JPS62133040A - Rare-earth permanent magnet material - Google Patents

Rare-earth permanent magnet material

Info

Publication number
JPS62133040A
JPS62133040A JP60274486A JP27448685A JPS62133040A JP S62133040 A JPS62133040 A JP S62133040A JP 60274486 A JP60274486 A JP 60274486A JP 27448685 A JP27448685 A JP 27448685A JP S62133040 A JPS62133040 A JP S62133040A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
content
magnetic properties
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60274486A
Other languages
Japanese (ja)
Other versions
JPH0475304B2 (en
Inventor
Takeshi Ohashi
健 大橋
Yoshio Tawara
俵 好夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP60274486A priority Critical patent/JPS62133040A/en
Publication of JPS62133040A publication Critical patent/JPS62133040A/en
Publication of JPH0475304B2 publication Critical patent/JPH0475304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To prevent deterioration in magnetic properties of permanent magnets by controlling C and O2 content in powdery raw material in manufacturing a permanent magnet composed mainly of iron, rare earth elements, and boron by powder compacting method. CONSTITUTION:An iron-rare earth element-boron alloy which is composed of an Fe alloy having a composition containing, by weight, 25-40% R (at least one element among Y and rare earth elements) and 0.7-2.5% B and having the balance consisting of Fe or Fe and at least one element among Co, Al, Nb, and Si and in which C and O2 content is regulated to <=0.05% and <=0.3%, respectively. An ingot of this Fe-base alloy is pulverized, and the resulting powder is oriented in the magnetic field and compacted. The green compact is sintered at 1,050 deg.C to be formed into permanent magnet. In the above, C and O2 content is controlled to a minimum, respectively, so that permanent magnets excellent in magnetic properties can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種の産業用や家庭用の電気機器に巾広く利用
される。希土類永久磁石材料に係わる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is widely used in various industrial and domestic electrical appliances. Related to rare earth permanent magnet materials.

(従来の技術及びその問題点) 従来希土類鉄ホウ素を主成分とする永久磁石を粉末成形
法で製造しようとすると、原料が非常に活性なために、
粉の劣化が激しく焼結工程での緻密化を妨げ磁気特性を
低下させるという問題があった。その原因は一般に微粉
の酸化によるものと考えられ、溶解、粉砕、成形、焼結
等の各工程を rr空中、または還元性ないし非酸化性
雰囲気ドで行ない、酸化を極力抑制する方法が採られて
きた。また、最近ではこれらの方法に加えて活性の高い
元素を第4成分として加えて酸化を抑制する方法も提案
されている(特開昭60−12707をン)が、これら
の努力にも拘らず製造工程中での磁気特性の低下を完全
に防止するには至っていない。
(Prior art and its problems) Conventionally, when trying to manufacture permanent magnets whose main component is rare earth iron boron by powder molding, the raw materials are very active, so
There was a problem in that the powder deteriorated severely, preventing densification in the sintering process and reducing magnetic properties. The cause of this is generally thought to be oxidation of the fine powder, and methods such as melting, crushing, molding, and sintering are performed in air or in a reducing or non-oxidizing atmosphere to suppress oxidation as much as possible. It's here. Recently, in addition to these methods, a method of suppressing oxidation by adding a highly active element as a fourth component has been proposed (see Japanese Patent Application Laid-Open No. 60-12707), but despite these efforts, It has not yet been possible to completely prevent the deterioration of magnetic properties during the manufacturing process.

−・方、磁石材ネコ1中の少量成分の影響についても多
くの研究がなされ、例えば特開昭59−132105号
及び同163803号にはCu、S、CおよびPについ
てその含有ji+、、を所定値以下に限定すれば磁気特
性には影響を!j−えず、特にCについては2原子%以
下に抑えれば充分であり、成形時に用いられる有機バイ
ンダーからのCの完全除去は心霊としないことが示され
ている。
- On the other hand, many studies have been conducted on the influence of small amounts of components in the magnet material Neko 1. For example, in JP-A-59-132105 and JP-A-163803, the content of Cu, S, C, and P is If you limit it to below a certain value, it will not affect the magnetic properties! It has been shown that it is sufficient to suppress C to 2 atomic % or less, and that complete removal of C from the organic binder used during molding is not a problem.

