JPS59138382A - Manufacture of semiconductor memory device - Google Patents

Manufacture of semiconductor memory device

Info

Publication number
JPS59138382A
JPS59138382A JP58012514A JP1251483A JPS59138382A JP S59138382 A JPS59138382 A JP S59138382A JP 58012514 A JP58012514 A JP 58012514A JP 1251483 A JP1251483 A JP 1251483A JP S59138382 A JPS59138382 A JP S59138382A
Authority
JP
Japan
Prior art keywords
film
oxide film
silicon film
single crystal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58012514A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58012514A priority Critical patent/JPS59138382A/en
Publication of JPS59138382A publication Critical patent/JPS59138382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To increase the withstand voltage of the second gate oxide film by a method wherein the first insulation film is adhered on the surface of the element region of a semiconductor substrate of one conductivity type, and a non-single crystal Si film serving as a floating gate is deposited thereon, thereafter, before forming the second insulation film there, the non-single crystal Si film is kept irradiated with a laser beam, etc. CONSTITUTION:A thick field oxide film 22 is formed in the periphery of a P<-> type Si substrate 21, a thin oxide film 23 is adhered on the surface of the substrate 21 surrounded by said film, and the first polycrystalline Si film 24 for the floating gate having a fixed seat resistance value is deposited over the entire surface including said film. Next, the entire surface is covered with a thick oxide film 25, the film 24 is irradiated with an Ar laser through said film, thereafter the film 25 is removed, and then an oxide film 26 and the second polycrystalline film 27 are laminated and adhered on the film 24. Afterwards, the mask of a photo resist 28 is provided at the center on the film 27, the lamination fim around said mask is all removed by etching, thus leaving only an oxide film 29, the floating gate 30, the second gate oxide film 31, and a control gate 32.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半畳体メモリ装置の製造方法に関す/)。[Detailed description of the invention] [Technical field of invention] TECHNICAL FIELD The present invention relates to a method for manufacturing a hemiconductor memory device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来第1図に示すEPROIvi (Electric
allyprogrammable read onl
y memory )は以下のようにして製造される。
Conventionally, EPRO Ivi (Electric
ally programmable read onl
y memory ) is manufactured as follows.

まず、P−型シリコン基板1の図示しないフイールド酸
化膜に囲まれた島状の素子領域表面に第1の熱酸化膜を
形成した後、全面にフローティングr−)となる第1の
多結晶シリコン膜を堆積する。次に、例えば1000℃
以下の低温酸化を行ない、第1の多結晶シリコン膜の表
面に第2の熱酸化膜を形成した後、全面にコントロール
ゲートとなる第2−の多結晶シリコン膜を堆積する。次
いで、写真蝕刻法により第2の多結晶シリコン膜、第2
の熱酸化膜、第1の多結晶シリコン膜及び第1の熱酸化
膜を順次エツチングして、第1ダート酸化膜2、フロー
ティングチ9−ト3、第2ダート酸化膜4及びコントロ
ールダート5を形成する。つづいて、こ扛らをマスクと
し、て利用し、N型不純物、例えばAs fイオン注入
する。つづいて、熱蛾化を行ない、前記コントロールダ
ート5の表面、フローティングゲート3の側面及び露出
した基板1表面に後酸化膜6を形成するとともに、前記
Asイオン注入層を活性化してN++ソース、ドレイン
領域7゜8を形成する。最区に、全面にパッシベーショ
ン膜として例えばPSG膜9t−堆積した後、とのPS
G膜9及び前記熱酸化膜6の一部を選択的にエツチング
してコンタクトホール10,10’f開孔し、更に全面
にAt−8t膜を堆積した後、パターニングしてソース
′電極1ノ及びドレイン電極12を形成してEPROM
セルを製造する。
First, a first thermal oxide film is formed on the surface of an island-shaped element region surrounded by a field oxide film (not shown) of a P-type silicon substrate 1, and then a first polycrystalline silicon film is formed as a floating r-) on the entire surface. Deposit the film. Next, for example, 1000℃
After a second thermal oxide film is formed on the surface of the first polycrystalline silicon film by performing the following low-temperature oxidation, a second polycrystalline silicon film that will become a control gate is deposited on the entire surface. Next, a second polycrystalline silicon film and a second polycrystalline silicon film are formed by photolithography.
The thermal oxide film, the first polycrystalline silicon film, and the first thermal oxide film are sequentially etched to form the first dirt oxide film 2, floating chip 9-3, second dirt oxide film 4, and control dirt 5. Form. Next, using these as a mask, N-type impurity, for example, Asf ions are implanted. Subsequently, thermal conversion is performed to form a post-oxide film 6 on the surface of the control dirt 5, the side surface of the floating gate 3, and the exposed surface of the substrate 1, and activate the As ion implantation layer to form the N++ source and drain. A region 7°8 is formed. After depositing, for example, a PSG film 9t on the entire surface as a passivation film,
Contact holes 10 and 10'f are formed by selectively etching a part of the G film 9 and the thermal oxide film 6, and an At-8t film is further deposited on the entire surface, followed by patterning to form the source electrode 1. and drain electrode 12 are formed to form an EPROM.
Manufacture cells.

