JPS59143038A - Magnet alloy - Google Patents

Magnet alloy

Info

Publication number
JPS59143038A
JPS59143038A JP58017439A JP1743983A JPS59143038A JP S59143038 A JPS59143038 A JP S59143038A JP 58017439 A JP58017439 A JP 58017439A JP 1743983 A JP1743983 A JP 1743983A JP S59143038 A JPS59143038 A JP S59143038A
Authority
JP
Japan
Prior art keywords
magnet alloy
cracking
alloy
rare earth
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58017439A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 崇司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58017439A priority Critical patent/JPS59143038A/en
Publication of JPS59143038A publication Critical patent/JPS59143038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a rare earth-cobalt magnet alloy which has a good magnetic characteristic and is low in material cost by specifying the compsn. of an alloy consisting of REM, Fe, Cu, Nb, etc., Te, etc. and Co thereby improving cracking and chipping properties and improving the yield of product. CONSTITUTION:A rare earth-cobalt magnet alloy consists of 20-30wt% REM, 5-40% Fe, 2-15% Cu, 0.1-10% >=1 kind among Nb, Ti, Zr and V, 0.01-2% 1 or 2 kinds of Te and Se or in combination with S, and the balance substantially Co. Co in the R2Co17 magnet alloy is substd. with a proper amt. of Fe, Cu, Nb, Ti, Zr, V, etc. to improve cracking and chipping properties. Nb, Ti, Zr, V, etc. in combination with an adequate atm. of Fe and Cu exhibit an extremely high magnetic characteristics. Te, Se, etc. are effective in improving the cracking and chipping properties of the magnet.

Description

【発明の詳細な説明】 この発明は、割れ、欠は性を改善した希土類コバルト系
磁石合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rare earth cobalt based magnet alloy with improved cracking and chipping properties.

希土類コバルト系磁石合金は、アルニコ系やフェライト
系磁石合金よりも磁気特性が大幅に優れているため、近
年とくにその用途は多方面にわたって拡がっており、最
近における生産量の伸びは著しいものがある。
Rare earth cobalt magnet alloys have significantly better magnetic properties than alnico and ferrite magnet alloys, so their uses have been expanding in a wide range of fields in recent years, and production has been increasing rapidly in recent years.

この希土類コバルト系磁石合金は、当初は高保磁力をも
つRC05系磁石合金が主流であったが、最近では各種
の添加元素を加えたR2Co、7系磁石合金が、より高
い磁気特性が得られること、R(REM)量が少ないた
め原料費が安価であること、などの理由からより多く使
用されるようになってきている。
Initially, the mainstream of this rare earth cobalt magnet alloy was the RC05 series magnet alloy, which had a high coercive force, but recently, R2Co, 7 series magnet alloys with various additive elements have been used to obtain higher magnetic properties. , R(REM) is small, so the raw material cost is low, and so on.

ところが、R2Co、7系磁石合金は、RCo5合金に
比べて、前記の如き利点を有するものの、硬くて脆いと
いう欠点があり、製造過程における歩留りが悪く、生産
上の問題となっている。そして、とくにこのような傾向
、は+R2Co、7R2C017系磁石合金1部を適当
量のCu、Fe、Ti、Zr、V、Nbなとで置換した
高磁気特性のR2Co17系磁石合金において顕著であ
る。
However, although the R2Co, 7-based magnet alloy has the above-mentioned advantages over the RCo5 alloy, it has the disadvantage of being hard and brittle, resulting in poor yields during the manufacturing process, which poses production problems. This tendency is particularly noticeable in R2Co17-based magnet alloys with high magnetic properties in which a portion of +R2Co, 7R2C017-based magnet alloys are replaced with appropriate amounts of Cu, Fe, Ti, Zr, V, Nb, etc.

そこで、本発明者らはこのような欠点を改善することを
目的として実験研究を進め、R2C017系磁石合金の
割れ、欠は原因を調べた結果、前記した割れ、欠けはい
ずれも結晶粒界から起っていることを確認して、この発
明を完成するに至った。
Therefore, the present inventors conducted experimental research with the aim of improving these defects, and as a result of investigating the causes of cracks and chips in R2C017 magnet alloy, it was found that the above-mentioned cracks and chips were caused by grain boundaries. After confirming what was happening, I was able to complete this invention.

すなわち、この発明による磁石合金は、重量比で、R,
EM(Yを含む希土類元素の1種以上)。
That is, the magnet alloy according to the present invention has a weight ratio of R,
EM (one or more rare earth elements including Y).

20−30%、Fe:5〜40%、Cu:2〜15%、
およびZr 、Ti 、Nb 、Vの1種または2種以
上を合計O11〜10%、ざらにTe。
20-30%, Fe: 5-40%, Cu: 2-15%,
and one or more of Zr, Ti, Nb, and V in a total content of 11 to 10% O and roughly Te.

Seの1種または2種もしくitsとの複合で合計0.
01〜2%、残部実質的にCoよりなることを特徴とし
ている。
A total of 0.1 or 2 Se or a combination with its.
01 to 2%, and the remainder substantially consists of Co.

以下、この発明による希土類コバルト系磁石合金の成分
範囲(重量比)の限定理由を説明する。
The reasons for limiting the component range (weight ratio) of the rare earth cobalt magnet alloy according to the present invention will be explained below.

REM:20〜30% REMは、Yを含む主にSm、Ce、Y。REM: 20-30% REM mainly contains Sm, Ce, and Y.

La、Prなどの希土類元素の1種または2種以上を総
称しているもので、このREMが20%未満であると、
残留磁束密度(Br)、保磁力(IHC,BHC)が共
に著しく低くなるので好ましくなく、30%を超えると
同様に残留磁束密度(Br)、保磁力(IHC、BHC
)とも低下してくるので好ましくない。したがって、R
EMFe:5〜40% Feは飽和磁化(4πIs)および残留磁束密度(Br
)を増大するのに有効な元素であるが、5%未満ではそ
の効果が小さく、また40%を超えると保磁力(IHC
,BHC)が著し・〈低くなり1実用上好ましくないの
で、5〜40%の範囲とした。
It is a general term for one or more rare earth elements such as La and Pr, and if this REM is less than 20%,
This is not preferable because both the residual magnetic flux density (Br) and the coercive force (IHC, BHC) become significantly low.
), which is not desirable. Therefore, R
EMFe: 5-40% Fe has saturation magnetization (4πIs) and residual magnetic flux density (Br
), but if it is less than 5%, the effect is small, and if it exceeds 40%, it will increase the coercive force (IHC).
, BHC) becomes significantly low, which is not desirable for practical purposes, so it is set in the range of 5 to 40%.

Cu:2〜15% Cuは2%未満であると保磁力(IHC。Cu: 2-15% Coercive force (IHC) is less than 2%.

BHC)が著しく低くなるので好ましくなく、15%を
超えると上記保磁力は増大傾向を示すが、飽和磁化(4
π丁、S)、?3よひ残留磁束密度(Br)が著しく減
少するので好ましくないため、2〜15%の範囲とした
This is not preferable because the coercive force (BHC) becomes extremely low, and if it exceeds 15%, the above coercive force tends to increase, but the saturation magnetization (4
π-ding, S),? 3. Since the residual magnetic flux density (Br) decreases significantly, which is not preferable, it is set in the range of 2 to 15%.

Nb、Ti 、Zr、Vの1種または2種以上を合計で
0.1〜10% Nb、Ti、Zr、Vはいずれも保磁力(rHc 、B
HC)を高めるのに有効な元素であり、適正なFe、C
u量との組合わせによって、非常に高い磁気特性を示す
。しかし、これらの元素の1種または2種以上が合計で
0.1%未満である場合にはこのような効果を明確に得
ることができず、10%を超えると保磁力(rHc。
One or more of Nb, Ti, Zr, and V in a total of 0.1 to 10%. Nb, Ti, Zr, and V all have coercive forces (rHc, B
HC), and is an effective element for increasing Fe, C
In combination with the amount of u, it exhibits extremely high magnetic properties. However, if the total amount of one or more of these elements is less than 0.1%, such an effect cannot be clearly obtained, and if it exceeds 10%, the coercive force (rHc).

BHC)および残留磁束密度(Br)が低下するので実
用上好ましくない。したがって、これらの元素の1種ま
たは2種以上を合計で0.1〜10%の範囲とした。
BHC) and residual magnetic flux density (Br) are lowered, which is not preferred in practice. Therefore, the total content of one or more of these elements was set in the range of 0.1 to 10%.

Te、Seの1種または2種もしくはこれらとSとの複
合で合計0.01〜2% Te、SeもしくはこれらとSとの複合添加によって、
磁石合金の割れ、欠は性を十分に改善することが可能で
あり、このような効果を得るためには合計で0.01%
以上とする必要がある。しかし、2%を超過すると、上
記割れ、欠は性改善の効果は得られるものの、磁気特性
の低下が著しくなる。したがって、Te、Seの1種ま
たは2種を合計で0.01〜2%、もしくはTe。
By adding one or two of Te, Se or a combination of these and S in a total of 0.01 to 2% Te, Se or a combination of these and S,
It is possible to sufficiently improve the cracking and chipping properties of the magnetic alloy, and in order to obtain such an effect, a total of 0.01%
It is necessary to do more than that. However, if it exceeds 2%, although the effect of improving the cracking and chipping properties described above can be obtained, the magnetic properties deteriorate significantly. Therefore, a total of 0.01 to 2% of one or both of Te and Se, or Te.

Seの1種または2種とSとの複合添加で合計0.01
〜2%の範囲とした。
Combined addition of one or two types of Se and S to a total of 0.01
The range was set at ~2%.

次に、この発明の実施例を比較例と共に説明する。Next, examples of the present invention will be described together with comparative examples.

表に示す組成の合金(試料No、の奇数は実施例、偶数
は比較例である。)をアルゴン雰囲気中でアークボタン
溶解したのち、鉄乳鉢内で一30力゛ス meshまで粗粉砕し、次いで、Nン1使用するジェッ
トミルにより平均料径4kまで微粉砕した。続いて、得
られた粉末を15KOeの磁場中でかつ1000 kg
/ cm2の圧力で圧縮成形し、この成形体をアルゴン
雰囲気中で1220’0Xlhrの条件で焼結した。そ
の後、1100〜1200°Cの間で各組成に適した温
度でlhr保持の溶体化処理を施した後急冷した。次い
で、800°Cで20hrの時効処理を施した後炉冷し
、得られた焼結体を丁寧に研磨して、約10X10X1
0+o+nの角柱状磁石を作製した。
An alloy having the composition shown in the table (sample numbers, odd numbers are examples, even numbers are comparative examples) was arc button melted in an argon atmosphere, and then coarsely ground to a 130 force mesh in an iron mortar. Next, the powder was pulverized to an average diameter of 4k using a jet mill using N-1. Subsequently, the obtained powder was placed in a magnetic field of 15 KOe and weighed at 1000 kg.
The molded body was compression molded at a pressure of /cm2, and the molded body was sintered under conditions of 1220'0Xlhr in an argon atmosphere. Thereafter, solution treatment was performed to maintain lhr at a temperature between 1100 and 1200°C suitable for each composition, followed by rapid cooling. Next, the sintered body was aged at 800°C for 20 hours, cooled in a furnace, and the resulting sintered body was carefully polished.
A 0+o+n prismatic magnet was produced.

次に、加圧成形した金属圧粉体の耐摩耗特性を調べるの
に使用されるラトラー試験機(粉体粉末冶金協会標準:
JSPM標準4−69.r粉体および粉末冶金」第16
巻第5号第26頁)を用いて、各供試材毎に5個ずつの
磁石を選んで、金属圧粉体の場合と同じように、87±
1Orpmの回転速度で5000回転させた後の重量の
摩耗減量を測定した。また、各供試材の残留磁束密度(
Br)、保磁力(BHC)、最大エネルギー積(BH)
fflaxについても調べた。これらの結果を同じく表
に示す。
Next, a Rattler tester (Powder Metallurgy Association standard:
JSPM Standard 4-69. r Powder and Powder Metallurgy” No. 16
(Vol. 5, No. 26, p. 26), select 5 magnets for each sample material, and as in the case of metal compacts, 87±
The wear loss in weight was measured after 5000 rotations at a rotation speed of 1 Orpm. In addition, the residual magnetic flux density (
Br), coercive force (BHC), maximum energy product (BH)
I also looked into fflax. These results are also shown in the table.

表に示す結果から明らかなように、Te、Seの1種ま
たは2 M!もしくはこれらとSとを複合添加した供試
材(No、奇数)では、これらの元素を添加しない供試
材(No、偶数)に比べていずれも摩耗減量がかなり少
なくなっており、端部の強度が増大した結果端部の割れ
や欠けによる減量が著しく軽減されることが確認された
。また、Te。
As is clear from the results shown in the table, one or two types of Te and Se M! Alternatively, in the test materials to which these elements and S were added in combination (No, odd numbers), the wear loss was much smaller than in the test materials to which these elements were not added (No, even numbers). It was confirmed that as a result of the increased strength, weight loss due to cracking and chipping at the edges was significantly reduced. Also, Te.

