は周方向でかなり偏在化してお
り、堆積速度も場所により大きく異なっていることが明
確になった。That is, when the film formation is carried out while rotating the film formation substrate, a film having characteristics substantially the same as those of the conventional film is deposited, and naturally the film thickness distribution in the circumferential direction is also uniform. I can. However, when the deposition film forming apparatus in which the rotation mechanism of the film formation substrate is omitted is used for the purpose of reducing the cost of the film formation furnace and reducing the complexity of maintenance, and the film formation substrate is subjected to film formation in a stationary state, It was found that the film thickness distribution in the circumferential direction was extremely large. In other words, although it did not appear on the surface when the film-forming substrate was rotated, the plasma state in the film-forming furnace was actually unevenly distributed in the circumferential direction, and the deposition rate also varied greatly depending on the location. Became clear.
【0015】更に、周方向で異なっているのは堆積速度
だけではなく、堆積膜の電子写真的な特性もかなり場所
により異なっていることが分った。この特性のムラは堆
積された膜の膜厚差のみでは説明が出来ないことから堆
積膜の膜質そのものが周方向で異なっているものと推測
される。又、周方向の膜質の良好な部分では被処理基体
を回転させて成膜を行った感光ドラムよりも特性に優
れ、反対に周方向の膜質の劣っている部分では回転させ
たドラムの特性よりも劣っていることが判明した。すな
わち、被成膜基体を回転させて成膜した感光ドラムでは
特性の劣った膜と優れた膜が積層状となり、平均的な特
性が現れていると推測される。Further, it was found that not only the deposition rate but also the electrophotographic characteristics of the deposited film differed considerably depending on the location in the circumferential direction. Since the unevenness of this characteristic cannot be explained only by the difference in the thickness of the deposited film, it is presumed that the quality of the deposited film itself is different in the circumferential direction. Further, in the portion where the film quality in the circumferential direction is good, the characteristics are superior to the photosensitive drum on which the film is formed by rotating the substrate to be processed, and conversely, in the portion where the film quality is inferior in the circumferential direction, the characteristics of the rotated drum are Turned out to be inferior. That is, it is presumed that, on the photosensitive drum formed by rotating the film-forming substrate, a film having inferior characteristics and a film having excellent characteristics are laminated, and average characteristics appear.
【0016】以上より、従来の13.56MHzより高
い周波数の高周波電力による成膜では、被成膜基体を静
止した状態で成膜した場合に周方向の膜厚分布、膜特性
にムラが生じ、その結果、電子写真用感光体のような比
較的大面積の被加工体においては実用上問題となるよう
な画像ムラが生じる場合があった。As described above, in the conventional film formation by the high frequency power having a frequency higher than 13.56 MHz, the film thickness distribution in the circumferential direction and the film characteristics are uneven when the film formation substrate is formed in a stationary state. As a result, image unevenness, which is a problem in practical use, may occur in a relatively large area work piece such as an electrophotographic photoreceptor.
【0017】更には、被処理基体を回転させて成膜を行
う場合においては、プラズマの偏在化のために特性の優
れた膜と劣った膜の積層が避けられず、トータルとして
の膜特性を劣化させるために本来あるべき良好な膜特性
が得られないという問題があった。Further, in the case of forming a film by rotating the substrate to be processed, it is inevitable to stack a film having excellent characteristics and a film having inferior characteristics due to uneven distribution of plasma, so that the total film characteristics will be improved. Due to the deterioration, there is a problem that the desired good film characteristics cannot be obtained.
【0018】このような堆積速度、膜特性のムラは電子
写真用感光体のみならず、画像入力用ラインセンサー、
撮像デバイス、光起電力デバイスなどに有用な結晶質、
又は非単結晶質の機能性堆積膜を形成する場合に大きな
問題となる。又ドライエッチング、スパッタなどのほか
のプラズマプロセスにおいても、放電周波数を上げた場
合に同様の処理ムラが生じ、このままでは実用上大きな
問題になってくる。Such unevenness of the deposition rate and the film characteristics is caused not only by the electrophotographic photoreceptor but also by the image input line sensor,
Crystalline materials useful for imaging devices, photovoltaic devices, etc.
Or, it becomes a big problem when a non-single crystalline functional deposited film is formed. Also, in other plasma processes such as dry etching and sputtering, similar process unevenness occurs when the discharge frequency is increased, and if it is left as it is, it becomes a serious problem in practical use.
【0019】[0019]
【発明が解決しようとする課題】本発明の目的は、上述
のような従来の問題点を克服し、従来のプラズマプロセ
スでは達成出来なかった高速の処理速度で比較的大面積
の基体を均一にプラズマ処理することが可能なプラズマ
処理装置を提供することにある。SUMMARY OF THE INVENTION The object of the present invention is to overcome the above-mentioned problems of the prior art and to make a relatively large area of a substrate uniform at a high processing speed which cannot be achieved by the conventional plasma process. An object of the present invention is to provide a plasma processing apparatus capable of performing plasma processing.
【0020】更には、製造時間が短く低コストであり、
例えば画像特性に優れた電子写真用感光体を製造するの
にも最適なプラズマ処理装置を提供することを目的とす
る。Further, the manufacturing time is short and the cost is low,
For example, it is an object of the present invention to provide a plasma processing apparatus which is most suitable for manufacturing an electrophotographic photoreceptor having excellent image characteristics.
【0021】[0021]
【課題を解決するための手段】上記目的を達成する本発
明のプラズマ処理装置は、排気手段と原料ガス供給手段
を備えた真空気密が可能な堆積室内に設置された被成膜
基体を兼ねる円筒状の第1の電極と、この第1の電極を
外包し、かつ同心円上に設置された円筒状の第2の電極
に周波数20MHzから450MHzの高周波電力を第
2の電極に印加することにより第1の電極と第2の電極
の間で放電を生じさせるプラズマ処理装置において、絶
縁性部材と導電性部材の積層構造からなる高周波電力導
入手段を、絶縁性部材を第2の電極側として第2の電極
の外周に、外周を一周せしめて覆い、第2の電極への高
周波電力の印加を該高周波電力導入手段を介して行うよ
うにしたことを特徴としている。A plasma processing apparatus according to the present invention which achieves the above object, is a cylinder that also serves as a film-forming substrate installed in a vacuum-tight deposition chamber provided with an exhaust unit and a source gas supply unit. The first electrode in the shape of a ring and the second electrode in the shape of a cylinder, which encloses the first electrode and is installed concentrically, applies high-frequency power with a frequency of 20 MHz to 450 MHz to the second electrode. In a plasma processing apparatus for generating a discharge between a first electrode and a second electrode, a high-frequency power introducing unit having a laminated structure of an insulating member and a conductive member is provided as a second electrode with the insulating member on the second electrode side. It is characterized in that the outer circumference of the electrode is covered with a single circumference so that the high frequency power is applied to the second electrode through the high frequency power introducing means.
【0022】[0022]
【作用】本発明者は、被成膜基体を静止状態で20〜4
50MHzの高周波を用いて成膜を行った場合の周方向
の膜厚及び膜特性ムラを解決するために鋭意検討を行っ
た。The present inventor has made the film-forming substrate 20 to 4 in a stationary state.
In order to solve the film thickness and film characteristic unevenness in the circumferential direction when the film formation was performed using a high frequency of 50 MHz, an intensive study was conducted.
【0023】まず、膜厚ムラが高周波電力を導入する位
置とどのような位置関係で発生するのかを確認する実験
を行った。その結果、予想に反して高周波電力を導入す
る位置と相関なく膜厚分布が発生することが判明した。
この理由については現在定かではないが、20MHz以
上、450MHz以下という、いわゆるVHF領域の高
周波を用いる場合、印加される第2の電極(カソード)
のインダクタンス成分が無視出来なくなるものと考えら
れる。しかし、単にインダクタンスのみが問題となる場
合には高周波を印加した側で堆積速度が早くなり、印加
位置より物理的な距離が遠くなる反対側で堆積速度が遅
くなるはずである。位置関係に相関が出ないということ
は、この周波数領域では、第2の電極のインダクタンス
のみが問題となるだけではなく第2の電極と第1の電極
の間のキャパシタンスも問題となっている可能性があ
る。つまり、20〜450MHzという周波数領域では
成膜炉自体がインダクタンスとキャパシタンスの直列共
振回路を形成しており、共振条件、 ω=1/(L・C)1/2 を満たす位置で高周波パワーが高まり、原料ガスの分解
速度が高まるものと推測される。ここでωは角速度、L
はインダクタンス、Cはキャパシタンスである。First, an experiment was conducted to confirm the positional relationship between the film thickness unevenness and the position where the high frequency power is introduced. As a result, it was found that, contrary to the expectation, the film thickness distribution was generated regardless of the position where the high frequency power was introduced.
The reason for this is not clear at present, but when a high frequency in the so-called VHF region of 20 MHz or more and 450 MHz or less is used, the second electrode (cathode) applied
It is considered that the inductance component of cannot be ignored. However, if only the inductance is a problem, the deposition rate should be faster on the side to which the high frequency is applied and slower on the opposite side where the physical distance is longer than the application position. The fact that there is no correlation in the positional relationship means that not only the inductance of the second electrode is a problem in this frequency range, but also the capacitance between the second electrode and the first electrode may be a problem. There is a nature. In other words, the deposition furnace itself forms a series resonance circuit of inductance and capacitance in the frequency range of 20 to 450 MHz, and the high frequency power increases at the position satisfying the resonance condition ω = 1 / (L · C) 1/2. It is speculated that the decomposition rate of the raw material gas will increase. Where ω is the angular velocity, L
Is inductance and C is capacitance.