上述したFPROMはセルトランジスタのN+型トドレ
イン領域8コントロールゲート5とに正の高電圧を加え
てフローティングゲート3に電子を注入し、書き込みを
行々うデベイスである。
The above-mentioned FPROM is a device that performs writing by applying a high positive voltage to the N+ type drain region 8 and control gate 5 of the cell transistor to inject electrons into the floating gate 3.

しかしながら、書き込み後コントロールr −ト5に正
の高電圧が加わると、フローティングゲート3への注入
電子がコントロールゲート5へ抜け、記憶が維持されな
い場合があるという欠点がある。
However, if a high positive voltage is applied to the control gate 5 after writing, there is a drawback that the electrons injected into the floating gate 3 escape to the control gate 5, and the memory may not be maintained.

これは第2ケ°−ト歳化#g、4の耐圧劣化のだめであ
り、その原因は以下のように考えられる。
This is due to the breakdown voltage deterioration of the second gates #g and 4 due to aging, and the cause is considered to be as follows.

すなわち、フローティングダートとなる第1の多結晶シ
リコン膜は様々な面方位をもつダレインから構成されて
いるため、1000℃以下の低温覗孔によシ第2r−)
酸化膜となる第2の熱酸化膜を形成すると、フローティ
ングゲート3と第2ダートIff化膜4との界面に凹凸
(surfaceasperity)が生じ、第2ダー
ト酸化膜4の制圧劣化を招くものである。
In other words, since the first polycrystalline silicon film that becomes the floating dirt is composed of duplexes with various plane orientations, the second polycrystalline silicon film, which becomes the floating dirt, is difficult to see through the low-temperature observation hole below 1000°C.
When the second thermal oxide film is formed as an oxide film, surface asperity is generated at the interface between the floating gate 3 and the second dirt Iff film 4, leading to pressure deterioration of the second dirt oxide film 4. .

このような現象は1100℃以上の尚温グロセスによっ
て緩和されるが、高温プロセスは予め形成された接合の
位置を変えたり、ウエノ・の反りをもたらす等のため、
デ・ぐイスの性能全劣化させ、歩留りを低下させること
になるので、有効な対策とはなり得ない。
This phenomenon can be alleviated by still temperature processing at 1100°C or higher, but high temperature processes change the position of pre-formed bonds and cause warping of the wafer.
This is not an effective countermeasure because it will completely degrade the performance of the de-guiss and reduce the yield.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされ/辷ものであり、デ・
ぐイスの歩留りを低下させることなく、第2ダートば化
膜の耐圧を向上し、記憶保持特性の良好な半導体メモリ
装置全装造し得る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and
The present invention aims to provide a method that can improve the breakdown voltage of the second dirt-barrel film without reducing the yield of semiconductor devices, and can fully assemble semiconductor memory devices with good memory retention characteristics.