(問題点を解決するための−L段) 未発1!11者らは、前述した製造工程中における磁気
持性の低下現象が中なる微粉の酸化によるものではなく
、他の微少成分の存在が犬きく作用しているのではない
かという疑いを持ち、これらの成分を極力低下させたも
のについて研究を進めた結果、Cと0分が磁気特性の低
下に改装な要因を占めていることを見出し、この発明に
至ったものである。すなわち希土類鉄ホウ素系磁石材料
の製造に際して、微粉の変質を防+hL、磁気特性の低
下のない、高性能な永久磁石材料の提供を目的とし、材
料組成の特定によってその目的を達成せんとするもので
ある。
(Step-L to solve the problem) Unexploded 1!11 The authors believe that the phenomenon of decrease in magnetic retention during the manufacturing process described above is not due to oxidation of the fine powder, but is due to the presence of other minute components. Suspecting that these components may have a strong effect on magnetic properties, we conducted research on materials in which these components were reduced as much as possible, and as a result, we found that C and 0 minutes were responsible for the decline in magnetic properties. This discovery led to this invention. In other words, when manufacturing rare earth iron boron magnet materials, the purpose is to provide a high-performance permanent magnet material that prevents deterioration of fine powder and does not cause deterioration of magnetic properties, and aims to achieve this goal by specifying the material composition. It is.

(発明の構成) 本発明は重置百分比で25〜40%のR(ただし、Rは
Yおよび希土類元素の少なくとも一種)と、0,7〜2
.5%のBと、0.05%以下のCと、0゜3%未満の
Oと残部M(ただしMはFe、Co。
(Structure of the Invention) The present invention comprises R of 25 to 40% (wherein R is at least one of Y and a rare earth element) and 0.7 to 2
.. 5% B, 0.05% or less C, less than 0.3% O, and the balance M (M is Fe, Co.

AI、Nb、SiのうちのFeを含む少なくとも−・種
)よりなることを特徴とする希土類永久磁石材を要旨と
するものである。本発明の永久磁石においてはCおよび
O含有量を極力、低下させることが改装である。CH,
;は製造過程における微粉の劣化物1;、およびiHC
の低下を防ぐために0.05%以下に抑えることが必要
である。その理由は、それ以1−でも実用l;使用でき
る磁気特性は得られるが多くなればなるほど微粉を大気
中に放置した場合の粉体劣化が箸しくなり微粉取扱いが
困難になるからであるが、 0.05%以下のC量の場
合磁石微粉は劣化しに〈〈なり1l(Cが増加するため
である。したがって、この永久磁石の製造に際しては原
料として出来るだけCの少ないものを使用し、粉砕はデ
ィスクミル、ジェットミル等の乾式粉砕により、更に、
成形に当ってはバインダーの使用を出来るだけ避けるの
が望ましい。
The gist of the present invention is a rare earth permanent magnet material characterized by being made of at least one of Al, Nb, and Si containing Fe. The modification of the permanent magnet of the present invention is to reduce the C and O contents as much as possible. CH,
; is a fine powder degraded product 1 in the manufacturing process; and iHC
In order to prevent a decrease in the content, it is necessary to suppress the content to 0.05% or less. The reason for this is that even if it is 1-1 or more, usable magnetic properties can be obtained, but the more fine powder is left in the atmosphere, the more the powder deteriorates and becomes difficult to handle. If the amount of C is less than 0.05%, the magnet fine powder will not deteriorate (this is because the C content will increase.) Therefore, when manufacturing this permanent magnet, use materials with as little C as possible as raw materials. , grinding is done by dry grinding using a disc mill, jet mill, etc.
When molding, it is desirable to avoid the use of binders as much as possible.