【0024】更に、成膜後の被成膜基体に堆積した膜の
電気特性を測定したところ、堆積速度の早い場所の膜の
方が遅い場所の膜よりも良好な特性を示すことが判明し
た。通常、堆積速度は遅いほど膜特性は良好となるが、
この場合には原料ガスに充分な高周波エネルギーを供給
することが膜特性の向上にに寄与しているものと思われ
る。Further, when the electric characteristics of the film deposited on the film-forming substrate after film formation were measured, it was found that the film at the place where the deposition rate was faster exhibited better properties than the film at the place where the deposition rate was slow. . Generally, the slower the deposition rate, the better the film properties,
In this case, it is considered that supplying sufficient high frequency energy to the source gas contributes to the improvement of the film characteristics.
【0025】以上の実験から、20〜450MHzの高
周波を用いる成膜において、第2の電極の周方向に均一
にパワーを入れることさえ出来れば被成膜基体を回転さ
せなくても充分な周方向の膜厚の均一性が得られ、か
つ、充分な電力を供給出来るため、堆積膜の膜質をも向
上させ得る可能性があるとの見解に至った。From the above experiment, in the film formation using a high frequency of 20 to 450 MHz, if the power can be evenly applied in the circumferential direction of the second electrode, it is possible to rotate the film-forming substrate sufficiently in the circumferential direction. It was concluded that the film quality of the deposited film could be improved because the film thickness uniformity can be obtained and sufficient electric power can be supplied.
【0026】本発明は以上の知見に基づき、第2の電極
の外周を全周に渡って絶縁性部材で覆い、更に該絶縁部
材の外周を全周に渡って導電性部材で覆うことにより、
第2の電極の全周に渡ってLC共振条件を満たすことに
より周方向全体に充分高周波電力を供給しようとするも
のである。According to the present invention, based on the above findings, by covering the outer circumference of the second electrode with the insulating member over the entire circumference, and further covering the outer circumference of the insulating member with the conductive member over the entire circumference,
By satisfying the LC resonance condition over the entire circumference of the second electrode, it is intended to supply sufficient high frequency power in the entire circumferential direction.
【0027】以下、図面を用いて本発明を詳細に説明す
る。The present invention will be described in detail below with reference to the drawings.
【0028】図1は本発明の方法を行うための装置の一
例を模式的に示したものであり、電子写真用感光体のよ
うな円筒状の基体の堆積膜の作成に好適なものである。
図1において101は堆積膜を形成するためにの堆積室
であり、メインバルブ104によって不図示の排気装置
に接続されている。109は原料ガスを堆積室に導入す
るための原料ガス導入口であり、不図示のガス供給系か
ら原料ガスを堆積室内に導入する。102はアースに接
続された被成膜基体を兼ねる第1の電極であり、被成膜
基体の上下には補助基体107及び108が設けてあ
る。103は基体を所定の温度に加熱するための加熱用
ヒーターである。又、被成膜基体は、必要に応じて、不
図示の回転機構により回転され、周方向の膜厚の更なる
均一化を図っても良い。112は20MHz〜450M
Hzの高周波を発生する高周波電源であり、高周波出力
は111の整合回路を介して高周波電力導入手段115
の導電部114に導入され、該高周波電力導入手段11
5の絶縁部113を介して第2の電極106に印加され
る。図に示したように第2の電極106は堆積室101
の内壁を兼ねていてももちろん良い。FIG. 1 schematically shows an example of an apparatus for carrying out the method of the present invention, which is suitable for forming a deposited film on a cylindrical substrate such as an electrophotographic photoreceptor. .
In FIG. 1, 101 is a deposition chamber for forming a deposited film, which is connected to an exhaust device (not shown) by a main valve 104. Reference numeral 109 is a raw material gas inlet for introducing the raw material gas into the deposition chamber, and introduces the raw material gas into the deposition chamber from a gas supply system (not shown). Reference numeral 102 denotes a first electrode which is also connected to the ground and serves as a film-forming substrate, and auxiliary substrates 107 and 108 are provided above and below the film-forming substrate. Reference numeral 103 is a heater for heating the substrate to a predetermined temperature. Further, the film-forming substrate may be rotated by a rotation mechanism (not shown) as necessary to further uniformize the film thickness in the circumferential direction. 112 is 20MHz to 450M
It is a high frequency power source for generating a high frequency of Hz, and the high frequency output is a high frequency power introducing means 115 through a matching circuit 111.
Is introduced into the conductive portion 114 of the
5 is applied to the second electrode 106 through the insulating portion 113. As shown, the second electrode 106 is located in the deposition chamber 101.
Of course, it may be used as the inner wall of the.
【0029】高周波電力導入手段115の導電部114
に用いる材料は、導電性が高いものなら何でも使用出来
るが、配線自体のインダクタンスを出来るだけ小さくす
るという目的から用いる材料は透磁率の小さいものが好
ましい。具体的な材料としてはCu,Al,Au,A
g,Pt,Pb,Ni,Co,Fe,Cr,Mo,Ti
等の金属、およびこれらの合金、たとえば、ステンレス
などが好ましい。The conductive portion 114 of the high frequency power introducing means 115
Any material having high conductivity can be used as the material used for the above, but a material having a low magnetic permeability is preferable for the purpose of minimizing the inductance of the wiring itself. Specific materials include Cu, Al, Au, A
g, Pt, Pb, Ni, Co, Fe, Cr, Mo, Ti
And the like, and alloys thereof such as stainless steel are preferable.
【0030】高周波電力導入手段115の絶縁部113
に用いる材料は、絶縁性が高いものなら何でも使用出来
るが、高周波電力を有効に伝達するという目的から用い
る材料は絶縁破壊電圧が高く、誘電正接が小さいものが
好ましい。具体的な材料は、テフロン、アルミナ、酸化
珪素、炭化珪素、窒化珪素、窒化ホウ素、窒化アルミニ
ウム、ポリスチレン等が挙げられる。Insulating part 113 of high frequency power introducing means 115
Any material can be used as long as it has a high insulating property, but a material used for the purpose of effectively transmitting high frequency power is preferably one having a high dielectric breakdown voltage and a small dielectric loss tangent. Specific materials include Teflon, alumina, silicon oxide, silicon carbide, silicon nitride, boron nitride, aluminum nitride, polystyrene and the like.
【0031】また高周波電力導入手段の形状は、高周波
電力の表皮効果を考慮して、表面積が出来るだけ大きい
形状が好ましく、また整合の取りやすさや加工のしやす
さ等を考慮すると、円筒平板状が最適で有る。Further, the shape of the high-frequency power introducing means is preferably a shape having a surface area as large as possible in consideration of the skin effect of the high-frequency power, and a cylindrical flat plate shape in consideration of ease of matching and processing. Is optimal.
【0032】また該高周波電力導入手段のサイズは、第
1及び第2の電極、更には整合回路から高周波電力導入
手段への配線を考慮して適宜決めるものとするが、絶縁
部113を導電部114より広い面積とするのが好適で
ある。The size of the high-frequency power introducing means is appropriately determined in consideration of the wirings from the first and second electrodes and the matching circuit to the high-frequency power introducing means. It is preferable that the area is larger than 114.
【0033】さらに、図2に示すように、高周波電力導
入手段の絶縁部213と導電部214とを複数層積層す
ることもできる。複数層に渡って積層することにより、
該高周波電力導入手段のサイズの自由を高めることが可
能となり、より最適な高周波電力導入手段とすることが
出来る。Further, as shown in FIG. 2, the insulating portion 213 and the conductive portion 214 of the high frequency power introducing means may be laminated in a plurality of layers. By stacking over multiple layers,
It is possible to increase the freedom of the size of the high frequency power introducing means, and it is possible to make a more optimal high frequency power introducing means.
【0034】使用される高周波電源は、発振周波数が2
0MHzから450MHzであれば何でも使用すること
が出来る。又、出力は10Wから5000W以上まで、
装置に適した電力を発生することが出来ればいかなる出
力のものでも好適に使用できる。更に、高周波電源の出
力変動率はいかなる値であっても本発明の効果を得るこ
とが出来る。The high frequency power source used has an oscillation frequency of 2
Anything from 0 MHz to 450 MHz can be used. Also, the output is from 10W to over 5000W,
Any output can be suitably used as long as it can generate electric power suitable for the device. Further, the effect of the present invention can be obtained regardless of the output fluctuation rate of the high frequency power supply.
【0035】使用される整合回路は高周波電源と負荷の
整合を取ることができるものであればいかなる構成のも
のでも好適に使用出来る。又、整合を取る方法として
は、自動的に調整されるものが製造時の煩雑さを避ける
ために好適であるが、手動で調整されるものであっても
本発明の効果に全く影響はない。又、整合回路が配置さ
れる位置に関しては整合が取れる範囲においてどこに設
置してもなんら問題はないが、整合回路から高周波電力
導入手段間の配線のインダクタンスを出来るだけ小さく
するような配置とした方が広い負荷条件で整合を取るこ
とが可能になるため望ましい。As the matching circuit used, any structure can be preferably used as long as it can match the high frequency power source and the load. Further, as a method for obtaining matching, an automatically adjusted method is suitable for avoiding complications during manufacturing, but even a manually adjusted method has no influence on the effect of the present invention. . Regarding the position where the matching circuit is placed, there is no problem in installing it anywhere within the range where matching can be achieved, but it should be placed so that the inductance of the wiring between the matching circuit and the high frequency power introducing means is as small as possible. Is desirable because it enables matching under a wide range of load conditions.