〔発明の概要〕[Summary of the invention]

本発明の半導体メモリ装置の製造方法は第1導電型の半
導体基板の素子領域表面に第1の絶縁膜を形成し、全面
に70−チイングケ゛−トとなる第1の非単結晶シリコ
ン1摸を堆積した後、この第1の非単結晶シリコン膜表
面に第2の絶縁膜(熱酸化膜)を形成する前に、前記第
1の非単結晶シリコン膜にレーザビームあるいは電子ビ
ームを照射することを骨子とするものである。
The method for manufacturing a semiconductor memory device of the present invention includes forming a first insulating film on the surface of an element region of a semiconductor substrate of a first conductivity type, and depositing a sample of first non-single crystal silicon serving as a 70-chip gate on the entire surface. After the deposition, before forming a second insulating film (thermal oxide film) on the surface of the first non-single crystal silicon film, irradiating the first non-single crystal silicon film with a laser beam or an electron beam. The main points are as follows.

このように第1の非単結晶シリコン膜にビーム照射を行
なうと、非単結晶シリコンのダレインサイズを極めて大
きくでき、更にビーム照射条件によっては非単結晶シリ
コンを単結晶化することができる。この結果、第1の非
単7眉晶シリコン膜の表面領域に低温岐化により第2の
絶縁膜(熱酸化膜)を形成しても、第2の絶縁膜(熱酸
化膜)と第1の非単結晶シリコン膜との界面における凹
凸(gurface asperity )を1よ減す
ることができ、第2の杷は膜(熱酸化1良)の耐圧を著
しく増大させることができる。
When the first non-single-crystal silicon film is irradiated with the beam in this manner, the dale size of the non-single-crystal silicon can be extremely increased, and furthermore, depending on the beam irradiation conditions, the non-single-crystal silicon can be made into a single crystal. As a result, even if the second insulating film (thermal oxide film) is formed on the surface region of the first non-alcoptic silicon film by low-temperature annealing, the second insulating film (thermal oxide film) and the first The surface asperity at the interface with the non-single-crystal silicon film can be reduced by 1, and the second loquat can significantly increase the withstand voltage of the film (thermal oxidation: 1).

実施例を第2図0〜(g)を参照して説明する。An example will be described with reference to FIGS. 2 0-(g).

ます、比抵抗IO〜2oΩ−m1面方位(911:のP
−型シリコ/基板2)の長面に通常の選択酸化技術を用
いて厚さ1.2μmのフィルド駿化膜22を形成した(
第2図(a)図示)。
, specific resistance IO ~ 2oΩ-m1 plane orientation (911: P
A filled silica film 22 with a thickness of 1.2 μm was formed on the long surface of the - type silicon/substrate 2) using a conventional selective oxidation technique (
FIG. 2(a) diagram).

次に、熱酸化を行ない前記フィールド−化膜22によシ
囲まれた島状の素子領域表面に厚さ500Xの第1の熱
酸化i1Q 2 :tを形成した。つづいて、CVD法
により全面にフローティングダートとなる厚さ3500
Xの第1の多1.り晶シリコン膜24を堆積した後、p
oct、雰囲気に1000℃で10分間さらし、そのシ
ート抵抗1直ρ=20Ω/口とした(同図(b)図示)
Next, thermal oxidation was performed to form a first thermal oxidation i1Q 2 :t having a thickness of 500× on the surface of the island-shaped element region surrounded by the field-forming film 22. Next, by CVD method, the thickness is 3500, which becomes floating darts on the entire surface.
The first multiplicity of X1. After depositing the crystalline silicon film 24, p
oct, exposed to an atmosphere at 1000°C for 10 minutes, and the sheet resistance was set to 1 direct rho = 20Ω/mouth (as shown in the same figure (b))
.