また、Oj市は焼結温度の低下と、磁気特性、とくに飽
和磁化(4πIs)の向上のため0.3重量%未満にと
どめることが必要である。従来の方法は0量だけの低減
化を日桁していたが1本発明はCとOの量を同時に低減
することにより粉体劣化が起り難いことを見出したもの
であり、0量を0゜3%未満に限定した理由は、次のよ
うな考察によるものである。すなわち、C,!:Oは希
土類元素とそれぞれ炭化物及び酸化物を形成するが、希
土類炭化物は吸湿性が大きく、次のような反応を経て最
終的に希土類酸化物に変化する。
Further, it is necessary to keep the content of Oj city to less than 0.3% by weight in order to lower the sintering temperature and improve magnetic properties, especially saturation magnetization (4πIs). Conventional methods only reduced the amount of 0 to 0, but the present invention found that by simultaneously reducing the amount of C and O, powder deterioration was less likely to occur, and the amount of 0 was reduced to 0. The reason for limiting it to less than 3% is based on the following considerations. That is, C,! :O forms carbides and oxides with rare earth elements, respectively, but rare earth carbides are highly hygroscopic and are finally transformed into rare earth oxides through the following reaction.

R2C5+mH2O→R2C5ΦmH2OR2C3−m
H2O:900”Q−R203+nC2H,。
R2C5+mH2O→R2C5ΦmH2OR2C3-m
H2O:900"Q-R203+nC2H,.

このような炭化物及び酸化物は微粉表面に薄膜を形成し
焼結工程での粒成長を妨げる。とくにRFeB系の磁石
材ネ1では焼結温度領域で液相が共存しており、この液
相が微粉表面の11!Jを取去って液相部に濃縮する役
目を果すため焼結体が緻密化するものと考えられている
。しかし、この表面薄膜を取除くために多量の液相が存
在しなければならないため、結果的に磁性を担うマドリ
ス相(R2Fe、4B相)が少なくなり、磁気特性が低
下する。
Such carbides and oxides form a thin film on the surface of the fine powder and hinder grain growth during the sintering process. In particular, in the RFeB magnet material No. 1, a liquid phase coexists in the sintering temperature range, and this liquid phase is present on the surface of the fine powder. It is thought that the sintered body becomes dense because it serves to remove J and concentrate it in the liquid phase. However, since a large amount of liquid phase must be present to remove this surface thin film, as a result, the madris phase (R2Fe, 4B phase) responsible for magnetism decreases, and the magnetic properties deteriorate.

CとOが多い場合微粉表面膜を取り除くに充分な液相が
存在しないため緻密化が妨げられる。
When C and O are present in large amounts, densification is hindered because there is not enough liquid phase to remove the fine powder surface film.

この酸素1詐の低減のために溶解、粉砕、成形、焼結、
熱処理の各工程はもちろん、微粉の保管も含めてy4空
中または不活性、非酸化性あるいは還元PL雰囲気下で
行なうのが望ましく、また粉表面を被覆、蒸着すること
により空気との接触を遮断することも有効である。
In order to reduce this oxygen content, melting, crushing, molding, sintering,
It is desirable to carry out each step of heat treatment, including the storage of fine powder, in air or in an inert, non-oxidizing or reducing PL atmosphere, and also to cut off contact with air by coating or vapor depositing the powder surface. It is also effective.

他方1本発明の永久磁石の主成分であるRはYまたは希
」:類元素の少なくとも一種であって、その配合埴は2
5〜40重量%である。Rが25%以下では保磁力(i
Hc)が急激に低下し1KOe以下になり、また40%
以上では微粉の活性が強過ぎて、発火しやすくなり、飽
和磁化(4πIs)も低下する。Bは0.7〜2.5重
に%であって、0.7%以下ではiHcが低くて磁石と
しての実用に適さず、緻密化を妨げる。また2、5%以
上では飽和磁化の低下が大きく、最大エネルギー積[(
BH) wax ] を低下させる。残部Mの内のFe
、Coを除く、An、 Nb、Siの各元素はiHcの増大効果がある。
On the other hand, R, which is the main component of the permanent magnet of the present invention, is Y or at least one type of rare element, and its composition is 2.
It is 5 to 40% by weight. When R is less than 25%, the coercive force (i
Hc) suddenly decreased to less than 1 KOe, and 40%
Above this, the activity of the fine powder becomes too strong, making it easy to ignite, and the saturation magnetization (4πIs) also decreases. B is present in an amount of 0.7 to 2.5% by weight, and if it is less than 0.7%, the iHc is low and it is not suitable for practical use as a magnet, and it prevents densification. Moreover, above 2.5%, the saturation magnetization decreases significantly, and the maximum energy product [(
BH) wax]. Fe in the remainder M
, An, Nb, and Si, excluding Co, have the effect of increasing iHc.

