JPS5913953A - Automatic ultrasonic flaw detector - Google Patents

Automatic ultrasonic flaw detector

Info

Publication number
JPS5913953A
JPS5913953A JP57123320A JP12332082A JPS5913953A JP S5913953 A JPS5913953 A JP S5913953A JP 57123320 A JP57123320 A JP 57123320A JP 12332082 A JP12332082 A JP 12332082A JP S5913953 A JPS5913953 A JP S5913953A
Authority
JP
Japan
Prior art keywords
rotating mechanism
hollow ring
sensors
test material
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123320A
Other languages
Japanese (ja)
Inventor
Kunio Honda
本田 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57123320A priority Critical patent/JPS5913953A/en
Publication of JPS5913953A publication Critical patent/JPS5913953A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain the functions of AUST and to realize long-period use, by providing a hollow ring detection part united with a rotating mechanism part to the front of an automatic ultrasonic flaw detector which detects a flaw of a material to be tested by moving the material to be tested straight on the holle shaft of the rotating mechanism part. CONSTITUTION:The hollow ring detecting part 15 is provided in front of a fixation frame 3 for the rotating mechanism part and four contactless sensors 16a- 16d are arranged at intervals of 90 deg. on the same tip circumference of the hollow ring detecting part. Those sensors are arranged in four up, down, left, and right quadrants on the same circumference of the hollow ring detecting part and when the material to be tested passes by, they generate voltages corresponding to the distances from the sensors. The output voltages of the two up and down contactless sensors 16a and 16c are amplified by amplifiers 17a and 17c and converted by analog-digital converters 18a and 18b into digital signals respectively. Those two digital signals are compared with each other by a comparing and computing element 19 to find the difference in digital value and its direction, and an ascending or descending command is sent out to a motor controller 21. The motor controller 21 controls the rotating direction of a motor 7 according to the ascending or descending command.

Description

【発明の詳細な説明】 この発明は回転機構部の中空軸上に被検材全直進させる
ことVこより被検材を探傷する超音波自動探傷装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic ultrasonic flaw detection device that detects flaws in a test material by moving the test material completely straight on a hollow shaft of a rotating mechanism.

従来のこの柿超背U自動探傷装置(以下AUST装置と
称すとして第1図に示すもの及び被検材を搬送するロー
ラとして第2図に示すものが冗られている。
The conventional persimmon super back U automatic flaw detection device (hereinafter referred to as AUST device) shown in FIG. 1 and the roller for conveying the test material shown in FIG. 2 are redundant.

第1図において、は)は丸棒又はパイプなどの被検材、
(2)は被検材の搬送をガイドする前面ピンチローラ、
(3)は回転機構部の固定フレーム(4)は固定ガイド
、(5jは図示されていないモータにより高速回転する
中空シャフト、[61は中空シャフトに固定されて回転
する探触子ホルタ−9(7)は回転機構部全上昇又は下
降させるモータ、(8)はモータの動力全伝達するポー
ルスクリウネジ、(9)は陵面ピンチローラ、叫は回転
機#1部の高さを示す目盛板、 aIIは回転@構部の
昇降に追従する指針、 a2Jは被検材全搬送する搬送
ローラ(131は探触子ホルダに取付られたオリフィス
で探触子と被検材間のギヤツブ全音(2) 書結合する媒体の水量を調整するもの、(柿は地上を示
す。
In Figure 1, ) is the test material such as a round bar or pipe,
(2) is a front pinch roller that guides the conveyance of the material to be inspected;
(3) is a fixed frame (4) of the rotating mechanism section, is a fixed guide (5j is a hollow shaft that rotates at high speed by a motor not shown), [61 is a probe holter 9 that is fixed to the hollow shaft and rotates ( 7) is the motor that raises or lowers the entire rotating mechanism, (8) is the pole screw that transmits all of the motor's power, (9) is the pinch roller on the ridge surface, and the symbol is the scale that indicates the height of the rotating machine #1 section. board, aII is a pointer that follows the rotation @ the elevation of the structure, a2J is a conveyor roller that transports the entire sample to be inspected (131 is an orifice attached to the probe holder, and a gear wheel between the probe and the sample ( 2) Something that adjusts the amount of water in the binding medium (persimmons indicate above ground).

