JPS6169945A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS6169945A
JPS6169945A JP59191810A JP19181084A JPS6169945A JP S6169945 A JPS6169945 A JP S6169945A JP 59191810 A JP59191810 A JP 59191810A JP 19181084 A JP19181084 A JP 19181084A JP S6169945 A JPS6169945 A JP S6169945A
Authority
JP
Japan
Prior art keywords
permanent magnet
weight
alloy
rare earth
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191810A
Other languages
Japanese (ja)
Other versions
JPH0472903B2 (en
Inventor
Tetsuhiko Mizoguchi
徹彦 溝口
Toru Higuchi
徹 樋口
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59191810A priority Critical patent/JPS6169945A/en
Priority to DE8585111177T priority patent/DE3577618D1/en
Priority to EP85111177A priority patent/EP0175214B2/en
Priority to KR1019850006536A priority patent/KR900001477B1/en
Priority to US06/773,547 priority patent/US4664724A/en
Publication of JPS6169945A publication Critical patent/JPS6169945A/en
Priority to US07/011,609 priority patent/US4793874A/en
Priority to US07/249,945 priority patent/US4878964A/en
Publication of JPH0472903B2 publication Critical patent/JPH0472903B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inexpensive permanent magnet alloy which has stable and high coercive force, (BH)max, as well as high productivity by providing a specific composition consisting of Y or rare earth elements, B, O and Fe. CONSTITUTION:A permanent magnet alloy consists of, by weight, 10-40% R (where R is at least one of Y and rare earth elements), 0.1-8% B, 0.005-0.03% O and the balance Fe, which has stable and excellent magnetic characteristics with superior reproducibility. In regard to the above R, Nd and Pr especially have the effect of giving a high (BH)max, so the use of at least one of the two is preferred. And further, the above alloy can be obtd. by use of inexpensive Fe instead of expensive Co.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は永久磁石に係り、特にNd−Fe−B系等の希
土類鉄系の永久磁石合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to permanent magnets, and particularly to rare earth iron-based permanent magnet alloys such as Nd-Fe-B.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から知られている希土類磁石としては。 As a conventionally known rare earth magnet.

RCo s型%R2(CoCuFeM)17i (ただ
しRはam、Ce等の希土類金属、MはTi 、Zr 
、Hf等の遷移金R)等の希土類コバルト系の永久磁石
がある。しかしながらこの系の永久磁石は、エネルギー
積が3QM GOe程度で限界であシ、又、比較的高価
なCoを大量に使用しなければならないという問題点が
ちった。
RCo s type %R2 (CoCuFeM) 17i (where R is am, rare earth metal such as Ce, M is Ti, Zr
There are rare earth cobalt-based permanent magnets such as transition gold (R) such as , Hf, etc. However, this type of permanent magnet has the problem that the energy product is limited to about 3QM GOe, and a large amount of relatively expensive Co must be used.

近年このCo系に代え、比較的安価fkFe系の永久磁
石が研究されている(特開昭59−46008号等)Q
30MGOeを越えるものを得ることができるため非常
に有効な材料である。
In recent years, instead of this Co-based permanent magnet, relatively inexpensive fkFe-based permanent magnets have been studied (Japanese Unexamined Patent Publication No. 59-46008, etc.)Q
It is a very effective material because it can yield more than 30 MGOe.

しかしながらこの希土類鉄系永久磁石は製造条件によシ
、磁石特性、特に保磁力が3000eから10KOeを
超えるものまで現われるというように大きなバラツキを
示し、安定した磁石特性を得るととができな匹という問
題点がある。このことは工業上、非常に大きな問題であ
)、再現性良く、安定な磁石特性を有する鉄系の永久磁
石を得ることができれば、このR−Fe−B系の永久磁
石の実用性は大きく向上する◇ C発明の目的〕 本発明は以上の点を考慮してなされたもので。
However, depending on the manufacturing conditions, these rare earth iron-based permanent magnets exhibit large variations in magnetic properties, especially coercive force, ranging from 3000e to over 10KOe, making it difficult to obtain stable magnetic properties. There is a problem. This is a very big problem in industry), and if an iron-based permanent magnet with good reproducibility and stable magnetic properties can be obtained, the practicality of this R-Fe-B-based permanent magnet will be greatly improved. ◇CObjective of the Invention The present invention has been made in consideration of the above points.

製造性に優れ、カリ安定で高い保磁力、(BH)max
を有する永久磁石合金を提供することを目的とする。
Excellent manufacturability, potash stability, high coercive force, (BH) max
The purpose of the present invention is to provide a permanent magnet alloy having the following characteristics.