(実施例) 次に、本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例1 重j−百分比(以下同じ)でNd:95%、Pr:2.
5%、F e : 2.0%、C: 0.05%のメタ
ルと、純度89.5%の電解鉄と、B:19.8%、F
eニア5.0%、C:0.08%、Al:4.0%のフ
ェロポロンとを原料として、Nd、Pr:34.13%
、Fe:63.8%、B : 8.0%、A交二0.3
%の組成になるように秤にし、高周波溶解炉で溶解して
インゴットを作成した、このインゴットの炭素分を分析
したところ0.02%であった、これをディスクミルで
粗砕した後、N2ガスによりジェットミルで平均粒径3
.5ルmに微粉砕した。これを1OKOeの磁場中で配
向し、it/crn’の圧力でプレス成形後、その成形
物を1050℃で1時間焼結した。
Example 1 Nd: 95%, Pr: 2.
5%, Fe: 2.0%, C: 0.05% metal, electrolytic iron with a purity of 89.5%, B: 19.8%, F
Nd, Pr: 34.13% using ferroporon of e-nia 5.0%, C: 0.08%, Al: 4.0% as raw materials
, Fe: 63.8%, B: 8.0%, A-cross 0.3
% and melted in a high frequency melting furnace to create an ingot.The carbon content of this ingot was analyzed and was found to be 0.02%.After coarsely crushing it with a disk mill, N2 The average particle size is 3 with a jet mill using gas.
.. It was pulverized to 5 lm. This was oriented in a magnetic field of 1 OKOe, press-molded at a pressure of it/crn', and then the molded product was sintered at 1050° C. for 1 hour.

焼結物を550℃で1時間熱処理した後不活性ガスを用
いて急冷した。
The sintered product was heat treated at 550° C. for 1 hour and then rapidly cooled using an inert gas.

比較のため、前記メタルに代えてN d : 9.5%
、P r : 3.0%、Fe:1.5%、C: O,
7%のメタルを使用したほかは、前記と同様にして焼結
磁石を作成した。このインゴットの炭素分の分析結果は
0.28%であった。第1図は、各磁石材の微粉砕粉を
大気中に放置したときの時経的な重量増加率を示す、ま
た表−1には一定時間大気中に放置した微粉を焼結、熱
処理し磁石で得た磁石の密度と磁気特性の変化を示す。
For comparison, N d : 9.5% instead of the above metal.
, P r : 3.0%, Fe: 1.5%, C: O,
A sintered magnet was produced in the same manner as described above, except that 7% metal was used. The carbon content analysis result of this ingot was 0.28%. Figure 1 shows the rate of weight increase over time when finely pulverized powder of each magnet material is left in the air, and Table 1 shows the rate of weight increase over time when the finely ground powder of each magnet material is left in the air for a certain period of time and is sintered and heat treated. It shows the change in magnetic density and magnetic properties obtained using a magnet.

表−1 なお表−1の24H「放置後微粉を使用し作成した焼結
体のQiは0.2%であった。
Table 1 The Qi of the sintered body prepared using the 24H fine powder after standing in Table 1 was 0.2%.