次いで、全面に厚さ1.0μmのCVD 、d化膜25
を堆積した後、CW(連続発振)−Arレーザビームを
ビーム径50μmφ、ノ母ワーフ〜IOW。
Next, a CVD film 25 with a thickness of 1.0 μm was applied to the entire surface.
After depositing, a CW (continuous wave)-Ar laser beam with a beam diameter of 50 μmφ was applied to the mother wharf to IOW.

スキャン速度101M/seeなる条件で照射した。Irradiation was performed at a scan speed of 101 M/see.

第1の多結晶シリコン膜24に直j妾レーザビームをス
キャンした場合、表面に凹凸を生じるおそれがあるが、
 CVD酸化膜26は第1の多結晶シリコン)腐24に
圧力を加えることにより凹凸1 0発生を防止する役目
を有する(同図(C)図示)。
If the first polycrystalline silicon film 24 is directly scanned with a laser beam, there is a possibility that the surface will be uneven.
The CVD oxide film 26 has the role of preventing the occurrence of unevenness 10 by applying pressure to the first polycrystalline silicon layer 24 (as shown in FIG. 1C).

次いで、前記CVD 酸化膜25を除去した後、100
0℃において熱酸化を行ない、厚さ500^の第2の熱
酸化INK 26f6:形成した後、全面に厚さ350
0X、  ρ、=20Ω/口のコントロールゲートとな
る第2の多結晶シリコン嘆27を堆積した。つづいて、
この第2の多結晶シリコン膜27上に部分的にホトレノ
ス1、パターン28を形成した(同図(d”1図示)。
Next, after removing the CVD oxide film 25,
A second thermally oxidized INK 26f6 with a thickness of 500^ is thermally oxidized at 0°C.
A second polycrystalline silicon layer 27 was deposited to serve as a control gate with 0X, ρ, = 20Ω/gate. Continuing,
A photorenograph 1 and a pattern 28 were partially formed on this second polycrystalline silicon film 27 (as shown in FIG. 1 (d''1)).

太いで、このホトレノストノぞターフ28をマスクとし
て前記第2の多預晶シリコン膜27、第2の熱に化HH
g 2 e 、第1の多結晶シリコン族25及び第1の
熱11之化嗅24を順次・母ターニングして第1グー)
 1+Z化膜29、フローティングゲート3θ、第2ダ
ートy化ノ摸31及びコントロールゲート32を形成し
た。つづいて、 As”をエネルギー60 keV 、
  ドーズi 2.5X 10 cmの条件でイオン注
入した(同図<−>図示)。
Using this photorenost turf 28 as a mask, the second polycrystalline silicon film 27 is heated to a second temperature.
g 2 e, the first polycrystalline silicon group 25 and the first heat 11 and the first silicon group 24 are sequentially and mother-turned to form the first goo)
A 1+Z film 29, a floating gate 3θ, a second dirt Y film 31, and a control gate 32 were formed. Next, As” has an energy of 60 keV,
Ion implantation was performed at a dose i of 2.5×10 cm (as shown in the figure).

次いで、前記ホトレノスト・ぞターフ28を除去した後
、1000℃で熱酸化全行ない、厚さ500Xの後酸化
膜33を形成した。この際、前記Agイオン注入層が活
性化してρ=30〜4゜Ω/口、x j=0.4μmの
N+型ソース、ドレイン領域34.35が形成された。
Next, after removing the Photorenost-ZoTurf 28, thermal oxidation was carried out at 1000° C. to form a post-oxide film 33 having a thickness of 500×. At this time, the Ag ion-implanted layer was activated to form N+ type source and drain regions 34.35 with ρ=30-4°Ω/gate and xj=0.4 μm.