【0036】第2の電極の材質としてはCu,Al,A
u,Ag,Pt,Pb,Ni,Co,Fe,Cr,M
o,Ti等の金属、およびこれらの合金、たとえばステ
ンレスなどが好ましい。又、形状は円筒形状が好ましい
が、必要に応じて楕円形、多角形形状を用いても良い。
第2の電極は必要に応じて冷却手段を設けても良い。具
体的な冷却手段としては、水、空気、液体チッ素、ペル
チェ素子などによる冷却が必要に応じて用いられる。The material of the second electrode is Cu, Al, A
u, Ag, Pt, Pb, Ni, Co, Fe, Cr, M
Metals such as o and Ti, and alloys thereof such as stainless steel are preferable. The shape is preferably a cylindrical shape, but an elliptical shape or a polygonal shape may be used if necessary.
If necessary, the second electrode may be provided with a cooling means. As a specific cooling means, cooling with water, air, liquid nitrogen, a Peltier element, or the like is used as necessary.
【0037】本発明の第1の電極は被成膜基体としての
役割があり、使用目的に応じた材質や形状などを有する
ものであれば良い。例えば形状に関しては、電子写真用
感光体に供する場合には円筒状が望ましいが、必要に応
じて、平板状や、その他の形状であっても良い。材質に
おいては、Al,Cr,Mo,Au,In,Nb,T
e,V,Ti,Pt,Pb,Fe等の金属、およびこれ
らの合金、例えばステンレス等が挙げられる。またポリ
エステル、ポリスチレン、ポリカーボネイト、セルロー
スアセテート、ポリプロピレン、ポリ塩化ビニル、ポリ
エチレン、ポリアミド等の合成樹脂のシート、ガラス、
セラミック等の電気絶縁性基体の少なくとも堆積膜を形
成する側の表面を導電処理した基体も用いることができ
る。さらに堆積膜を形成する側と反対側も導電処理する
ことが望ましい。The first electrode of the present invention has a role as a film-forming substrate, and may be any material having a material and a shape according to the purpose of use. For example, regarding the shape, a cylindrical shape is preferable when it is used for an electrophotographic photoreceptor, but a flat plate shape or another shape may be used as necessary. In terms of material, Al, Cr, Mo, Au, In, Nb, T
Examples thereof include metals such as e, V, Ti, Pt, Pb, and Fe, and alloys thereof such as stainless steel. Also, sheets of synthetic resin such as polyester, polystyrene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyethylene, polyamide, glass,
It is also possible to use a substrate in which at least the surface of the electrically insulating substrate made of ceramic or the like on which the deposited film is formed is subjected to a conductive treatment. Further, it is desirable that the side opposite to the side on which the deposited film is formed be subjected to conductive treatment.
【0038】基体の表面形状は平滑平面、または凹凸表
面とすることができる。例えば電子写真用光受容部材な
どで、レーザー光のなどの可干渉性光を用いて像記録を
行う場合には、可視画像において現われる干渉縞模様に
よる画像不良を解消するために、特開昭60−1681
56号公報、同60−178457号公報、同60−2
25854号公報等に記載された公知の方法により作製
された凹凸表面であることができる。The surface shape of the substrate can be a smooth flat surface or an uneven surface. For example, in the case of performing image recording using a coherent light such as a laser beam on a light receiving member for electrophotography, in order to eliminate an image defect due to an interference fringe pattern appearing in a visible image, JP-A-Sho 60 is used. -1681
56, 60-178457 and 60-2.
It can be an uneven surface produced by a known method described in Japanese Patent No. 25854.
【0039】本発明の堆積膜の形成方法の一例は次の手
順のように行われる。An example of the method of forming a deposited film according to the present invention is performed according to the following procedure.
【0040】まず、例えば表面を旋盤を用いて鏡面加工
を施した被成膜基体(第1の電極を兼ねる)102に補
助基体107,108を取り付け、堆積室101内の加
熱用ヒーター103に被成膜基体102及び補助基体1
07,108を挿入する。First, auxiliary substrates 107 and 108 are attached to a film-forming substrate (also serving as the first electrode) 102 whose surface is mirror-finished by using a lathe, and a heater 103 for heating in the deposition chamber 101 is covered. Film-forming substrate 102 and auxiliary substrate 1
07 and 108 are inserted.
【0041】次に、原料ガス導入バルブ110を閉と
し、メインバルブ104を開として排気口105を介し
て堆積室内を一旦排気した後、原料ガス導入バルブ11
0を開として加熱用の不活性ガス、一例としてアルゴン
を原料ガス導入口109より堆積室内に導入し、堆積室
内が所望の圧力になるように加熱用ガスの流量を調整す
る。その後、不図示の温度コントローラーを作動させて
基体102を加熱用ヒーター103により加熱し、基体
102が所望の温度に加熱されたところで原料ガス導入
バルブ110を閉じ、堆積室内へのガス流入を止める。Next, the source gas introduction valve 110 is closed, the main valve 104 is opened, and the deposition chamber is once evacuated through the exhaust port 105, and then the source gas introduction valve 11 is used.
When 0 is opened, an inert gas for heating, for example, argon is introduced into the deposition chamber through the raw material gas inlet 109, and the flow rate of the heating gas is adjusted so that the deposition chamber has a desired pressure. Then, a temperature controller (not shown) is operated to heat the substrate 102 by the heater 103, and when the substrate 102 is heated to a desired temperature, the source gas introduction valve 110 is closed to stop the gas flow into the deposition chamber.
【0042】堆積膜の形成は原料ガス導入バルブ110
を開として原料ガス導入口109から所定の原料ガスを
堆積室101内に導入し、数mTorrから数Torr
の所望の圧力に維持するように排気速度を調整する。圧
力が安定した後、高周波電源112の電源を入れて周波
数20MHz〜450MHzの電力を供給し、グロー放
電を生起させる。このとき整合回路111を調整し、反
射波が最小となるように調整する。高周波の入射電力か
ら反射電力を差し引いた値を所望の値に調整し、所望の
膜厚を形成したところでグロー放電を止め、又、原料ガ
ス導入バルブ110を閉じて、原料ガスの堆積室101
への流入を止めて堆積室内を一旦高真空に引き上げた後
に層の形成を終える。種々の機能を有する堆積膜を積層
する場合には、上記のような操作が繰り返し行われる。The source gas introduction valve 110 is used to form the deposited film.
Is opened and a predetermined source gas is introduced into the deposition chamber 101 through the source gas inlet 109, and a few mTorr to a few Torr
Adjust the evacuation rate to maintain the desired pressure of. After the pressure is stabilized, the high frequency power supply 112 is turned on to supply power with a frequency of 20 MHz to 450 MHz to cause glow discharge. At this time, the matching circuit 111 is adjusted so as to minimize the reflected wave. The value obtained by subtracting the reflected power from the high frequency incident power is adjusted to a desired value, the glow discharge is stopped when the desired film thickness is formed, and the source gas introduction valve 110 is closed to set the source gas deposition chamber 101.
Flow is stopped, the deposition chamber is once evacuated to a high vacuum, and then the layer formation is completed. When stacking deposited films having various functions, the above operation is repeated.
【0043】本発明において使用される原料ガスは、例
えばアモルファスシリコンを形成する場合にはSi
H4,Si2H6等のガス状態の、またはガス化し得る水
素化珪素(シラン類)がSi供給用ガスとして有効に使
用される。また、水素化珪素のほかにも、弗素原子を含
む珪素化合物、いわゆる弗素原子で置換されたシラン誘
導体、具体的には、たとえばSiF4,Si2F6等のフ
ッ化珪素や、SiH3F,SiH2F2,SiHF3等の弗
素置換水素化珪素等、ガス状の、またはガス化し得る物
質も本発明のSi供給用ガスとしては有効である。ま
た、これらのSi供給用の原料ガスを必要に応じて
H2,He,Ar,Ne等のガスにより希釈して使用し
ても本発明には何等差し支えない。The source gas used in the present invention is, for example, Si when forming amorphous silicon.
Silicon hydride (silanes) in a gas state such as H 4 , Si 2 H 6 or capable of being gasified is effectively used as a gas for supplying Si. Further, in addition to silicon hydride, a silicon compound containing a fluorine atom, a so-called silane derivative substituted with a fluorine atom, specifically, silicon fluoride such as SiF 4 , Si 2 F 6 or SiH 3 F is used. , SiH 2 F 2 , SiHF 3 and other fluorine-substituted silicon hydrides are also effective as the Si supply gas of the present invention. Further, any way no problem to be present invention used as diluted by these H 2 as needed starting material gas for Si supply, the He, Ar, gas Ne or the like.
【0044】さらには前記のガスに加えて、必要に応じ
て周期律表第3族に属する原子、または周期律表第5族
に属する原子を、いわゆるドーパントとして用いること
もできる。例えばホウ素原子(B)を用いる場合には、
B2H6,B4H10等の水素化硼素、BF3,BCl3等の
ハロゲン化硼素等が挙げられる。またリン原子を用いる
場合には、PH3,P2H4等の水素化燐、PH4I,PF
3,PCl3,PBr3,PI3等のハロゲン化燐が使用で
きる。Further, in addition to the above-mentioned gas, an atom belonging to Group 3 of the periodic table or an atom belonging to Group 5 of the periodic table can be used as a so-called dopant, if necessary. For example, when using a boron atom (B),
Examples thereof include boron hydrides such as B 2 H 6 and B 4 H 10 and boron halides such as BF 3 and BCl 3 . When a phosphorus atom is used, PH 3 , P 2 H 4 and other hydrogenated phosphorus, PH 4 I, PF
Phosphorus halides such as 3 , PCl 3 , PBr 3 and PI 3 can be used.