第2図において山は被検材t121はV形の搬送ローラ
金示す。
In FIG. 2, the mountain indicates the V-shaped conveyor roller for the material to be inspected t121.

第1図、第2図において、被検材外径の中心に回転機構
部の中9軸中心金合せる方法全説明する。
Referring to FIGS. 1 and 2, a complete explanation will be given of the method for aligning the center metal of the nine axes of the rotating mechanism section with the center of the outer diameter of the material to be inspected.

これ金パスライン設定と称す。This is called gold pass line setting.

被検材(1)は第1図の搬送ローラ021.  ピンチ
ローラ(2)によって回転機構部に搬送される。搬送ロ
ーラt12+ 、1!:ピンチローラi21 [91は
第2区に示す工うにV形の形状でその角度θが1400
のもの金物にとる。
The material to be inspected (1) is transferred to the conveyor roller 021 in FIG. It is conveyed to the rotation mechanism section by the pinch roller (2). Conveyance roller t12+, 1! : Pinch roller i21 [91 is shown in Section 2 and has a V-shaped shape with an angle θ of 1400
Take things like hardware.

被検村山が第2図の搬送ローラ全通るときの中心高さh
は被検材(1)の外径DVc対し次式の関係となる。
Center height h when the subject Murayama passes all the conveyance rollers in Figure 2
has the following relationship with the outer diameter DVc of the test material (1).

従って予め外径に対する中心高さ?第1図の目盛板+I
01 K入れておき回転機構部をモータ(7)にニジ昇
降させ指針ill kその目盛に合せる方法がとられる
Therefore, what is the center height relative to the outer diameter? Scale plate +I in Figure 1
01K is inserted and the motor (7) moves the rotating mechanism up and down to match the scale of the pointer.

第1図の探触子ホルダ+61 [固定されているオリフ
(3) イスf131は水柱を立て、探触子と被検材間の超音波
の昔曽結合を最−i!iにするもので被検材とのギャッ
プは小さく約1〜4門程度である。
Probe holder +61 in Figure 1 [Fixed Orif (3) Chair f131 raises the water column and maximizes the ultrasonic coupling between the probe and the test material! i, and the gap with the material to be tested is small, about 1 to 4 gates.

そのためパスライン設定は相変を必要とし約0.5゜以
内の誤差におさめる。
Therefore, the path line setting requires a phase change and the error is kept within about 0.5°.

上記従来のパスライン設定方法では被検材の外径公差が
オリフィスのギャップ以内であってもパスライン設定後
高さは固定であるため長尺被検材の長芋方向の曲りに対
しては対応することができず被検祠が進入時IC衝突し
たり通過途中で曲りのため引婬トることがあシ装置のf
M傷金引き起す。
In the conventional pass line setting method described above, even if the outer diameter tolerance of the test material is within the orifice gap, the height is fixed after the pass line is set, so it is not possible to bend the long test material in the long direction. If the inspection shrine is not able to do so, it may collide with the IC when entering the shrine, or it may be towed due to a bend in the passage.
M causes damage.

又引掛らない場合でも被検材が通過時1回転機構部の中
空軸中心からけずれギャップが大きくなった部分で水柱
が立ちにくくなり超晋Uが伝播しないこともあ5 AU
STとして機能?発揮しない欠点が出る。しかも長M使
用に伴う搬送ローラの厚もうによシ目盛りと高さが一致
しなくlり、定期的に目盛シを較正する必要が出る。
In addition, even if it is not caught, when the material to be inspected passes, it deviates from the center of the hollow shaft of the one-rotation mechanism, making it difficult for a water column to stand up in the area where the gap becomes large, which may prevent the propagation of Super Shin U.5 AU
Does it function as an ST? There will be flaws in not showing your full potential. Moreover, due to the thickness of the conveying roller due to the use of the length M, the scale does not match the height, making it necessary to periodically calibrate the scale.