つづいて、ノ々ッシペーション膜として厚さ0.8μ?
nのPSG膜36を堆積した(同図(f)図示)。
Next, the thickness of the nonossipation film is 0.8μ?
A PSG film 36 of n was deposited (as shown in FIG. 3(f)).

次いで、前記PSG I摸36及び後酸化膜33の一部
を選択的eCエツチングしてコンタクトホーfiv37
.37f:開孔し、更に全面に厚さ1−011mのAt
−引換を堆積した後、パターニングしてソース′成・、
縁38.1・゛レイン電極39を形成し、EPROMセ
ルを製造した(同図(g)図示)・しかして、本発明方
法によれば、鷺32図(C)図示の工程で第1の多結晶
シリコンv24にレーザビームを照射して多結晶シリコ
ンのダレインサイズを大きくした後、この第1の多外吉
晶シリコン膜24の表面を第2の熱酸化膜26に変換す
るため、1000℃の低温酸化でも第2の熱酸化膜26
と第1の多結晶シリコン映24との界面における凹凸(
5urface ll5perity ) f低減する
ことができる。この結果、第2図(g)図示のEPRO
Mのコントロールゲート32に正の高電圧を加えても第
2ダート酸化膜3ノの耐圧を高くすることができ、記憶
を良好に保持することができる。まプζ、低温グロセス
を採用しているので、ウェハの反9等が発生して半4体
メモリデバイスの歩留りが低下するという問題は生じな
い。
Next, the PSG I pattern 36 and a part of the post-oxide film 33 are selectively etched to form a contact hole 537.
.. 37f: Holes are opened, and the entire surface is covered with At with a thickness of 1-011 m.
- After depositing the exchange material, it is patterned to form the source.
Edge 38.1: The rain electrode 39 was formed and an EPROM cell was manufactured (as shown in Figure 3(g)).According to the method of the present invention, the first After irradiating the polycrystalline silicon v24 with a laser beam to increase the particle size of the polycrystalline silicon, the surface of the first polycrystalline silicon film 24 is converted into a second thermal oxide film 26 by 1000 Even at low temperature oxidation of ℃, the second thermal oxide film 26
and the first polycrystalline silicon reflector 24 (
5surface ll5perity) f can be reduced. As a result, the EPRO shown in FIG. 2(g)
Even if a high positive voltage is applied to the control gate 32 of M, the withstand voltage of the second dirt oxide film 3 can be increased, and memory can be maintained well. Since the map ζ and low-temperature growth are employed, there is no problem that the yield of half-quad memory devices is lowered due to the occurrence of wafer curling, etc.

なお、上記実pr#例では第2図(c)図示の工程で第
1の多結晶シリコン膜24の改質をレーザビームによっ
て行なったが、電子ビームを例えばビーム径50 Am
φ、0.5〜l tnk、 20 key、 スキャン
速度10 m/seeという条件で照射しても同様の幼
果を倚ることかできる。
Incidentally, in the above practical pr# example, the first polycrystalline silicon film 24 was modified by a laser beam in the step shown in FIG.
Even if irradiation is performed under the conditions of φ, 0.5 to l tnk, 20 keys, and scan speed of 10 m/see, similar young fruits can be chewed.

また、上記突ツメ占例では第2図(b)図示の工程で全
面に第1の多結晶シリコン膜24f堆積した後、同図(
C)図示の工程で全面にCVD p化膜25を堆積し、
レーザビームを照射したが、第1の多結晶ンリコンj巡
ヲ堆積し、・ゼターニングして形成すべきフローテイン
グゲートよシ大きい面積の多結晶シリコン膜パターン及
び周辺トランジスタのダート電極を形成した後、全面に
CVDr112化膜を堆積し、ビーム照射を行なって7
0−テインググートとなる多結晶シリコン膜ノRターン
及び周辺トランジスタのケゝ−ト電極の改質を行なりて
もよい。
In addition, in the above-mentioned projection example, after the first polycrystalline silicon film 24f is deposited on the entire surface in the step shown in FIG.
C) Depositing a CVD p-oxide film 25 on the entire surface in the illustrated step,
After irradiation with a laser beam, the first polycrystalline silicon layer was deposited and then Zeturned to form a polycrystalline silicon film pattern with a larger area than the floating gate to be formed and a dirt electrode of the peripheral transistor. , a CVDr112 film was deposited on the entire surface, and beam irradiation was performed.
It is also possible to modify the R-turn of the polycrystalline silicon film which becomes the 0-electrode gate and the gate electrode of the peripheral transistor.