第1図の結果より、炭素量が少ない微粉では、ある時間
を経過すると重量増加がほとんど起きないのに対し、比
較例の炭素量が多い微粉では当初急速に重量が増加し、
その後も飽和する傾向が見られない、このことは炭素の
含有量によって酸化の挙動に著しい変化のあることを示
している。
From the results shown in Figure 1, the weight of the fine powder with a low carbon content hardly increases after a certain period of time, whereas the weight of the fine powder with a high carbon content in the comparative example increases rapidly at the beginning.
Even after that, no tendency to saturation was observed, which indicates that the oxidation behavior changes significantly depending on the carbon content.

また表−1の結果からは、炭素量の低い組成の方か微粉
の劣化が少なく磁気特性への影響も少ないことが判る。
Furthermore, from the results in Table 1, it can be seen that the composition with a lower carbon content causes less deterioration of the fine powder and less influence on the magnetic properties.

実施例2 Nd:94〜97%、P r : l 〜3.5%、F
e:1〜4%、C: 0.02〜0.9%(7)N d
 メタル、純度99.9%の電解鉄および電解コバルト
、Bi:99.5%、C:0.2%のBメタルを原料と
して、Nd−P r : 37.3%、F e : 4
B、7%、Co : 12.95%、B : 1.1%
の組成で炭素量だけが異なるもの5種類を秤量し、実施
例1と同様にしてそれぞれの微粉末を作成し、大気中に
24時間放置後実施例1と同じ条件で異方性焼結磁石を
作成しその磁気特性を測定した。
Example 2 Nd: 94-97%, Pr: 1-3.5%, F
e: 1-4%, C: 0.02-0.9% (7) N d
Metal, electrolytic iron and cobalt with purity of 99.9%, B metal with Bi: 99.5%, C: 0.2% as raw materials, Nd-Pr: 37.3%, Fe: 4
B, 7%, Co: 12.95%, B: 1.1%
Weighed five types of materials with different compositions only in carbon content, prepared fine powders for each in the same manner as in Example 1, left them in the atmosphere for 24 hours, and then produced anisotropic sintered magnets under the same conditions as in Example 1. were created and their magnetic properties were measured.

第2図に炭素含有量とiHcとの関係を示す、これより
炭素含有量が0.05%を超えると急激に保磁力が低下
するが、これは、炭素含有、j^が多い程粉の酸化およ
び吸湿劣化を受は易いことを示すものである。
Figure 2 shows the relationship between carbon content and iHc.It shows that when the carbon content exceeds 0.05%, the coercive force decreases rapidly. This indicates that it is easily susceptible to oxidation and moisture absorption deterioration.

実施例3 Nd:99.9%、c : o、ot%のメタルと、D
y:99.9%、C: 0.01%のメタルと、純度8
9.9%の電解鉄とB : 99.5%、C:0.2%
のメタルを原料として、N d : 29.4%、D 
Y : 3.7%、F e : 65.8%、B : 
1.1%の組成になるように秤量し、実施例1と同じ方
法でインゴットを作成した。その炭素含有+、の分析結
果は0.01%以下であった。このインゴットをN2ガ
スでフローさせながらディスクミルで粗砕し、更に、ジ
ェットミルでモ均粒径3pmに微粉砕した、この微粉を
10KOeの磁場中で配向させた後1t/crn”の圧
力でプレス成形し実施例1と同じ条件で焼結及び熱処理
を行なったこの粉砕から焼結までの各1程で粉末もしく
は成形体は不活性ガスを満したチャンバーに保存し、空
気中の酸素による酸化を極力抑えた。
Example 3 Nd: 99.9%, c: o, ot% metal, and D
Y: 99.9%, C: 0.01% metal, purity 8
9.9% electrolytic iron and B: 99.5%, C: 0.2%
Using metal as raw material, N d : 29.4%, D
Y: 3.7%, Fe: 65.8%, B:
It was weighed so that the composition was 1.1%, and an ingot was prepared in the same manner as in Example 1. The analysis result of the carbon content was 0.01% or less. This ingot was coarsely crushed with a disk mill while flowing with N2 gas, and further finely crushed with a jet mill to a uniform particle size of 3 pm. After orienting this fine powder in a magnetic field of 10 KOe, it was crushed under a pressure of 1 t/crn. After press forming, sintering and heat treatment were carried out under the same conditions as in Example 1. During each period from pulverization to sintering, the powder or compact was stored in a chamber filled with inert gas and oxidized by oxygen in the air. was suppressed as much as possible.