〔発明の概要〕[Summary of the invention]

本発明者等が前記問題点を解消すべく鋭意研究を進めた
結果、希土類Fe系の永久磁石においては永久磁石合金
中の酸素濃度が保磁力特性に顕著な彫金を与えるという
事実を発見したつ 本発明はこの発見に基づいてなされたもので、10〜4
0重量%のR(ただしRはY及び希土類元素から選ばれ
た少なくとも一種)、0.1〜8重f士係の硼素、o、
oos〜0.03重量%の酸素及び残部鉄からなること
を特徴とする永久磁石合金である。
As a result of intensive research aimed at solving the above-mentioned problems, the present inventors discovered the fact that in rare earth Fe-based permanent magnets, the oxygen concentration in the permanent magnet alloy has a significant influence on the coercive force characteristics. The present invention was made based on this discovery, and 10 to 4
0% by weight of R (where R is at least one selected from Y and rare earth elements), 0.1 to 8% boron, o,
It is a permanent magnetic alloy characterized by consisting of oos~0.03% by weight of oxygen and the balance iron.

Rが10重量%未満ではrH8の増大が得られず、切電
’1%を超えてしまうとB「が低下し、(”H)max
が低下してしまう。従ってRは10〜40重量%とする
。又、希土類元素の中でも、 Nd及びPrは特に高(
BH)maxを得るのに有効であり、Rとしてとの2元
素の少なくとも一種を含有することが好ましい。
If R is less than 10% by weight, no increase in rH8 will be obtained, and if the cutting current exceeds 1%, B will decrease and (H)max
will decrease. Therefore, R should be 10 to 40% by weight. Also, among the rare earth elements, Nd and Pr are particularly high (
BH)max, and preferably contains at least one of two elements as R.

このNd、PrのR,i中の割合は70チ以上(R量全
部でも良い)であることが好ましい。
It is preferable that the proportion of Nd and Pr in R and i is 70 or more (or the entire R amount may be sufficient).

又、硼素CB)が0.1重量11ではIHCが低下して
しまい、8重量%を超えるととB「の低下が顕著である
。よって01〜8重量ワとする。
Further, when boron CB) is 0.1% by weight, the IHC decreases, and when it exceeds 8% by weight, the decrease in B is significant.Therefore, it is set as 01 to 8% by weight.

なお、Bの一部をC,N、8i、P、Ge等で置換する
ことも可能である。とれにより焼結性の向上ひいてはB
r、 (BH)maxの増大を図ることができる。
Note that it is also possible to replace a part of B with C, N, 8i, P, Ge, or the like. Improvement of sinterability due to breakage and B
r, (BH)max can be increased.

この場合の置換量はBの80%程度までである。In this case, the amount of substitution is up to about 80% of B.

本発明における最も重量な点は酸素含有量である。酸素
量が0.03重量%を超えてしまうと保磁石が低下して
しまい、高(BH)maxを得ることができたらすっ粉
砕は2〜10μm程度の微粉砕が要求されるが、酸素量
が少ないと微粉砕が困難であり、粒径も不均一となり、
磁場中成形時の配向性の低下に伴うB「の減少、ひいて
は(BH) maxの低下をもたらす5酸素量はo、o
os〜0.03重量%とする。
The most important point in the present invention is the oxygen content. If the amount of oxygen exceeds 0.03% by weight, the strength of the coercive magnet will deteriorate, and if high (BH) max can be obtained, fine grinding of about 2 to 10 μm is required for smooth grinding, but the amount of oxygen If there is little, it is difficult to pulverize, and the particle size becomes uneven.
The amount of oxygen that causes a decrease in B due to the decrease in orientation during molding in a magnetic field, and thus a decrease in (BH) max, is o, o
os ~ 0.03% by weight.

酸素の永久磁石合金中の働きは明らかではないものの、
以下のととくの振舞により、高性能の永久磁石を得るこ
とができるものと推測される。
Although the function of oxygen in permanent magnetic alloys is not clear,
It is presumed that a high-performance permanent magnet can be obtained by the following special behavior.