更に、多結晶シリコンに限らず、非晶質シリコンを用い
てもよい。
Furthermore, not only polycrystalline silicon but also amorphous silicon may be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、デバイスの歩留り
を低下させることなく、第2ケ゛−ト酸化膜の0iII
圧を向上し、記憶保持特性の良好な半導体メモリ製置を
製造し得る方法を提供できるものである。
As described in detail above, according to the present invention, the OiIII of the second gate oxide film can be
The present invention can provide a method for manufacturing a semiconductor memory device with improved memory retention characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のEFROMセルの断面図、第2図(−)
〜(g)は本発明の実施例におけるEFROMセルの製
造方法を示す断面図である。 21・・・PWシリコン基板、22・・・フィールド酸
化膜、23・・・第1の熱酸化膜、24・・・第1の多
結晶シリコン膜、25・・・CVD 酸化膜、26・・
・第2の熱酸化1膜、27・・・第2の多結晶シリコン
膜、28・・・ホトレノストパターン、29・・・第1
ケ゛−ト収化Jl’A、s o・・・フローティングダ
ート、31・・・第2 r −トe化膜、:t 、2・
・・コントロールケ゛−ト、33・・・後酸化膜、34
.35・・・N+型ソース、ドレイン領域、36・・・
PSG膜、37・・・コンタクトホール、38・・・ソ
ース電極、−’79・・・ドレイン電性。 出1iiFi人代理人  弁理士 銘 江 武 彦π 
1 図 第2図 R
Figure 1 is a cross-sectional view of a conventional EFROM cell, Figure 2 (-)
-(g) are cross-sectional views showing a method of manufacturing an EFROM cell in an example of the present invention. 21... PW silicon substrate, 22... Field oxide film, 23... First thermal oxide film, 24... First polycrystalline silicon film, 25... CVD oxide film, 26...
・Second thermal oxidation 1 film, 27... Second polycrystalline silicon film, 28... Photorenost pattern, 29... First
Kate conversion Jl'A, so... Floating dart, 31... 2nd r-toe conversion film, :t, 2.
... Control case, 33 ... Post-oxidation film, 34
.. 35...N+ type source and drain region, 36...
PSG film, 37... Contact hole, 38... Source electrode, -'79... Drain conductivity. 1iiFi person patent attorney name Takehiko E
1 Figure 2 R

Claims (4)

【特許請求の範囲】[Claims] (1)  第12#−電型の半導体基板の素子領域表面
に第1の絶縁膜を形成した後、全面に第1の非単結晶シ
リコン膜を堆積する工程と、該第1の非単結晶シリコン
膜にビーム照射する工程と、該第1の非単結晶シリコン
膜表面に第2の絶縁膜を形成した後、全面に第2の非単
結晶シリコン膜を形成する工程と、これら第2の非単結
晶ンリコン膜、第2の絶縁膜、第1の非単結晶ンリコン
膜及び第1の絶縁膜を順次パターニングする工程と、こ
れらのパターンをマスクとして第2尋電型不純物をイオ
ン注入して第2峙電型のソース、ドレイン領域を形成す
る工程とを具備したことを特徴とする半畳体メモリ装置
の製造方法。′
(1) After forming a first insulating film on the surface of an element region of a 12th #-type semiconductor substrate, a step of depositing a first non-single crystal silicon film on the entire surface; a step of irradiating a silicon film with a beam; a step of forming a second insulating film on the surface of the first non-single crystal silicon film; and a step of forming a second non-single crystal silicon film on the entire surface; A process of sequentially patterning a non-single crystalline silicon film, a second insulating film, a first non-single crystalline silicon film, and a first insulating film, and using these patterns as a mask, ion-implanting a second dielectric type impurity. 1. A method of manufacturing a semiconducting memory device, comprising the step of forming source and drain regions of a second diagonal voltage type. ′
(2)第1の非単結晶シリコン膜のパターン全70−テ
ィングケ゛−トとして、第2の非単結晶シリコン膜の/
ぞターンをコントロールケ゛−トドすることを!I:f
徴とするq+N晶求の範囲第1項記載の半導体メモリ装
置の製造方法。
(2) As a pattern of the first non-single crystal silicon film, the pattern of the second non-single crystal silicon film is
Take control of your turn! I:f
2. The method for manufacturing a semiconductor memory device according to item 1.
(3)第1の非単結晶シリコン膜に照射するビームがレ
ーーリ′ビームであることを特徴とする特許請求の範囲
第1項記載の半導体メモリ装置の製造方法。
(3) The method of manufacturing a semiconductor memory device according to claim 1, wherein the beam irradiated to the first non-single crystal silicon film is a Rayleigh' beam.
(4)第1の非単結晶シリコン膜に照射するビームが電
子ビームであることを特徴とする特許請求の範囲第1項
記載の半導体メモリ装置の製端方法。
(4) The method for manufacturing a semiconductor memory device according to claim 1, wherein the beam irradiated to the first non-single crystal silicon film is an electron beam.
JP58012514A 1983-01-28 1983-01-28 Manufacture of semiconductor memory device Pending JPS59138382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012514A JPS59138382A (en) 1983-01-28 1983-01-28 Manufacture of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012514A JPS59138382A (en) 1983-01-28 1983-01-28 Manufacture of semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS59138382A true JPS59138382A (en) 1984-08-08

Family

ID=11807451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012514A Pending JPS59138382A (en) 1983-01-28 1983-01-28 Manufacture of semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS59138382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267877A (en) * 1985-09-20 1987-03-27 Seiko Epson Corp Manufacture of non-volatile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267877A (en) * 1985-09-20 1987-03-27 Seiko Epson Corp Manufacture of non-volatile semiconductor memory device

Similar Documents

Publication Publication Date Title
JPS60160159A (en) Mos device vertically integrated and method of producing same
JPS60189971A (en) Manufacture of semiconductor device
JPS643045B2 (en)
JP2826982B2 (en) Crystallization method and method of manufacturing thin film transistor using the same
JPH11514152A (en) Method of manufacturing electronic device including thin film transistor
US5397727A (en) Method of forming a floating gate programmable read only memory cell transistor
JPS59138382A (en) Manufacture of semiconductor memory device
JPH06349856A (en) Thin-film transistor and its manufacture
JPH0467336B2 (en)
JPS643046B2 (en)
WO1983003032A1 (en) Semiconductor device and method of fabricating the same
JPS5885520A (en) Manufacture of semiconductor device
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPH0587992B2 (en)
JPS63117420A (en) Manufacture of silicide layer
JPS6127680A (en) Manufacture of semiconductor memory
JPH09326495A (en) Thin film transistor and its manufacturing method
JPH04328872A (en) Manufacture of polycrystalline thin film transistor and polycrystalline thin film transistor
JPS61166074A (en) Insulated gate type transistor and manufacture thereof
JP2928076B2 (en) Semiconductor device and manufacturing method thereof
JP3182887B2 (en) Method for manufacturing semiconductor device
JPS59198765A (en) Insulated gate type field effect transistor
JPS63311723A (en) Manufacture of semiconductor integrated circuit
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPS6030168A (en) Complementary mos semiconductor device and manufacture thereof