この焼結体の磁気特性と酸素含有量を測定したところ次
の結果が得られた。
When the magnetic properties and oxygen content of this sintered body were measured, the following results were obtained.

B r = 12.4K G、 i Hc =20.8KOe (BH)wax =36MG*0e O=0.15% C= 0.008 % なお、通常の方法で製造されたものは B r = 12.0K G、 i Hc = 17.4KOe (BH)wax =32MGsOe O=0゜75% c=o、o7% (発明の効果) 以上のように、本発明による永久磁石材料では製造工程
中における粉の劣化が少ないため緻密な焼結体が得られ
、かつ高い磁気特性を保持できる効果がある。
B r = 12.4 K G, i Hc = 20.8 KOe (BH)wax = 36 MG * 0e O = 0.15% C = 0.008% In addition, those manufactured by a normal method have B r = 12. 0K G, i Hc = 17.4KOe (BH)wax = 32MGsOe O = 0°75% c = o, o7% (Effects of the invention) As described above, the permanent magnet material according to the present invention reduces the amount of powder during the manufacturing process. Since there is little deterioration, a dense sintered body can be obtained and high magnetic properties can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素含有量の異なる微粉を大気中に放置した場
合の経時的重量増加率を示すグラフ、第2図は磁石中の
炭素含有量と保磁力との関係を示すグラフである。 特許出願人 信越化学工業株式会社 代理人・弁理士 山 本 亮 − 第1図 秩1時南(h「) 第2図 イ)丁−・ト中C蓋(w?%)
FIG. 1 is a graph showing the weight increase rate over time when fine powders with different carbon contents are left in the atmosphere, and FIG. 2 is a graph showing the relationship between carbon content in a magnet and coercive force. Patent Applicant: Shin-Etsu Chemical Co., Ltd. Agent/Patent Attorney Ryo Yamamoto - Figure 1 Chichi 1 o'clock south (h') Figure 2 A) Ding - C Lid (w?%)

Claims (1)

【特許請求の範囲】[Claims]  重量百分比で25〜40%のR(ただしRはYおよび
希土類元素の少なくとも一種)と、0.7〜2.5%の
Bと、0.05%以下のCと、0.3%未満のOと残部
M(ただしMはFe、Co、AlNb、Siの内のFe
を含む少なくとも一種)よりなることを特徴とする希土
類永久磁石材料。
25 to 40% R by weight percentage (R is at least one of Y and a rare earth element), 0.7 to 2.5% B, 0.05% or less C, and less than 0.3% O and the remainder M (where M is Fe in Fe, Co, AlNb, and Si)
A rare earth permanent magnet material comprising:
JP60274486A 1985-12-05 1985-12-05 Rare-earth permanent magnet material Granted JPS62133040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274486A JPS62133040A (en) 1985-12-05 1985-12-05 Rare-earth permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274486A JPS62133040A (en) 1985-12-05 1985-12-05 Rare-earth permanent magnet material

Publications (2)

Publication Number Publication Date
JPS62133040A true JPS62133040A (en) 1987-06-16
JPH0475304B2 JPH0475304B2 (en) 1992-11-30

Family

ID=17542356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274486A Granted JPS62133040A (en) 1985-12-05 1985-12-05 Rare-earth permanent magnet material

Country Status (1)