すなわち、溶解合金中の酸素の一部は主成分元素でろる
R、Fe原子と結合して酸化物となシ、残)の酸素とと
もに合金結晶粒界等に偏析して存在していると考えられ
るっR−Fe−B系磁石が微粒子磁石であり、その保磁
力が主として逆磁区発生磁場によ)決定されることを考
慮すると、酸化物、偏析等の欠陥が多い場合、これらが
逆磁区発生源として作用することによシ保磁カが低下し
てしまうと考えられる。又、欠陥が少ない場合は粒界破
壊等が起こりにくくなるため、粉砕性が劣化すると予想
される。
In other words, it is thought that some of the oxygen in the molten alloy combines with the main component elements R and Fe atoms to form oxides, and exists segregated at alloy grain boundaries with the remaining oxygen. Considering that R-Fe-B magnets are fine-grain magnets and their coercive force is determined mainly by the magnetic field that generates reverse magnetic domains, if there are many defects such as oxides and segregation, these may cause reverse magnetic domains. It is thought that coercivity decreases by acting as a generation source. Furthermore, if there are few defects, grain boundary fracture etc. will be less likely to occur, so it is expected that the crushability will deteriorate.

本発明はR−Fe−B−0を基本成分とするが、Feの
1部をCo 、Cr、All 、Tj 、Zr、Hf 
、Nb 、Ta 、V、Mn 、Mo 、W。
The present invention uses R-Fe-B-0 as a basic component, but a part of Fe is replaced by Co, Cr, All, Tj, Zr, Hf.
, Nb, Ta, V, Mn, Mo, W.

Ru、Rh、Pd、Re、Os、Ir等で置換すること
もできる。
Substitution with Ru, Rh, Pd, Re, Os, Ir, etc. is also possible.

この量はFeの20俤程度であり、多すぎると(BH)
max低下等の特性劣化の要因となる。特にCo 、R
u 、 Rh 。
This amount is about 20 yen of Fe, and if it is too much (BH)
This becomes a factor in deterioration of characteristics such as a decrease in max. Especially Co, R
u, Rh.

Pd、Re、Os、Irはキーーリ一温度の上昇に有効
で磁気特性の温度安定性の向上に寄与し、またCr、A
Iは耐食性を大巾に向上させる。
Pd, Re, Os, and Ir are effective in increasing the core temperature and contribute to improving the temperature stability of magnetic properties, and Cr, A
I greatly improves corrosion resistance.

永久磁石合金中の酸素量は高純度の原料を用いるととも
に、原料合金溶解時の炉中酸素量を厳密、に制御するこ
とによシ、コントロールすることができる。
The amount of oxygen in the permanent magnet alloy can be controlled by using high-purity raw materials and by strictly controlling the amount of oxygen in the furnace during melting of the raw material alloy.

本発明に係る永久磁石合金を用いて良好な磁気特性を有
する永久磁石を得ることができる。以下にその方法を示
す。
A permanent magnet having good magnetic properties can be obtained using the permanent magnet alloy according to the present invention. The method is shown below.

まず、前述したごとくの組成を有する永久磁石合金を製
造する。次いでボールミル等の粉砕手段を用いて永久磁
石合金を粉砕する(第1の工程)。
First, a permanent magnet alloy having the composition as described above is manufactured. Next, the permanent magnet alloy is crushed using a crushing means such as a ball mill (first step).

この際、・後工程と焼結を容易にし、かつ、磁気特性を
良好とするために、得られる粉体の平均粒径は2〜10
μm程度とすることが好ましい。粒径が10μmを超え
ると磁束密度の低減をもたらし、又、2μm以下の粉砕
は困難であるとともに、保磁力等の磁気特性の低下をま
ねく。
At this time, in order to facilitate post-processing and sintering and to improve magnetic properties, the average particle size of the powder obtained is 2 to 10
It is preferable to set it to about μm. If the particle size exceeds 10 μm, the magnetic flux density will be reduced, and it is difficult to grind the particles to 2 μm or less, and this will lead to a decrease in magnetic properties such as coercive force.

次に第1の工程で得られた粉体を所望の形状だ成型する
。成形の際には通常の焼結磁石を製造するのと同様に1
例えば15KOe程度を印加し、配向処理を行なう。次
いで1000’C!〜1200’(:!、 0.5〜5
時間程度の条件で成形体を焼結する(第2の工8)。
Next, the powder obtained in the first step is molded into a desired shape. During molding, 1.
For example, about 15 KOe is applied to perform the alignment process. Then 1000'C! ~1200'(:!, 0.5~5
The molded body is sintered under conditions of approximately 100 ms (second step 8).

この焼結は合金中の酸素6度を増加させないように、A
rガス等の不活性ガス雰囲気中で行なうことが好ましい
This sintering is performed so as not to increase the oxygen content in the alloy.
It is preferable to carry out in an inert gas atmosphere such as r gas.