この発明は上記の欠点金除去しXうとするものである。This invention attempts to eliminate the above-mentioned drawbacks.

(4) この発明は上記回転機構部と一体となった中空輪検出部
全前方に設け、この中空輪検出部の同一円周上の4象限
の上下、左右方向に被検材との距離全検出する4個の無
接触近接セフfを埋め込み。
(4) This invention is provided entirely in front of the hollow ring detection unit integrated with the rotation mechanism unit, and the hollow ring detection unit is provided at the entire distance from the test material in the vertical and horizontal directions of the four quadrants on the same circumference. Embedded 4 non-contact proximity SEFFs for detection.

被検材の通過時に距離金4方向から検出し、電気信号に
変換した後、上下及び左右の検出路#fi全各々比板し
差の値及びその方向全演算し、4J1検材の中心がどこ
にあるか全演算し、上記演算値が零に収束するように回
転機構部を上下及び左右に各々制御し、被検材の外径の
中心に回転機構部中空軸の中心を追従させるものである
When the material to be inspected passes, the distance is detected from four directions, and after converting it into an electrical signal, the upper, lower, left and right detection paths #fi are all compared, and the difference value and its direction are calculated, and the center of the 4J1 inspection material is determined. It performs all calculations to find out where the object is, and controls the rotating mechanism vertically and horizontally so that the calculated value converges to zero, and causes the center of the hollow shaft of the rotating mechanism to follow the center of the outer diameter of the material to be inspected. be.

第3図、第4図、第5図はこの発明の実施例であって2
回転機構部固定フレーム(3)の前方に中空軸検出部1
151 k設け、この中空輪検出部の先端の同一円周上
4個の無接触近接セフ f (16a) 〜(16d)
が90’間隔で配ltされている。
Figures 3, 4 and 5 show embodiments of this invention.
Hollow shaft detection unit 1 is installed in front of the rotation mechanism unit fixed frame (3).
151 k is provided, and four non-contact proximity sensors f (16a) to (16d) are provided on the same circumference at the tip of this hollow ring detection part.
are arranged at 90' intervals.

無接点近接センfは中空軸検出部の同一円周上の4象限
の上下、左右方に配置され被検相通iti時。
The non-contact proximity sensors f are arranged on the top, bottom, left and right sides of the four quadrants on the same circumference of the hollow shaft detection unit, and when the test phase is in contact.

第4図表に示すように無接点近接センサかちの距NIV
c対応した電圧金発生する。第5図は上下方向(5) のセンナ例金示すように上下方向2個の無接点近接セン
サ(16a)、 (16c)  の出力電圧をそれぞれ
電圧増巾器(17a)、 (17c)増巾し、アナログ
ディジタル変換器(18a)(18c)で各々ディジタ
ル信号に変換する。
As shown in Figure 4, the contactless proximity sensor distance NIV
c A corresponding voltage is generated. Fig. 5 is an example of a sensor in the vertical direction (5). The signals are then converted into digital signals by analog-to-digital converters (18a) and (18c), respectively.

変換された二つのディジタル信号と比較演算器(191
で比較演算しディジタル量の差と方向を求め、モータコ
ントローラ母に対し、上昇又は下降の指令金山す。
The two converted digital signals and the comparison calculator (191
A comparison operation is performed to find the difference and direction of the digital quantities, and a command is given to the motor controller to raise or lower.

指令はR接触近接センサ間の距離?等しくする目的であ
るので無接触近接センサの上方向が太き(Q場合は上昇
、小さい場合はF′降となる。
Is the command the distance between the R contact proximity sensors? Since the purpose is to make them equal, the upper direction of the non-contact proximity sensor is thicker (if Q is a rise, if it is small, F' is a fall).

モータコントローラは上昇又は下降指令によりモータ(
7)の回転方向金制斜する。
The motor controller controls the motor (
7) Rotation direction is controlled.

回転機構部はモータの回転方向によシ上昇又は下降し、
無接触近接(=ンチ出力1圧が等しい即ち。
The rotating mechanism part moves up or down depending on the direction of rotation of the motor,
Non-contact proximity (=inch output 1 pressure is equal, i.e.

被検材と回転機構部の中心が一致し之時点でモータは停
止する。
The motor stops when the center of the object to be inspected and the center of the rotating mechanism coincide.

上記、制御を連続的に実施することにょ)常に被検材外
径の中心に回転機構部中空軸中心を追従さく6) せることができる。
By continuously performing the above-mentioned control, the center of the hollow shaft of the rotating mechanism can always be made to follow the center of the outer diameter of the test material6).

なお、オ・3図、第4図、第5図は上下方向の例を図示
し7こが左右方向も同様に制御することができる。
In addition, FIG. 3, FIG. 4, and FIG. 5 show examples of the vertical direction, but the horizontal direction can also be controlled in the same way.

この制御により往来の超首妓自動探傷装置が待つ上記欠
点を改善することができる。
This control makes it possible to improve the above-mentioned drawbacks of the conventional automatic super-neck flaw detection equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Vi従来の超背岐自動探傷装置の祈面全示す図、
第2図は被検t4f搬送するロールの断面全示す図、第
3図はこの発明の実施例金示す図、第4図(イ)は中9
輪検出@1151の正面断面図ケ示す図。 第4図(ロ)は無接触近接センサの%性金示す図、第5
図ぼこの発明に実施される回路の例を示す図であり、(
1)は被検材、(2)は前面ピンチロール、(3)は回
転機構部固定フレーム14)は固定ガイド、 +51V
i中空シヤフ)、f6)は探触子ホルダ、(7)は昇降
モータ。 (8)はポールスクリュウネジ、(9)は後面ピンチロ
ーラ、00jけ目盛板、 1lllVi指針、 +12
1は搬送ローラ、 +131はオリフィス、 +141
は地上、 1151は中空輪検出部、 +16iぽ無接
触近接センナ上方向、 +171は無接触近接センサ(
7) 下方内(化は直圧増巾器、 a91ぽアナログディジタ
ルV換器、山は比較演算器、(2Dはモータコントロー
ラ なお1図中同一あるいけ相当部分には同一符号を付して
示しである。 代理人  葛 野 信 − (8) 第1図 第2図 第3図 「
Figure 1: A diagram showing the entire surface of a conventional super-back automatic flaw detection device.
Figure 2 is a diagram showing the entire cross section of the roll conveying the test object t4f, Figure 3 is a diagram showing an example of this invention, and Figure 4 (A) is a diagram showing the middle 9
A diagram showing a front sectional view of wheel detection @1151. Figure 4 (b) is a diagram showing the percent conductivity of the non-contact proximity sensor, and Figure 5
FIG. 2 is a diagram showing an example of a circuit implemented in the present invention;
1) is the material to be tested, (2) is the front pinch roll, (3) is the rotating mechanism fixed frame 14) is the fixed guide, +51V
i hollow shaft), f6) is the probe holder, and (7) is the lifting motor. (8) is the pole screw, (9) is the rear pinch roller, 00j scale plate, 1lllVi pointer, +12
1 is the conveyance roller, +131 is the orifice, +141
is on the ground, 1151 is the hollow ring detection part, +16i non-contact proximity sensor upwards, +171 is the non-contact proximity sensor (
7) In the lower part (the numeral is the direct pressure amplifier, the a91po analog digital V converter, the crest is the comparator, (2D is the motor controller), and the same or corresponding parts in the figure are indicated with the same reference numerals. Agent Shin Kuzuno - (8) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 複数の超音波探触子を回転機構部内のホルダ円円周上に
埋め込み、丸棒又はバイブなどの被検材を上記回転機構
部の中空軸に通すことにより被検材の欠陥有無全検査す
る超晋彼自動深傷装置において、上記回転機構部と一体
となった中空輸検出部金被検材の到来方向に有し、この
検出部内の同一円上17i:90°間隔で配I!され、
かつ被検材との距離全検出する4イロの無接触近接セン
fVcより被検材の通過時に回転機構部との距離を4方
向から検出するとともにそれを電気信号に変換した後。 上下及び左右の検出距離を各々比較し差の値及びその方
向全演算し、上記演算値か零に収束するように回転a!
構部金±下及び左右に移動させるように制御全行ない、
被検材外径の中心に回撃機構部中空軸中心を追従させる
ように構成したことを特徴とする超音波自動探傷装置。 (1)
[Claims] A plurality of ultrasonic probes are embedded on the circumference of a holder in a rotating mechanism, and a test material such as a round bar or a vibrator is passed through a hollow shaft of the rotating mechanism. The automatic deep scratch device for fully inspecting for defects has a hollow detection section integrated with the rotating mechanism section in the direction of arrival of the gold specimen, and a 90° angle 17i on the same circle within this detection section. Distribute at intervals! is,
Then, when the test material passes, the distance to the rotating mechanism section is detected from four directions by the 4-color non-contact proximity sensor fVc which detects the entire distance to the test material, and the detected distance is converted into an electric signal. Compare the upper and lower and left and right detection distances, calculate the difference value and all its directions, and rotate a! so that the above calculated value converges to zero.
Control the entire structure so that it moves downward and left and right,
An automatic ultrasonic flaw detection device characterized in that the center of a hollow shaft of a rotating mechanism follows the center of an outer diameter of a material to be inspected. (1)
JP57123320A 1982-07-15 1982-07-15 Automatic ultrasonic flaw detector Pending JPS5913953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123320A JPS5913953A (en) 1982-07-15 1982-07-15 Automatic ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123320A JPS5913953A (en) 1982-07-15 1982-07-15 Automatic ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPS5913953A true JPS5913953A (en) 1984-01-24