【0045】また、例えばアモルファスシリコンカーバ
イト(a−SiC)を形成する場合には、前記の原料ガ
スのほかに、炭素原子導入用のガスとして、CとHとを
構成原子とする、例えば炭素数1〜5の飽和炭化水素、
炭素数2〜4のエチレン系炭化水素、炭素数2〜3のア
セチレン系炭化水素等を使用できる。具体的には、飽和
炭化水素としては、メタン(CH4),エタン(C
2H6)等、エチレン系炭化水素としては、エチレン(C
2H4),プロピレン(C3H6)等、アセチレン系炭化水
素としては、アセチレン(C2H2),メチルアセチレン
(C3H4)等が挙げられる。In addition, for example, when forming amorphous silicon carbide (a-SiC), in addition to the above-mentioned raw material gas, as a gas for introducing carbon atoms, C and H are constituent atoms, for example, carbon. A saturated hydrocarbon of the numbers 1 to 5,
Ethylene hydrocarbons having 2 to 4 carbon atoms, acetylene hydrocarbons having 2 to 3 carbon atoms and the like can be used. Specifically, saturated hydrocarbons include methane (CH 4 ), ethane (C
2 H 6 ) etc., ethylene (C
2 H 4 ), propylene (C 3 H 6 ) and the like, acetylene hydrocarbons include acetylene (C 2 H 2 ), methylacetylene (C 3 H 4 ), and the like.
【0046】また、例えばアモルファス酸化シリコン
(a−SiO)を形成する場合には、前記の原料ガスの
ほかに、酸素原子導入用ガスとして使用出来るものとし
て、酸素(O2),オゾン(O3),一酸化窒素(N
O),二酸化窒素(NO2),一二酸化窒素(N2O),
三二酸化窒素(N2O3),四二酸化窒素(N2O4),五
二酸化窒素(N2O5),三酸化窒素(NO3),シリコ
ン原子(Si)と酸素原子(O)水素原子(H)とを構
成原子とする例えば、ジシロキサン(H3SiOSi
H3),トリシロキサン(H3SiOSiH2OSiH3)
等の低級シロキサン等を挙げることができる。When forming amorphous silicon oxide (a-SiO), for example, oxygen (O 2 ), ozone (O 3 ) can be used as a gas for introducing oxygen atoms in addition to the above-mentioned raw material gas. ), Nitric oxide (N
O), nitrogen dioxide (NO 2 ), nitrogen monoxide (N 2 O),
Nitrogen trioxide (N 2 O 3 ), Nitrogen dioxide (N 2 O 4 ), Nitrogen pentaoxide (N 2 O 5 ), Nitric oxide (NO 3 ), Silicon atom (Si) and oxygen atom (O) Hydrogen For example, disiloxane (H 3 SiOSi) having atoms (H) as constituent atoms
H 3 ), trisiloxane (H 3 SiOSiH 2 OSiH 3 )
And other lower siloxanes and the like.
【0047】本発明において、例えばアモルファス窒化
シリコン(a−SiN)を形成する場合には、前記の原
料ガスのほかに、窒素原子導入用のガスとして使用出来
るものとして、窒素(N2),アンモニア(NH3),ヒ
ドラジン(H2NNH2),アジ化水素(HN3)、アン
モニウム(NH4N3)等のガス状のまたはガス化し得る
窒素、窒素物及びアジ化物等の窒素化合物を挙げること
ができる。この他に、窒素原子の供給に加えて、ハロゲ
ン原子の供給も行えるという点から、三弗化窒素(F3
N),四弗化窒素(F4N2)等のハロゲン化窒素化合物
を挙げることができる。In the present invention, when amorphous silicon nitride (a-SiN) is formed, for example, nitrogen (N 2 ) and ammonia can be used in addition to the above-mentioned raw material gas as a gas for introducing nitrogen atoms. Nitrogen compounds such as (NH 3 ), hydrazine (H 2 NNH 2 ), hydrogen azide (HN 3 ), ammonium (NH 4 N 3 ), etc., such as gaseous or gasifiable nitrogen, nitrogen compounds and azides. be able to. In addition to this, nitrogen trifluoride (F 3
N), nitrogen tetrafluoride (F 4 N 2 ) and other nitrogen halide compounds.
【0048】以下、本発明を実施例によって更に詳しく
説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.
【0049】[0049]
(実施例1)図1に示した堆積膜形成装置において発振
周波数105MHzの高周波電源を設置し、アルミニウ
ム製の円筒状基体上にa−Si膜を形成し、図3に示す
層構成の電子写真用感光体を作成した。図3に示す電子
写真用感光体301においては、基体302、下部阻止
層303、光導電層304、表面層305からなる。(Embodiment 1) In the deposited film forming apparatus shown in FIG. 1, a high frequency power source having an oscillation frequency of 105 MHz was installed, an a-Si film was formed on a cylindrical substrate made of aluminum, and an electrophotography having the layer structure shown in FIG. A photoconductor was prepared. The electrophotographic photoreceptor 301 shown in FIG. 3 includes a substrate 302, a lower blocking layer 303, a photoconductive layer 304, and a surface layer 305.
【0050】本実施例では高周波電力導入手段の絶縁部
113にテフロンを、導電部114に銅を使用し、該高
周波電力導入手段の円筒軸方向の長さを、第2の電極の
円筒軸方向の長さの0.1倍とし、成膜条件として表1
に示された製造条件に従って成膜を行った。更には、ア
ルミニウム製の円筒状基体上の周方向4か所に単結晶シ
リコン基板を設置し、表1に示された光導電層の製造条
件に従って1μmのa−Si膜を成膜して、赤外分光測
定用サンプルを作製した。In this embodiment, Teflon is used for the insulating part 113 of the high-frequency power introducing means and copper is used for the conductive part 114, and the length of the high-frequency power introducing means in the cylinder axis direction is defined by the cylinder axis direction of the second electrode. The length is set to 0.1 times, and the film forming conditions are shown in Table 1.
A film was formed according to the manufacturing conditions shown in. Furthermore, single-crystal silicon substrates were placed at four locations in the circumferential direction on an aluminum cylindrical substrate, and a 1 μm a-Si film was formed according to the photoconductive layer manufacturing conditions shown in Table 1. A sample for infrared spectroscopy measurement was prepared.
【0051】いずれの成膜においても、基体は静止状態
で成膜した。In each film formation, the substrate was formed in a stationary state.
【0052】(比較例1−1)図5に示した堆積膜形成
装置を用いた以外は、実施例1と同様な成膜条件によ
り、電子写真用感光体及び赤外分光測定用サンプルを作
成した。Comparative Example 1-1 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same film forming conditions as in Example 1 except that the deposited film forming apparatus shown in FIG. 5 was used. did.
【0053】(比較例1−2)図6に示した、高周波電
力導入手段が銅製の導電部614のみからなり、該高周
波電力導入手段の円筒軸方向の長さを、第2の電極の円
筒軸方向の長さの0.1倍とした堆積膜形成装置を用い
た以外は、実施例1と同様な成膜条件により、電子写真
用感光体及び赤外分光測定用サンプルを作成した。(Comparative Example 1-2) The high frequency power introducing means shown in FIG. 6 is composed only of the conductive part 614 made of copper, and the length of the high frequency power introducing means in the cylinder axis direction is the cylinder of the second electrode. An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same film forming conditions as in Example 1 except that a deposited film forming apparatus having a length of 0.1 times in the axial direction was used.
【0054】実施例1、比較例1−1、比較例1−2で
作成した電子写真用光体及び赤外分光測定用サンプルは
次の方法で評価した。The electrophotographic photoconductors and infrared spectroscopic measurement samples prepared in Example 1, Comparative Example 1-1 and Comparative Example 1-2 were evaluated by the following methods.
【0055】・膜厚分布評価 各々の感光体について周方向16ケ所の膜厚を渦電流式
膜厚計(Kett科学研究所製)により測定し、最大の
膜厚と最小の膜厚の差を平均の膜厚で割ることにより膜
厚分布の比を計算した。そして、比較例1−1の感光ド
ラムの膜厚分布比を1とする相対値で評価を行った。つ
まり、数値が小さくなるほど膜厚ムラは改善されている
ことを示す。Film thickness distribution evaluation The film thickness at 16 locations in the circumferential direction of each photoconductor was measured by an eddy current type film thickness meter (manufactured by Kett Scientific Research Institute), and the difference between the maximum film thickness and the minimum film thickness was determined. The ratio of the film thickness distribution was calculated by dividing by the average film thickness. Then, the evaluation was performed with a relative value with the film thickness distribution ratio of the photosensitive drum of Comparative Example 1-1 being 1. That is, the smaller the value is, the more the film thickness unevenness is improved.
【0056】・電子写真特性 各々の感光体について電子写真装置(キヤノン社製NP
6060を実験用に改造したもの)にセットして、初期
の電子写真特性として帯電能を次のように評価した。Electrophotographic characteristics Electrophotographic apparatus (NP manufactured by Canon Inc.) for each photoconductor
6060 was modified for experiment) and the charging ability was evaluated as follows as an initial electrophotographic characteristic.
【0057】電子写真用光受容部材を電子写真用装置に
設置し、帯電器に+6kVの高電圧を印加しコロナ帯電
を行い、表面電位計により電子写真用光受容部材の暗部
表面電位を測定し、暗部表面電位の最大値と最小値の差
を平均の暗部表面電位で割ることにより暗部表面電位の
比を計算した。そして、比較例1−1の感光ドラムの暗
部表面電位比を1とする相対値で評価を行った。つま
り、数値が小さくなるほど暗部表面電位ムラは改善され
ていることを示す。The photoreceptive member for electrophotography was installed in a device for electrophotography, a high voltage of +6 kV was applied to a charger to perform corona charging, and the surface potential of the dark part of the photoreceptive member for electrophotography was measured. The ratio of the dark surface potential was calculated by dividing the difference between the maximum and minimum dark surface potentials by the average dark surface potential. Then, the evaluation was performed with a relative value with the dark area surface potential ratio of the photosensitive drum of Comparative Example 1-1 being 1. In other words, the smaller the numerical value is, the more the dark part surface potential unevenness is improved.
【0058】更には、平均の暗部表面電位を平均の膜厚
で割ることによりノーマライズし、膜厚の影響を除いた
上での、平均暗部表面電位を計算し、比較例1−1の感
光ドラムの平均暗部表面電位を各々の平均暗部表面電位
で割ることによる相対値で評価を行った。つまり、数値
が小さくなるほど平均暗部表面電位は改善されているこ
とを示す。Furthermore, the average surface potential of the dark portion is normalized by dividing it by the average film thickness, and after removing the influence of the film thickness, the average surface potential of the dark portion is calculated, and the photosensitive drum of Comparative Example 1-1 is calculated. The evaluation was performed by the relative value obtained by dividing the average surface potential of the dark area of each by the average surface potential of each dark area. That is, the smaller the value is, the more the average dark surface potential is improved.
【0059】・膜質分布評価 作製した赤外分光測定用サンプルを、赤外分光光度計
(パーキン・エルマー社製1720−X)に設置し、2
000cm-1付近に現われるSi−Hn(n=1〜3)
の赤外吸収スペクトルを、Si−Hによる2000cm
-1付近によるものと、Si−H2及びSi−H3による2
100cm-1付近によるものに波形分離し、各々の赤外
吸収断面積の比(2100cm-1付近の吸収断面積/2
000cm -1付近の吸収断面積)を求めた。そして、比
較例1−1の赤外吸収断面積比を1とする相対値で評価
を行った。つまり、数値が小さくなるほど2100cm
-1付近の吸収断面積が少なく膜質が改善されていること
を示す。Evaluation of film quality distribution The manufactured infrared spectroscopic measurement sample was measured with an infrared spectrophotometer.
Installed on (Perkin Elmer 1720-X), 2
000 cm-1Si-H appearing in the vicinityn(N = 1 to 3)
Infrared absorption spectrum of Si-H at 2000 cm
-1Depending on the neighborhood, Si-H2And Si-H3By 2
100 cm-1Waveforms are separated into those due to the vicinity, and each infrared
Absorption cross-section ratio (2100 cm-1Absorption cross section / 2
000 cm -1The absorption cross section in the vicinity) was determined. And the ratio
Evaluated by the relative value with the infrared absorption cross-section ratio of Comparative Example 1-1 being 1.
I went. In other words, the smaller the value, the more 2100 cm
-1The absorption cross section in the vicinity is small and the film quality is improved.
Indicates.
【0060】以上の結果を第2表にまとめて示す。比較
例1で作成した電子写真用光体及び赤外分光測定用サン
プルより、実施例1で作成した電子写真用光体及び赤外
分光測定用サンプルのほうがいずれの評価でも周方向の
分布が少なく、特性も優れている。The above results are summarized in Table 2. In both evaluations, the electrophotographic optical body and infrared spectroscopic measurement sample produced in Example 1 had a smaller circumferential distribution than the electrophotographic optical body and infrared spectroscopic measurement sample produced in Comparative Example 1. , The characteristics are also excellent.
【0061】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it was found that according to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film of good film quality can be formed.
【0062】[0062]
【表1】 [Table 1]
【0063】[0063]
【表2】 (注)比較例1−1を基準とした相対値[Table 2] (Note) Relative value based on Comparative Example 1-1
【0064】(実施例2)発振周波数200MHzの高
周波電源を用いた以外は、実施例1と同様な条件で、電
子写真用感光体と赤外分光測定用サンプルを作製した。Example 2 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that a high frequency power source with an oscillation frequency of 200 MHz was used.
【0065】(比較例2−1)発振周波数200MHz
の高周波電源を用いた以外は、比較例1−1と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。(Comparative Example 2-1) Oscillation frequency 200 MHz
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-1, except that the high frequency power source of No. 1 was used.
【0066】(比較例2−2)発振周波数200MHz
の高周波電源を用いた以外は、比較例1−2と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。(Comparative Example 2-2) Oscillation frequency 200 MHz
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-2 except that the high frequency power source of No. 1 was used.
【0067】実施例2、比較例2−2で作成した電子写
真用感光体と赤外分光測定用サンプルを実施例1と同様
の手順で膜厚分布比、暗部表面電位ムラ、平均暗部表面
電位、赤外吸収断面積比を評価した。その結果を表3に
示す。表3から解るように、本発明の実施例2はいずれ
の評価でも周方向の分布が少なく、特性も優れている。The electrophotographic photosensitive member and the infrared spectroscopic measurement sample prepared in Example 2 and Comparative Example 2-2 were subjected to the same procedure as in Example 1 for the film thickness distribution ratio, dark surface potential unevenness, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 3. As can be seen from Table 3, Example 2 of the present invention has a small distribution in the circumferential direction and is excellent in characteristics in any evaluation.
【0068】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it was found that according to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film of good film quality can be formed.
【0069】[0069]
【表3】 (注)比較例2−1を基準とした相対値[Table 3] (Note) Relative value based on Comparative Example 2-1
【0070】(実施例3)発振周波数300MHzの高
周波電源を用いた以外は、実施例1と同様な条件で、電
子写真用感光体と赤外分光測定用サンプルを作製した。Example 3 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that a high frequency power source with an oscillation frequency of 300 MHz was used.
【0071】(比較例3−1)発振周波数300MHz
の高周波電源を用いた以外は、比較例1−1と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。(Comparative Example 3-1) Oscillation frequency 300 MHz
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-1, except that the high frequency power source of No. 1 was used.
【0072】(比較例3−2)発振周波数300MHz
の高周波電源を用いた以外は、比較例1−2と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。(Comparative Example 3-2) Oscillation frequency 300 MHz
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-2 except that the high frequency power source of No. 1 was used.
【0073】実施例3、比較例3−2で作成した電子写
真用感光体と赤外分光測定用サンプルを実施例1と同様
の手順で膜厚分布比、暗部表面電位ムラ、平均暗部表面
電位、赤外吸収断面積比を評価した。その結果を表4に
示す。表4から解るように、本発明の実施例3はいずれ
の評価でも周方向の分布が少なく、特性も優れている。The electrophotographic photosensitive member and the infrared spectroscopic measurement sample prepared in Example 3 and Comparative Example 3-2 were subjected to the same procedure as in Example 1 for the film thickness distribution ratio, dark surface potential unevenness, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 4. As can be seen from Table 4, Example 3 of the present invention has a small distribution in the circumferential direction and is excellent in characteristics in any evaluation.
【0074】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it has been found that according to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film of good film quality can be formed.
【0075】[0075]
【表4】 (注)比較例3−1を基準とした相対値[Table 4] (Note) Relative value based on Comparative Example 3-1
【0076】(実施例4)発振周波数450MHzの高
周波電源を用いた以外は、実施例1と同様な条件で、電
子写真用感光体と赤外分光測定用サンプルを作製した。Example 4 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that a high frequency power source with an oscillation frequency of 450 MHz was used.
【0077】(比較例4−1)発振周波数450MHz
の高周波電源を用いた以外は、比較例1−1と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。(Comparative Example 4-1) Oscillation frequency 450 MHz
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-1, except that the high frequency power source of No. 1 was used.
【0078】(比較例4−2)発振周波数450MHz
の高周波電源を用いた以外は、比較例1−2と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。(Comparative Example 4-2) Oscillation frequency 450 MHz
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-2 except that the high frequency power source of No. 1 was used.
【0079】実施例4、比較例4−2で作成した電子写
真用感光体と赤外分光測定用サンプルを実施例1と同様
の手順で膜厚分布比、暗部表面電位ムラ、平均暗部表面
電位、赤外吸収断面積比を評価した。その結果を表5に
示す。表5から解るように、本発明の実施例4はいずれ
の評価でも周方向の分布が少なく、特性も優れている。The electrophotographic photosensitive member and infrared spectroscopic measurement sample prepared in Example 4 and Comparative Example 4-2 were subjected to the same procedure as in Example 1 to obtain the film thickness distribution ratio, dark surface potential nonuniformity, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 5. As can be seen from Table 5, Example 4 of the present invention has a small circumferential distribution and excellent characteristics in any evaluation.
【0080】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it was found that according to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film of good film quality can be formed.
【0081】[0081]
【表5】 (注)比較例4−1を基準とした相対値[Table 5] (Note) Relative value based on Comparative Example 4-1
【0082】(実施例5)発振周波数50MHzの高周
波電源を用いた以外は、実施例1と同様な条件で、電子
写真用感光体と赤外分光測定用サンプルを作製した。Example 5 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that a high frequency power source with an oscillation frequency of 50 MHz was used.