さらに磁気特性改善のため、焼結体K 400〜110
0°C11〜】0時間和度の時効処理を行なっても良い
Furthermore, to improve magnetic properties, sintered body K400~110
0° C. 11 ~] Aging treatment at a temperature of 0 hours may be performed.

このようにして製造された永久磁石は、永久磁石合金の
特性が優れているため、 Br、Hc、(BH)max
等の磁気特性に優れた永久磁石を得ることができる。
The permanent magnet manufactured in this way has excellent properties of permanent magnet alloy, so Br, Hc, (BH)max
It is possible to obtain a permanent magnet with excellent magnetic properties such as.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、THo。 As explained above, according to one aspect of the present invention, THo.

(BH)rrlax等の磁気特性の優れた永久磁石を、
再現性良く製造でき、非常に製造性に優れている。従っ
て、特性良好で安価なFe系磁石を得ることができるの
で、工業的価値は極めて大なるものである。
(BH) Permanent magnets with excellent magnetic properties such as rrlax,
It can be manufactured with good reproducibility and has excellent manufacturability. Therefore, since it is possible to obtain an inexpensive Fe-based magnet with good characteristics, it is of great industrial value.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

(実施例1) 組成がネオジウムお重量係、ボロ71.3重量饅、残部
鉄になるように各金属元素を配合し、2 kgをアルゴ
ン雰囲気上水冷銅ボート中でアーク溶解した。その際、
炉中の酸素層を厳密にコントロールすることにより、詞
喪合全中の酸素を増減させた。
(Example 1) Each metal element was mixed so that the composition was neodymium by weight, boro by weight by 71.3, and iron by weight, and the balance was iron, and 2 kg was arc melted in a water-cooled copper boat in an argon atmosphere. that time,
By strictly controlling the oxygen layer in the furnace, the amount of oxygen in the furnace was increased or decreased.

得られた永久磁石合金をArg囲気中で粗粉砕しステン
レスボールミルにて3〜5μmの粒径まで微粉砕したつ この微粉末を所定の押し型に充填して20000エール
ステツドの磁界を印加しつつ2ton/cntの圧力で
圧縮成形した。得られた成型体をアルゴン雰囲気中で1
080’0.1時間焼結し室温まで急冷した。
The obtained permanent magnet alloy was coarsely ground in an Arg atmosphere, and finely ground to a particle size of 3 to 5 μm using a stainless steel ball mill.The fine powder was then filled into a predetermined press mold, and a 2 ton press was applied while applying a magnetic field of 20,000 Oersted. Compression molding was performed at a pressure of /cnt. The obtained molded body was heated in an argon atmosphere for 1
080' was sintered for 0.1 hour and rapidly cooled to room temperature.

その後真空中で550’0XIHの時効を行ない、室温
まで急冷した。
Thereafter, aging was performed at 550'0XIH in vacuum, and the product was rapidly cooled to room temperature.

得られた永久磁石の残留磁束密度(B「)、保磁力、量
大エネルギー積((BH)max)’を測定し、その結
果を第1図に示す。同時に各酸素量を有する粗粉を3〜
5μmの粒度まで微粉砕するに必要な時間も示した。
The residual magnetic flux density (B'), coercive force, and bulk energy product ((BH)max)' of the obtained permanent magnet were measured, and the results are shown in Figure 1.At the same time, coarse powder with each oxygen content was measured. 3~
The time required to mill to a particle size of 5 μm is also shown.

第1図から合金の粉砕性および保磁力、また(BH)m
axは酸素濃度に大きく依存し、0.005%未満では
粉砕性が極端に劣化し、0.03%を超えると保磁力が
極端に低下することがわかる。
From Figure 1, the crushability and coercive force of the alloy, and (BH)m
It can be seen that ax greatly depends on the oxygen concentration, and when it is less than 0.005%, the crushability is extremely deteriorated, and when it exceeds 0.03%, the coercive force is extremely reduced.

(実施例2) 第1表に示した各組成を有する合金を使用し、焼結温度
を除いては実施例1と同様の方法で永久磁石を作製した
。その磁気特性を併せて第1表に記す。
(Example 2) Permanent magnets were produced in the same manner as in Example 1 using alloys having the respective compositions shown in Table 1, except for the sintering temperature. The magnetic properties are also listed in Table 1.

以上の結果から明らかな如く、本発明に係る希土類鉄系
永久磁石合金は、粉砕性、したがって製造性だ優れ、ま
た保磁力およびエネルギー積も非常に大きいという顕著
な利点を有するものである。
As is clear from the above results, the rare earth iron-based permanent magnet alloy according to the present invention has the remarkable advantages of excellent crushability and therefore manufacturability, as well as very large coercive force and energy product.

以下余白Below margin

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気特性と粉砕時間を表わす特性曲線図。 代理人 弁理士  則 近 憲 佑 (ほか1名) 第1図 0     111)f      D、lj2   
  1”ρ?      6.54     θ−ρS
栃該(tt%)−
Figure 1 is a characteristic curve diagram showing magnetic properties and grinding time. Agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 0 111) f D, lj2
1”ρ? 6.54 θ−ρS
Tochiko (tt%) -

Claims (2)

【特許請求の範囲】[Claims] (1)10〜40重量%のR(ただしRはY及び希土類
元素から選ばれた少なくとも一種)、0.1〜8重量%
の硼素、0.005〜0.03重量%の酸素及び残部鉄
からなることを特徴とする永久磁石合金。
(1) 10-40% by weight of R (R is at least one selected from Y and rare earth elements), 0.1-8% by weight
A permanent magnetic alloy comprising: boron, 0.005 to 0.03% by weight of oxygen, and the balance iron.
(2)前記RはNd及びPrから選ばれた少なくとも一
種を含むことを特徴とする特許請求の範囲第1項記載の
永久磁石合金。
(2) The permanent magnet alloy according to claim 1, wherein the R contains at least one selected from Nd and Pr.
JP59191810A 1984-09-14 1984-09-14 Permanent magnet alloy Granted JPS6169945A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59191810A JPS6169945A (en) 1984-09-14 1984-09-14 Permanent magnet alloy
DE8585111177T DE3577618D1 (en) 1984-09-14 1985-09-04 PERMANENT MAGNETIC ALLOY AND METHOD FOR THEIR PRODUCTION.
EP85111177A EP0175214B2 (en) 1984-09-14 1985-09-04 Permanent magnetic alloy and method of manufacturing the same
KR1019850006536A KR900001477B1 (en) 1984-09-14 1985-09-06 Permanent magnetic alloy and method of manufacturing the same
US06/773,547 US4664724A (en) 1984-09-14 1985-09-09 Permanent magnetic alloy and method of manufacturing the same
US07/011,609 US4793874A (en) 1984-09-14 1987-02-06 Permanent magnetic alloy and method of manufacturing the same
US07/249,945 US4878964A (en) 1984-09-14 1988-09-27 Permanent magnetic alloy and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191810A JPS6169945A (en) 1984-09-14 1984-09-14 Permanent magnet alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6282420A Division JP2825449B2 (en) 1994-10-24 1994-10-24 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPS6169945A true JPS6169945A (en) 1986-04-10
JPH0472903B2 JPH0472903B2 (en) 1992-11-19

Family

ID=16280898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191810A Granted JPS6169945A (en) 1984-09-14 1984-09-14 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS6169945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133040A (en) * 1985-12-05 1987-06-16 Shin Etsu Chem Co Ltd Rare-earth permanent magnet material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J APPL PHYS=1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133040A (en) * 1985-12-05 1987-06-16 Shin Etsu Chem Co Ltd Rare-earth permanent magnet material
JPH0475304B2 (en) * 1985-12-05 1992-11-30

Also Published As

Publication number Publication date
JPH0472903B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
KR900001477B1 (en) Permanent magnetic alloy and method of manufacturing the same
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6181603A (en) Preparation of rare earth magnet
JPS60228652A (en) Magnet containing rare earth element and its manufacture
JPS6169945A (en) Permanent magnet alloy
JPS6181604A (en) Preparation of rare earth magnet
JPS6274054A (en) Permanent magnet alloy
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS6242404A (en) Manufacture of rare-earh iron permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPS61227151A (en) Manufacture of permanent magnet alloy and permanent magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP2577373B2 (en) Sintered permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2825449B2 (en) Manufacturing method of permanent magnet
JPS6247454A (en) Permanent magnet alloy
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH0815123B2 (en) permanent magnet
JPH024942A (en) Permanent magnetic alloy
JPS61156706A (en) Manufacture of permanent magnet
JPH01222408A (en) Manufacture of bond type permanent magnet
JPS62291902A (en) Manufacture of permanent magnet
JPS61227150A (en) Manufacture of permanent magnet alloy and permanent magnet
JPH0897022A (en) Manufacture of rare-earth magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term