Se、Sの添加による磁気特性への悪影響は全くないこ
とも確認された。そして、この実施例による焼結磁石合
金のミクロ組織を観察したところ、結晶粒界に上記Nb
、Ti、Zr、VとTe。
It was also confirmed that the addition of Se and S had no adverse effect on the magnetic properties. When the microstructure of the sintered magnet alloy according to this example was observed, it was found that the above-mentioned Nb was present at the grain boundaries.
, Ti, Zr, V and Te.

SeおよびSとの化合物が形成されており、このため結
晶粒界の強度が高められる結果、割れ、欠は性が向上し
たものと考察される。
It is considered that a compound with Se and S is formed, which increases the strength of the grain boundaries, resulting in improved resistance to cracking and chipping.

以上説明してきたように、この発明の磁石合金によれは
、R2Co17系磁石合金のCOを適量のFe、Cu、
Nb、Ti 、Zr、Vで置換して磁%特性をより一層
向上させたときでも、従来のR2Co1.系磁石合金に
比べて著しく割れ。
As explained above, in the magnet alloy of the present invention, CO of the R2Co17-based magnet alloy is mixed with an appropriate amount of Fe, Cu,
Even when replacing with Nb, Ti, Zr, and V to further improve the magnetic % characteristics, the conventional R2Co1. Significant cracking compared to other magnet alloys.

欠は性を改善することができ、製造過程における歩留り
をかなり向上させることが可能であり、R2C0,7系
磁石合金がRCo5系磁石合金に比べて磁気特性が良好
であり、しかも原料費が安価であるという利点を十分に
活すことが可能であるという著しい効果をもたらす。
It is possible to significantly improve the yield in the manufacturing process, and the R2C0,7-based magnet alloy has better magnetic properties than the RCo5-based magnet alloy, and the raw material cost is lower. This has the remarkable effect of making it possible to take full advantage of the advantages of

特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩   豊Patent applicant: Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Shio

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で、REM:20〜30%、Fe:5〜4
0%、Cu:2〜15%、およびNb。 Ti、Zr、Vの1種または2種以上を合計0.1〜1
0%、ざらにTe、Seの1種または2種もしくはSと
の複合で合計0.01〜2%、残部実質的にCOよりな
ることを特徴とする希土類コバルト系磁石合金。
(1) Weight ratio: REM: 20-30%, Fe: 5-4
0%, Cu: 2-15%, and Nb. One or more of Ti, Zr, and V in total of 0.1 to 1
1. A rare earth cobalt-based magnet alloy, characterized in that it consists of 0%, roughly 0.01 to 2% in combination with one or both of Te, Se, or S, and the remainder substantially consisting of CO.
JP58017439A 1983-02-07 1983-02-07 Magnet alloy Pending JPS59143038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017439A JPS59143038A (en) 1983-02-07 1983-02-07 Magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017439A JPS59143038A (en) 1983-02-07 1983-02-07 Magnet alloy

Publications (1)

Publication Number Publication Date
JPS59143038A true JPS59143038A (en) 1984-08-16

Family

ID=11944053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017439A Pending JPS59143038A (en) 1983-02-07 1983-02-07 Magnet alloy

Country Status (1)

Country Link
JP (1) JPS59143038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058555A1 (en) * 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet and method for manufacturing same, and motor and generator employing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058555A1 (en) * 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet and method for manufacturing same, and motor and generator employing same
JP2010121167A (en) * 2008-11-19 2010-06-03 Toshiba Corp Permanent magnet, permanent magnet motor with the use of the same, and generator
US9087631B2 (en) 2008-11-19 2015-07-21 Kabushiki Kaisha Toshiba Permanent magnet and method of manufacturing the same, and motor and power generator using the same

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
CA1106648A (en) Permanent-magnet alloy
US4047982A (en) Permanent magnet and process for producing the same
JPH06346101A (en) Magnetically anisotropic powder and its production
JPH06212327A (en) Rare earth permanent magnet alloy
US4192696A (en) Permanent-magnet alloy
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
US3684591A (en) Sintered cobalt-rare earth intermetallic product including samarium and cerium and permanent magnets produced therefrom
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0316762B2 (en)
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPS59143038A (en) Magnet alloy
JPH1092617A (en) Permanent magnet and its manufacture
KR100204344B1 (en) Rare-earth-element-fe-co-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPS59153859A (en) Magnet alloy
JPS62291902A (en) Manufacture of permanent magnet
JPH05500134A (en) permanent magnet
JPH0246657B2 (en)
JP2001297907A (en) R-t-b sintered magnet, ring magnet and voice coil motor
JPS6169945A (en) Permanent magnet alloy
JPH0627298B2 (en) Ytterbium-transition metal permanent magnet alloy