Family

ID=14857632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123320A Pending JPS5913953A (en) 1982-07-15 1982-07-15 Automatic ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS5913953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389692B2 (en) 2005-11-04 2008-06-24 Ge Inspection Technologies, Lp Digital log amplifier for ultrasonic testing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389692B2 (en) 2005-11-04 2008-06-24 Ge Inspection Technologies, Lp Digital log amplifier for ultrasonic testing

Similar Documents

Publication Publication Date Title
JP3758439B2 (en) Method for detecting a defect of a test object having a curved surface in a non-contact manner along the curved surface
US5130651A (en) Method and apparatus for providing compensation for variations in probe-surface separation in non-contact eddy current inspection systems
GB2014317A (en) Surface Defect Detecting Apparatus for Round or Cylindrical Metallic Material
CN102175138B (en) Heat deformation detecting method of high speed ball screw
CN109341508B (en) In-service steel rail web thickness non-contact detection device and method
JP2001033233A (en) Test method for tubular and bar-like object to be tested
CN211877864U (en) Vortex high-speed online pipe detection equipment
JPS5913953A (en) Automatic ultrasonic flaw detector
JPH0511561B2 (en)
CN108844439A (en) A kind of continous way flat cold-rolled sheet thickness precise measurement instrument
US4645634A (en) Apparatus for measuring the pitch between adjacent rods in a nuclear fuel assembly
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JPS5939702B2 (en) Measuring device for moving objects
CN205843609U (en) For measuring the detection device of sections for guide rails of lefts precision
JPS6221058A (en) Transporting system of specimen
JP2015001499A (en) Ultrasonic flaw detection device of round rod body
US4220043A (en) Device and method for measuring the profile of a plate
JPS5773605A (en) Imeasuring device for height of reinforcement of weld of internal-surface
CN111289575A (en) Method for detecting quality of conductive pipe bar based on relative motion
CN220552815U (en) Eddy current flaw detection device for bearing ring surface detection
CN109459344A (en) A kind of coal sample viscosity measurements and fairing
SU1126862A1 (en) Electromagnetic flaw detector for checking moving parts
CN213209987U (en) Ship-shaped online humidity measuring device
JP6090263B2 (en) Inspected material position adjustment mechanism in non-destructive inspection equipment for long materials
JPS56145305A (en) Detecting device for uneven thickness of covered wire material