【0083】(比較例5−1)発振周波数50MHzの
高周波電源を用いた以外は、比較例1−1と同様な条件
で、電子写真用感光体と赤外分光測定用サンプルを作製
した。Comparative Example 5-1 An electrophotographic photoreceptor and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-1 except that a high frequency power source with an oscillation frequency of 50 MHz was used.
【0084】(比較例5−2)発振周波数50MHzの
高周波電源を用いた以外は、比較例1−2と同様な条件
で、電子写真用感光体と赤外分光測定用サンプルを作製
した。Comparative Example 5-2 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-2 except that a high frequency power source with an oscillation frequency of 50 MHz was used.
【0085】実施例5、比較例5−2で作成した電子写
真用感光体と赤外分光測定用サンプルを実施例1と同様
の手順で膜厚分布比、暗部表面電位ムラ、平均暗部表面
電位、赤外吸収断面積比を評価した。その結果を表6に
示す。表6から解るように、本発明の実施例5はいずれ
の評価でも周方向の分布が少なく、特性も優れている。The electrophotographic photosensitive member and the infrared spectroscopic measurement sample prepared in Example 5 and Comparative Example 5-2 were subjected to the same procedure as in Example 1 to obtain a film thickness distribution ratio, dark surface potential unevenness, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 6. As can be seen from Table 6, Example 5 of the present invention has a small circumferential distribution and is excellent in characteristics in any evaluation.
【0086】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it was found that according to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film with good film quality can be formed.
【0087】[0087]
【表6】 (注)比較例5−1を基準とした相対値[Table 6] (Note) Relative value based on Comparative Example 5-1
【0088】(実施例6)発振周波数20MHzの高周
波電源を用いた以外は、実施例1と同様な条件で、電子
写真用感光体と赤外分光測定用サンプルを作製した。(Example 6) An electrophotographic photoreceptor and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that a high frequency power source with an oscillation frequency of 20 MHz was used.
【0089】(比較例6−1)発振周波数20MHzの
高周波電源を用いた以外は、比較例1−1と同様な条件
で、電子写真用感光体と赤外分光測定用サンプルを作製
した。(Comparative Example 6-1) An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-1 except that a high frequency power source with an oscillation frequency of 20 MHz was used.
【0090】(比較例6−2)発振周波数20MHzの
高周波電源を用いた以外は、比較例1−2と同様な条件
で、電子写真用感光体と赤外分光測定用サンプルを作製
した。Comparative Example 6-2 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Comparative Example 1-2 except that a high frequency power source with an oscillation frequency of 20 MHz was used.
【0091】実施例6、比較例6−2で作成した電子写
真用感光体と赤外分光測定用サンプルを実施例1と同様
の手順で膜厚分布比、暗部表面電位ムラ、平均暗部表面
電位、赤外吸収断面積比を評価した。その結果を表7に
示す。表7から解るように、本発明の実施例6はいずれ
の評価でも周方向の分布が少なく、特性も優れている。The electrophotographic photosensitive member and infrared spectroscopic measurement sample prepared in Example 6 and Comparative Example 6-2 were subjected to the same procedure as in Example 1 to obtain a film thickness distribution ratio, dark surface potential unevenness, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 7. As can be seen from Table 7, Example 6 of the present invention has a small distribution in the circumferential direction and is excellent in characteristics in any evaluation.
【0092】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it was found that according to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film of good film quality can be formed.
【0093】[0093]
【表7】 (注)比較例6−1を基準とした相対値[Table 7] (Note) Relative value based on Comparative Example 6-1
【0094】(実施例7)図2に示した堆積膜形成装置
において発振周波数105MHzの高周波電源を設置
し、アルミニウム製の円筒状基体上にa−Si膜を形成
し、図3に示す層構成の電子写真用感光体を作成した。(Embodiment 7) In the deposited film forming apparatus shown in FIG. 2, a high frequency power source with an oscillation frequency of 105 MHz is installed, an a-Si film is formed on an aluminum cylindrical substrate, and the layer structure shown in FIG. A photoconductor for electrophotography was prepared.
【0095】本実施例では高周波電力導入手段の絶縁部
213にテフロンを、導電部214に銅を使用して、絶
縁部213及び導電部214を各々2層設け、該高周波
電力導入手段の円筒軸方向の長さを、第2の電極の円筒
軸方向の長さの0.3倍とし、成膜条件として表8に示
された製造条件に従って成膜を行った。In this embodiment, Teflon is used for the insulating part 213 of the high-frequency power introducing means, and copper is used for the conductive part 214 to provide two layers of the insulating part 213 and the conductive part 214. The length in the direction was set to 0.3 times the length in the cylinder axis direction of the second electrode, and film formation was performed according to the manufacturing conditions shown in Table 8 as film forming conditions.
【0096】更には、アルミニウム製の円筒状基体上の
周方向4か所に単結晶シリコン基板を設置し、表8に示
された光導電層の製造条件に従って1μmのa−Si膜
を成膜して、赤外分光測定用サンプルを作製した。Furthermore, single-crystal silicon substrates were placed at four circumferential positions on an aluminum cylindrical substrate, and a 1 μm a-Si film was formed according to the photoconductive layer manufacturing conditions shown in Table 8. Then, an infrared spectroscopy measurement sample was prepared.
【0097】いずれの成膜においても、基体は静止状態
で成膜した。In each film formation, the substrate was formed in a stationary state.
【0098】(比較例7−1)図5に示した堆積膜形成
装置を用いた以外は、実施例7と同様な成膜条件によ
り、電子写真用感光体及び赤外分光測定用サンプルを作
成した。(Comparative Example 7-1) An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same film forming conditions as in Example 7 except that the deposited film forming apparatus shown in FIG. 5 was used. did.
【0099】(比較例7−2)図6に示した高周波電力
導入手段が銅製の導電部614のみからなり、該高周波
電力導入手段の円筒軸方向の長さを、第2の電極の円筒
軸方向の長さの0.3倍とした堆積膜形成装置を用いた
以外は、実施例7と同様な成膜条件により、電子写真用
感光体及び赤外分光測定用サンプルを作成した。(Comparative Example 7-2) The high frequency power introducing means shown in FIG. 6 is composed only of the conductive portion 614 made of copper, and the length of the high frequency power introducing means in the cylindrical axis direction is defined by the cylindrical axis of the second electrode. An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same film forming conditions as in Example 7, except that a deposited film forming apparatus having a length of 0.3 times the length was used.
【0100】実施例7、比較例7−2で作成した電子写
真用感光体と赤外分光測定用サンプルを実施例1と同様
の手順で膜厚分布比、暗部表面電位ムラ、平均暗部表面
電位、赤外吸収断面積比を評価した。その結果を表9に
示す。表9から解るように、本発明の実施例7はいずれ
の評価でも周方向の分布が少なく、特性も優れている。The electrophotographic photoreceptors and infrared spectroscopic measurement samples prepared in Example 7 and Comparative Example 7-2 were subjected to the same procedure as in Example 1 to obtain a film thickness distribution ratio, dark surface potential unevenness, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 9. As can be seen from Table 9, in any of the evaluations, Example 7 of the present invention has a small circumferential distribution and is excellent in characteristics.
【0101】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it was found that according to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film of good film quality can be formed.
【0102】[0102]
【表8】 [Table 8]
【0103】[0103]
【表9】 (注)比較例7−1を基準とした相対値[Table 9] (Note) Relative value based on Comparative Example 7-1
【0104】(実施例8)高周波電力導入手段の絶縁部
113にアルミナセラッミックスを用いた以外は、実施
例1と同様な条件で、電子写真用感光体と赤外分光測定
用サンプルを作製した。Example 8 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that alumina ceramic was used for the insulating portion 113 of the high frequency power introducing means. did.
【0105】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, dark surface potential unevenness, average dark surface potential, and infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0106】(実施例9)高周波電力導入手段の絶縁部
113に酸化珪素を用いた以外は、実施例1と同様な条
件で、電子写真用感光体と赤外分光測定用サンプルを作
製した。Example 9 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that silicon oxide was used for the insulating portion 113 of the high frequency power introducing means.
【0107】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, dark surface potential nonuniformity, average dark surface potential, and infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0108】(実施例10)高周波電力導入手段の絶縁
部213に炭化珪素を用いた以外は、実施例7と同様な
条件で、電子写真用感光体と赤外分光測定用サンプルを
作製した。(Example 10) An electrophotographic photoreceptor and a sample for infrared spectroscopic measurement were prepared under the same conditions as in Example 7 except that silicon carbide was used for the insulating portion 213 of the high frequency power introducing means.
【0109】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark surface potential nonuniformity, the average dark surface potential, and the infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film with good film quality can be formed. It has been found.
【0110】(実施例11)高周波電力導入手段の絶縁
部213に窒化珪素を用いた以外は、実施例7と同様な
条件で、電子写真用感光体と赤外分光測定用サンプルを
作製した。Example 11 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 7 except that silicon nitride was used for the insulating portion 213 of the high frequency power introducing means.
【0111】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark surface potential nonuniformity, the average dark surface potential, and the infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0112】(実施例12)高周波電力導入手段の絶縁
部113に窒化ホウ素を用いた以外は、実施例1と同様
な条件で、電子写真用感光体と赤外分光測定用サンプル
を作製した。Example 12 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that boron nitride was used for the insulating portion 113 of the high frequency power introducing means.
【0113】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark surface potential unevenness, the average dark surface potential, and the infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform, and a deposited film with good film quality can be formed. It has been found.
【0114】(実施例13)高周波電力導入手段の絶縁
部213に窒化アルミニウムを用いた以外は、実施例7
と同様な条件で、電子写真用感光体と赤外分光測定用サ
ンプルを作製した。(Example 13) Example 7 was repeated except that aluminum nitride was used for the insulating portion 213 of the high frequency power introducing means.
Under the same conditions as above, an electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared.
【0115】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark part surface potential unevenness, the average dark part surface potential, and the infrared absorption cross section ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0116】(実施例14)高周波電力導入手段の絶縁
部213にポリスチレンを用いた以外は、実施例7と同
様な条件で、電子写真用感光体と赤外分光測定用サンプ
ルを作製した。Example 14 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 7 except that polystyrene was used for the insulating portion 213 of the high frequency power introducing means.
【0117】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The electrophotographic photosensitive member thus prepared and the infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark surface potential unevenness, the average dark surface potential, and the infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0118】(実施例15)図1に示した堆積膜形成装
置において発振周波数105MHzの高周波電源を設置
し、アルミニウム製の円筒状基体上にa−Si膜を形成
し、図4に示す層構成の電子写真用感光体を作成した。
図4に示す電子写真用感光体401においては、基体4
02、下部阻止層403、光導電層404、上部阻止層
405表面層406からなる。Example 15 In the deposited film forming apparatus shown in FIG. 1, a high frequency power source with an oscillation frequency of 105 MHz is installed, an a-Si film is formed on an aluminum cylindrical substrate, and the layer structure shown in FIG. A photoconductor for electrophotography was prepared.
In the electrophotographic photosensitive member 401 shown in FIG.
02, a lower blocking layer 403, a photoconductive layer 404, and an upper blocking layer 405 surface layer 406.
【0119】本実施例では高周波電力導入手段の絶縁部
113にテフロンを、導電部114に銅を使用し、整合
回路111より高周波電力導入手段の導電部114まで
を2経路に分けて、該導電部114の対向する2か所に
接続した。In this embodiment, Teflon is used for the insulating portion 113 of the high frequency power introducing means and copper is used for the conductive portion 114, and the conductive path 114 from the matching circuit 111 to the high frequency power introducing means is divided into two paths. The parts 114 were connected to two opposite parts.
【0120】また、該高周波電力導入手段の円筒軸方向
の長さを、第2の電極の円筒軸方向の長さの0.2倍と
し、成膜条件として表10に示された製造条件に従って
成膜を行った。Further, the length of the high frequency power introducing means in the cylinder axis direction is set to 0.2 times the length of the second electrode in the cylinder axis direction, and the film forming conditions are set according to the manufacturing conditions shown in Table 10. A film was formed.
【0121】更には、アルミニウム製の円筒状基体上の
周方向4か所に単結晶シリコン基板を設置し、表10に
示された光導電層の製造条件に従って1μmのa−Si
膜を成膜して、赤外分光測定用サンプルを作製した。Further, single-crystal silicon substrates were installed at four locations in the circumferential direction on a cylindrical base body made of aluminum, and 1 μm a-Si was formed according to the manufacturing conditions of the photoconductive layer shown in Table 10.
A film was formed to prepare a sample for infrared spectroscopy measurement.
【0122】いずれの成膜においても、基体は静止状態
で成膜した。In all the film formations, the substrate was formed in a stationary state.
【0123】(比較例15−1)図5に示した堆積膜形
成装置を用い、整合回路511より第2の電極506ま
でを2経路に分けて、該第2の電極506の対向する2
か所に接続した以外は、実施例15と同様な成膜条件に
より、電子写真用感光体及び赤外分光測定用サンプルを
作成した。(Comparative Example 15-1) Using the deposited film forming apparatus shown in FIG. 5, the matching circuit 511 to the second electrode 506 are divided into two paths, and the second electrodes 506 facing each other are divided into two paths.
An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same film forming conditions as in Example 15 except that the sample was connected to a place.
【0124】(比較例15−2)図6に示した堆積膜形
成装置を用い、高周波電力導入手段が銅製の導電部61
4のみからなり、整合回路611より高周波電力導入手
段の導電部614までを2経路に分けて、該導電部61
4の対向する2か所に接続し、該高周波電力導入手段の
円筒軸方向の長さを、第2の電極の円筒軸方向の長さの
0.2倍とした以外は、実施例15と同様な成膜条件に
より、電子写真用感光体及び赤外分光測定用サンプルを
作成した。(Comparative Example 15-2) Using the deposited film forming apparatus shown in FIG. 6, the high-frequency power introducing means was made of copper as the conductive portion 61.
The matching circuit 611 is divided into two paths from the matching circuit 611 to the conductive portion 614 of the high frequency power introducing means, and the conductive portion 61 is divided into two paths.
Example 4 except that the length of the high-frequency power introducing means in the cylinder axis direction was 0.2 times the length of the second electrode in the cylinder axis direction. Under similar film forming conditions, a photoconductor for electrophotography and a sample for infrared spectroscopic measurement were prepared.
【0125】実施例15、比較例15−2で作成した電
子写真用感光体と赤外分光測定用サンプルを実施例1と
同様の手順で膜厚分布比、暗部表面電位ムラ、平均暗部
表面電位、赤外吸収断面積比を評価した。その結果を表
11に示す。表11から解るように、本発明の実施例1
5はいずれの評価でも周方向の分布が少なく、特性も優
れている。The electrophotographic photoreceptors and infrared spectroscopic measurement samples prepared in Example 15 and Comparative Example 15-2 were subjected to the same procedure as in Example 1 to obtain a film thickness distribution ratio, dark surface potential unevenness, and average dark surface potential. The infrared absorption cross-sectional area ratio was evaluated. The results are shown in Table 11. As can be seen from Table 11, Example 1 of the present invention
No. 5 has a small distribution in the circumferential direction in all evaluations and has excellent characteristics.
【0126】以上の結果より、本発明に従えば周方向の
膜厚を均一にし、かつ、良好な膜質の堆積膜を形成する
ことが出来ることが判明した。From the above results, it has been found that according to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film of good film quality can be formed.
【0127】[0127]
【表10】 [Table 10]
【0128】[0128]
【表11】 (注)比較例15−1を基準とした相対値[Table 11] (Note) Relative value based on Comparative Example 15-1
【0129】(実施例16)基体を回転させながら成膜
した以外は、実施例15と同様な条件で、電子写真用感
光体と赤外分光測定用サンプルを作製した。Example 16 An electrophotographic photoconductor and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 15 except that the film was formed while rotating the substrate.
【0130】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark surface potential nonuniformity, the average dark surface potential, and the infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0131】(実施例17)高周波電力導入手段の導電
部114にアルミニウムを使用した以外は、実施例1と
同様な条件で、電子写真用感光体と赤外分光測定用サン
プルを作製した。Example 17 An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Example 1 except that aluminum was used for the conductive portion 114 of the high frequency power introducing means.
【0132】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, dark surface potential unevenness, average dark surface potential, and infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0133】(実施例18)高周波電力導入手段の導電
部114に表面を銀メッキした銅を使用した以外は、実
施例15と同様な条件で、電子写真用感光体と赤外分光
測定用サンプルを作製した。(Embodiment 18) An electrophotographic photosensitive member and an infrared spectroscopic measurement sample were prepared under the same conditions as in Embodiment 15, except that the conductive portion 114 of the high frequency power introducing means was made of silver-plated copper. Was produced.
【0134】作成した電子写真用感光体と赤外分光測定
用サンプルを実施例1と同様の手順で膜厚分布比、暗部
表面電位ムラ、平均暗部表面電位、赤外吸収断面積比を
評価したところ、実施例1と同様に、周方向の分布が少
なく、特性も優れており、本発明に従えば周方向の膜厚
を均一にし、かつ、良好な膜質の堆積膜を形成すること
が出来ることが判明した。The prepared electrophotographic photosensitive member and infrared spectroscopic measurement sample were evaluated for the film thickness distribution ratio, the dark surface potential nonuniformity, the average dark surface potential, and the infrared absorption cross-sectional area ratio in the same procedure as in Example 1. However, as in Example 1, the distribution in the circumferential direction is small and the characteristics are excellent. According to the present invention, the film thickness in the circumferential direction can be made uniform and a deposited film with good film quality can be formed. It has been found.
【0135】[0135]
【発明の効果】第2の電極に均一に電力を供給すること
が出来るため周方向の膜厚分布を低減し、更には放電空
間に充分な電力を供給出来ることから堆積膜の膜特性を
も改善することが可能となる。EFFECTS OF THE INVENTION Since the electric power can be uniformly supplied to the second electrode, the film thickness distribution in the circumferential direction can be reduced, and further, sufficient electric power can be supplied to the discharge space, so that the film characteristics of the deposited film can be improved. It is possible to improve.
【図1】本発明の堆積膜形成装置の一例を示す模式図で
ある。FIG. 1 is a schematic view showing an example of a deposited film forming apparatus of the present invention.
【図2】本発明の別の堆積膜形成装置の一例を示す模式
図である。FIG. 2 is a schematic view showing an example of another deposited film forming apparatus of the present invention.
【図3】本発明の堆積膜形成装置で作成される電子写真
用感光体の層構成の一例を示す模式図である。FIG. 3 is a schematic view showing an example of the layer structure of an electrophotographic photosensitive member created by the deposited film forming apparatus of the present invention.
【図4】本発明の堆積膜形成装置で作成される電子写真
用感光体の別の層構成の一例を示す模式図である。FIG. 4 is a schematic view showing an example of another layer structure of the electrophotographic photosensitive member created by the deposited film forming apparatus of the present invention.
【図5】従来の堆積膜形成装置の一例を示す模式図であ
る。FIG. 5 is a schematic view showing an example of a conventional deposited film forming apparatus.
【図6】従来の堆積膜形成装置の一例を示す模式図であ
る。FIG. 6 is a schematic view showing an example of a conventional deposited film forming apparatus.
101,201,301,401 堆積室、 102,202,302,402 被成膜基体を兼ねる
第1の電極、 103,203,303,403 加熱用ヒーター、 104,204,304,404 メインバルブ、 105,205,305,405 排気口、 106,206,306,406 堆積室内壁を兼ねる
第2の電極、 107,108,207,208,307,308,4
07,408 補助基体、 109,209,309,409 原料ガス導入口、 110,210,310,410 原料ガス導入バル
ブ、 111,211,311,411 整合器、 112,212,312,412 20MHzから45
0MHzの高周波電源、 113,213 高周波電力導入手段の絶縁部、 114,214 高周波電力導入手段の導電部、 301,401 電子写真用感光体、 302,402 基体、 303,403 下部阻止層、 304,404 光導電層、 305,406 表面層、 405 上部阻止層。101, 201, 301, 401 deposition chamber, 102, 202, 302, 402 first electrode also serving as a film-forming substrate, 103, 203, 303, 403 heating heater, 104, 204, 304, 404 main valve, 105 , 205, 305, 405 Exhaust port, 106, 206, 306, 406 Second electrode also serving as inner wall of deposition chamber, 107, 108, 207, 208, 307, 308, 4
07,408 Auxiliary substrate, 109,209,309,409 Raw material gas introduction port, 110,210,310,410 Raw material gas introduction valve, 111,211,311,411 Matching device, 112,212,312,412 20MHz to 45
0 MHz high frequency power source, 113, 213 high frequency power introducing means insulating part, 114, 214 high frequency power introducing means conducting part, 301, 401 electrophotographic photoconductor, 302, 402 substrate, 303, 403 lower blocking layer, 304, 404 Photoconductive layer, 305,406 Surface layer, 405 Top blocking layer.
Claims (14)
空気密が可能な堆積室内に設置された被成膜基体を兼ね
る円筒状の第1の電極と、この第1の電極を外包し、か
つ同心円上に設置された円筒状の第2の電極に周波数2
0MHzから450MHzの高周波電力を第2の電極に
印加することにより第1の電極と第2の電極の間で放電
を生じさせるプラズマ処理装置において、絶縁性部材と
導電性部材の積層構造からなる高周波電力導入手段を、
絶縁性部材を第2の電極側として第2の電極の外周に、
外周を一周せしめて覆い、第2の電極への高周波電力の
印加を該高周波電力導入手段を介して行うようにしたこ
とを特徴とするプラズマ処理装置。1. A cylindrical first electrode, which also serves as a film-forming substrate, is installed in a vacuum-tight deposition chamber equipped with an exhaust means and a source gas supply means. And frequency 2 is applied to the cylindrical second electrode placed on the concentric circle.
In a plasma processing apparatus for generating a discharge between a first electrode and a second electrode by applying a high frequency power of 0 MHz to 450 MHz to a second electrode, a high frequency wave having a laminated structure of an insulating member and a conductive member. Power introduction means,
On the outer periphery of the second electrode with the insulating member on the second electrode side,
A plasma processing apparatus, characterized in that the outer periphery is covered with a circuit and the high frequency power is applied to the second electrode through the high frequency power introducing means.
電極の円筒軸方向の一部を覆っていることを特徴とする
請求項1に記載のプラズマ処理装置。2. The plasma processing apparatus according to claim 1, wherein the high-frequency power introduction means covers a part of the second electrode in the cylindrical axis direction.
と導電性部材の2層以上の積層構造からなることを特徴
とする請求項1または2に記載のプラズマ処理装置。3. The plasma processing apparatus according to claim 1, wherein the high-frequency power introduction means has a laminated structure of two or more layers of an insulating member and a conductive member.
に複数の回路に分岐され、前記高周波電力導入手段の周
方向の2か所以上に接続されることを特徴とする請求項
1乃至3のいずれか1項に記載のプラズマ処理装置。4. A high frequency power source is branched into a plurality of circuits after passing through a matching unit, and is connected to two or more positions in the circumferential direction of the high frequency power introducing means. The plasma processing apparatus according to any one of 3 above.
各々の供給点までの配線材の長さが全て等しいことを特
徴とする請求項4に記載のプラズマ処理装置。5. The plasma processing apparatus according to claim 4, wherein the lengths of the wiring members from the matching unit to the respective supply points to the high frequency power introducing means are all equal.
ことを特徴とする請求項1乃至5のいずれか1項に記載
のプラズマ処理装置。6. The plasma processing apparatus according to claim 1, wherein the second electrode also serves as a furnace wall of the deposition chamber.
が行われることを特徴とする請求項1乃至6のいずれか
1項に記載のプラズマ処理装置。7. The plasma processing apparatus according to claim 1, wherein the film formation is performed with the first electrode stationary.
われることを特徴とする請求項1乃至6のいずれか1項
に記載のプラズマ処理装置。8. The plasma processing apparatus according to claim 1, wherein the film formation is performed with the first electrode rotated.
が、テフロンからなることを特徴とする請求項1乃至8
のいずれか1項に記載のプラズマ処理装置。9. The insulating member of the high frequency power introducing means is made of Teflon.
The plasma processing apparatus according to claim 1.
が、アルミナセラミックスからなることを特徴とする請
求項1乃至8のいずれか1項に記載のプラズマ処理装
置。10. The plasma processing apparatus according to claim 1, wherein the insulating member of the high frequency power introducing means is made of alumina ceramics.
が、酸化珪素、炭化珪素、窒化珪素の内の少なくとも一
つからなることを特徴とする請求項1乃至8のいずれか
1項に記載のプラズマ処理装置。11. The insulating member of the high frequency power introducing means is made of at least one of silicon oxide, silicon carbide and silicon nitride. Plasma processing equipment.
が、窒化ホウ素、窒化アルミニウムの内の少なくとも一
つからなることを特徴とする請求項1乃至8のいずれか
1項記載のプラズマ処理装置。12. The plasma processing apparatus according to claim 1, wherein the insulating member of the high frequency power introducing means is made of at least one of boron nitride and aluminum nitride.
が、ポリスチレンからなることを特徴とする請求項1乃
至8のいずれか1項に記載のプラズマ処理装置。13. The plasma processing apparatus according to claim 1, wherein the insulating member of the high frequency power introducing means is made of polystyrene.
であることを特徴とする請求項1乃至8のいずれか1項
に記載のプラズマ処理装置。14. The plasma processing apparatus according to claim 1, wherein the deposited film forming apparatus is a plasma CVD apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6079015A JPH07288194A (en) | 1994-04-18 | 1994-04-18 | Plasma treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6079015A JPH07288194A (en) | 1994-04-18 | 1994-04-18 | Plasma treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07288194A true JPH07288194A (en) | 1995-10-31 |
Family
ID=13678128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6079015A Pending JPH07288194A (en) | 1994-04-18 | 1994-04-18 | Plasma treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07288194A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240973A (en) * | 2000-03-03 | 2001-09-04 | Ulvac Japan Ltd | Vacuum treatment system |
-
1994
- 1994-04-18 JP JP6079015A patent/JPH07288194A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240973A (en) * | 2000-03-03 | 2001-09-04 | Ulvac Japan Ltd | Vacuum treatment system |
JP4531185B2 (en) * | 2000-03-03 | 2010-08-25 | 株式会社アルバック | Vacuum processing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6065425A (en) | Plasma process apparatus and plasma process method | |
US6152071A (en) | High-frequency introducing means, plasma treatment apparatus, and plasma treatment method | |
JPH06287760A (en) | Plasma treating device and treatment | |
EP0717127A2 (en) | Plasma processing method and apparatus | |
JP3501668B2 (en) | Plasma CVD method and plasma CVD apparatus | |
JPH108259A (en) | Plasma treatment and plasma treating apparatus | |
US5558719A (en) | Plasma processing apparatus | |
JP3513206B2 (en) | Method and apparatus for forming deposited film | |
JPH07288194A (en) | Plasma treatment apparatus | |
JP3135031B2 (en) | Deposition film forming equipment | |
JP3387616B2 (en) | Plasma processing equipment | |
JP3368142B2 (en) | Deposition film forming equipment | |
JPH07288233A (en) | Film forming apparatus | |
JPH08236457A (en) | Formation of deposited film and electrophotographic photoreceptor | |
JP2001335944A (en) | System and method for plasma treatment | |
JP3606399B2 (en) | Deposited film forming equipment | |
JPH09256160A (en) | Plasma cvd device and deposited film forming method by plasma cvd | |
JP2994658B2 (en) | Apparatus and method for forming deposited film by microwave CVD | |
US5098812A (en) | Photosensitive device and manufacturing method for the same | |
JP2867150B2 (en) | Microwave plasma CVD equipment | |
JPH10168574A (en) | Cleaning method for film deposition system and method for film deposition | |
JP3402952B2 (en) | Method and apparatus for forming deposited film | |
JP2925310B2 (en) | Deposition film formation method | |
JPH08236460A (en) | Method and device for forming deposited film | |
JPH10168575A (en) | Device for forming amorphous silicon photoreceptor and its formation |