Country Link
JP (1) JPS62133040A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481301A (en) * 1987-09-24 1989-03-27 Daido Steel Co Ltd Magnetic powder for manufacturing plastic magnet
EP0389626A1 (en) * 1988-06-03 1990-10-03 Mitsubishi Materials Corporation SINTERED RARE EARTH ELEMENT-B-Fe-MAGNET AND PROCESS FOR ITS PRODUCTION
EP0414645A1 (en) * 1989-08-25 1991-02-27 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
EP0466988A2 (en) * 1990-04-10 1992-01-22 Crucible Materials Corporation Permanent magnet having improved corrosion resistance and method for producing the same
US5183630A (en) * 1989-08-25 1993-02-02 Dowa Mining Co., Ltd. Process for production of permanent magnet alloy having improved resistence to oxidation
US5269855A (en) * 1989-08-25 1993-12-14 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance
JPH06322469A (en) * 1993-03-19 1994-11-22 Hitachi Metals Ltd Production of rare earth sintered magnet
US6336884B1 (en) 1998-08-28 2002-01-08 Honda Giken Kogyo Kabushiki Kaisha Belt for continuously variable transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215466A (en) * 1983-05-21 1984-12-05 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPS6012707A (en) * 1983-07-01 1985-01-23 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS6167752A (en) * 1984-09-07 1986-04-07 Hitachi Metals Ltd Permanent magnet alloy
JPS6169945A (en) * 1984-09-14 1986-04-10 Toshiba Corp Permanent magnet alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215466A (en) * 1983-05-21 1984-12-05 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPS6012707A (en) * 1983-07-01 1985-01-23 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS6167752A (en) * 1984-09-07 1986-04-07 Hitachi Metals Ltd Permanent magnet alloy
JPS6169945A (en) * 1984-09-14 1986-04-10 Toshiba Corp Permanent magnet alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481301A (en) * 1987-09-24 1989-03-27 Daido Steel Co Ltd Magnetic powder for manufacturing plastic magnet
EP0389626A1 (en) * 1988-06-03 1990-10-03 Mitsubishi Materials Corporation SINTERED RARE EARTH ELEMENT-B-Fe-MAGNET AND PROCESS FOR ITS PRODUCTION
EP0414645A1 (en) * 1989-08-25 1991-02-27 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5147473A (en) * 1989-08-25 1992-09-15 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5183630A (en) * 1989-08-25 1993-02-02 Dowa Mining Co., Ltd. Process for production of permanent magnet alloy having improved resistence to oxidation
US5269855A (en) * 1989-08-25 1993-12-14 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance
EP0466988A2 (en) * 1990-04-10 1992-01-22 Crucible Materials Corporation Permanent magnet having improved corrosion resistance and method for producing the same
US5282904A (en) * 1990-04-10 1994-02-01 Crucible Materials Corporation Permanent magnet having improved corrosion resistance and method for producing the same
JPH06322469A (en) * 1993-03-19 1994-11-22 Hitachi Metals Ltd Production of rare earth sintered magnet
US6336884B1 (en) 1998-08-28 2002-01-08 Honda Giken Kogyo Kabushiki Kaisha Belt for continuously variable transmission

Also Published As

Publication number Publication date
JPH0475304B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
JP6334754B2 (en) Neodymium iron boron permanent magnet having nitride phase and manufacturing method thereof
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JPWO2009016815A1 (en) R-Fe-B rare earth sintered magnet
JPS6333505A (en) Production of raw material powder for permanent magnet material
JPS62133040A (en) Rare-earth permanent magnet material
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3296507B2 (en) Rare earth permanent magnet
JP6249275B2 (en) Method for producing RTB-based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP3143396B2 (en) Manufacturing method of sintered rare earth magnet
JPH0336895B2 (en)
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPH0146574B2 (en)
US4002508A (en) Composition for permanent magnets of the family &#34;rare earths-transition metals&#34; and process for producing such a magnet
JPH058562B2 (en)
JPS6167752A (en) Permanent magnet alloy
JP2007318150A (en) Method for manufacturing rare earth permanent magnet
JPS62158852A (en) Permanent magnet material
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS61143553A (en) Production of material for permanent magnet
JPS5921943B2 (en) Rare earth cobalt permanent magnet alloy
JP2005076045A5 (en)
JPS5822348A (en) Permanent magnet alloy
JPS6271201A (en) Bond magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees