JPS59121965A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59121965A
JPS59121965A JP22871382A JP22871382A JPS59121965A JP S59121965 A JPS59121965 A JP S59121965A JP 22871382 A JP22871382 A JP 22871382A JP 22871382 A JP22871382 A JP 22871382A JP S59121965 A JPS59121965 A JP S59121965A
Authority
JP
Japan
Prior art keywords
impurity
region
high dielectric
resistance element
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22871382A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22871382A priority Critical patent/JPS59121965A/en
Publication of JPS59121965A publication Critical patent/JPS59121965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To integrate a high resistance element consisting of an impurity diffusion layer in an integrated circuit containing a high dielectric-resistance element by forming an impurity low concentration region of the same conduction type as two impurity high concentration regions of a conduction type reverse to a base body between the impurity high concentration regions and forming a channel stopper region at a position separate from the impurity high concentration regions. CONSTITUTION:A resist layer 34 is formed for a patterning forming the impurity high concentration diffusion regions 8, 10 on the high dielectric resistance 17' side, and boron ions are implanted 35. The resist layer 34 is removed, boron ions are implanted 38 to the whole surface in both the high dielectric-resistance element 15' and the high dielectric resistance 17' and diffused into a substrate 1, and the impurity low concentration diffusion region 38 is formed around a drain region 37 of the high dielectric-resistance element 15. The whole is thermally treated in order to control the depth of the diffusion layers of the source and drain diffusion regions 36, 37 of the high dielectric-resistance element 15' section and the high concentration diffusion regions 8, 10 of the high dielectric resistance 17' section, thin oxide films formed to electrode window sections are removed through etching extending over the whole surface, Al electrodes 7a, 7b, 7c are patterned and the high dielectric-resistance element is formed, and Al electrodes 7a, 7b are patterned and a high dielectric-resistance element equipment is formed between the impurity high concentration diffusion regions 8, 10.

Description

【発明の詳細な説明】 く1) 発明の技術分野 本発明は半導体基板上に設けられた不純物拡散層からな
る高耐圧抵抗素子に係り、特に集積回路内に微細バクー
ンで形成可能な高耐圧抵抗素子に関する。
[Detailed Description of the Invention] 1) Technical Field of the Invention The present invention relates to a high voltage resistance element consisting of an impurity diffusion layer provided on a semiconductor substrate, and particularly relates to a high voltage resistance element that can be formed in an integrated circuit with a fine vacuum. Regarding elements.

(2)技術の背景 従来から半導体基板上に不純物拡散層を形成して抵抗体
を構成させる種々の抵抗素子が提案さhているが抵抗値
は一般的には±20%程度の誤差で100Ω〜30にΩ
程度のものが用いられている。
(2) Background of the technology Various resistance elements have been proposed in the past in which a resistor is formed by forming an impurity diffusion layer on a semiconductor substrate, but the resistance value is generally 100Ω with an error of about ±20%. ~30Ω
A certain degree is used.

一般に高抵抗を得るには割り込み型抵抗を用t、qいる
。すなわちp型ベース拡散層中にn+エミ・ツタ拡散層
を作ってベース拡散層の厚さを減少させて高濃度のベー
ス拡散層の大部分にエミ・ツタ拡散層を重畳させること
で高抵抗値を得たものが知られているが許容誤差が大き
い等の欠点を持ってし)た。
Generally, to obtain high resistance, an interrupt type resistor is used. In other words, by creating an n+ emitter/vine diffusion layer in the p-type base diffusion layer, reducing the thickness of the base diffusion layer, and superimposing the emitter/vine diffusion layer on most of the high concentration base diffusion layer, a high resistance value can be achieved. The obtained method is known, but it has drawbacks such as a large tolerance.

このような抵抗素子の他にMO3抵抗も知られている。In addition to such resistive elements, MO3 resistors are also known.

これらは大きな面積を必要とするのでMO3抵抗を負荷
抵抗として用い例えばMO3負荷抵抗としてはMOSF
ETのゲートとドレインをAN電極で短絡したものなど
が用いられているが一般的なMOS型の抵抗素子構造を
以下に詳記する。
Since these require a large area, an MO3 resistor is used as the load resistor.For example, the MO3 load resistor is a MOSFET.
A typical MOS type resistor element structure is used, such as one in which the gate and drain of an ET are short-circuited by an AN electrode, and will be described in detail below.

(3) 従来技術と問題点 第1図は従来のMO3抵抗の断面図、第2図は本出願人
が先に提案した従来の不純物拡散層を基板上に形成した
抵抗体の断面図である。
(3) Prior Art and Problems Figure 1 is a cross-sectional view of a conventional MO3 resistor, and Figure 2 is a cross-sectional view of a conventional resistor in which an impurity diffusion layer is formed on a substrate, as previously proposed by the applicant. .

第1図において1は例えばシリコン等のn型基板で該基
板上にフィルド酸化膜2と酸化膜3が形成され、P+の
不純物高濃度拡散領域4が酸化膜3下に形成されている
In FIG. 1, reference numeral 1 denotes an n-type substrate made of, for example, silicon, on which a filled oxide film 2 and an oxide film 3 are formed, and a P+ impurity high concentration diffusion region 4 is formed below the oxide film 3.

上記酸化膜3には電極窓5a、5bが形成され酸化膜3
とフィルド酸化膜2上にはPSG (リン・シリカグラ
ス)等の絶縁層6を形成し、電極窓5a、5b上にAβ
よりなる電極7a、7bをパターニングして電極7a、
7b間に抵抗を構成したものである。
Electrode windows 5a and 5b are formed in the oxide film 3, and the oxide film 3
An insulating layer 6 such as PSG (phosphorus silica glass) is formed on the filled oxide film 2, and Aβ is formed on the electrode windows 5a and 5b.
Electrodes 7a and 7b are patterned to form electrodes 7a and 7b.
A resistor is constructed between 7b and 7b.

第2図は本出願人が提案した抵抗であり2M03FET
のドレイン及びソースに対応する電極窓5a、5bの下
端にはP+の不純物高濃度拡散領域8.10があり、該
不純物高濃度拡散領域間にP−の不純物低濃度拡散領域
9を設けたもので不純物低濃度拡散領域9のドーズ量は
10’λ〜11013Ato/c++1であり、不純物
高濃度拡散領域8.10のドーズ量ばIOA tom/
 crA程度である。なお、11はチャンネルストッパ
で不純物高濃度拡散領域8.10に対接している。他の
構成は第1図と同一であるので重複説明は省略する。こ
のような構成では高耐圧の抵抗が得られない欠点がある
。現在高耐圧集積回路として例えば螢光表示管等の高電
圧装置を駆動する第3図に示すような表示回路が用いら
れているが、このような回路に高耐圧の抵抗I7が用い
られる。すなわち第3図で集積回路部にはP−MO31
3とN−MO314から構成された相補型MOSインバ
ータと駆動部となる例えばP−MOSからなる出力駆動
トランジスタとよりなり、該トランジスタは高耐圧素子
 15構成となされ、咳高耐圧素子に接続されたバッド
16を通して螢光表示管20のグリツドGに「オン」「
オフ」の電圧を供給して螢光表示管 20を好酸させて
いる。
Figure 2 shows the resistor proposed by the applicant, 2M03FET.
There are P+ impurity high concentration diffusion regions 8.10 at the lower ends of the electrode windows 5a and 5b corresponding to the drain and source, and a P− impurity low concentration diffusion region 9 is provided between the high impurity concentration diffusion regions. The dose of the low impurity concentration diffusion region 9 is 10'λ~11013Ato/c++1, and the dose of the high impurity concentration diffusion region 8.10 is IOA tom/
It is about crA. Note that 11 is a channel stopper which is in contact with the high impurity concentration diffusion region 8.10. Since the other configurations are the same as those in FIG. 1, repeated explanation will be omitted. Such a configuration has the disadvantage that a high voltage resistance cannot be obtained. Currently, a display circuit as shown in FIG. 3 for driving a high voltage device such as a fluorescent display tube is used as a high voltage integrated circuit, and a high voltage resistance resistor I7 is used in such a circuit. In other words, in Fig. 3, the integrated circuit section has P-MO31.
3 and an N-MO314, and an output drive transistor consisting of, for example, a P-MOS, which serves as a drive section, and the transistor is configured as a high-voltage element and is connected to a high-voltage element. “ON” and “ON” are applied to the grid G of the fluorescent display tube 20 through the pad 16.
OFF voltage is supplied to make the fluorescent display tube 20 eosinic.

上記螢光表示管20のカソードCには例えば−35V位
の電圧源18からツェナ19を通して一30V程度の電
圧が与えられ電圧源18とグリッド0間に10OKΩ程
度の高耐圧抵抗器17を接続することで点滅時のチラッ
キ等を防止している。
A voltage of about -30V is applied to the cathode C of the fluorescent display tube 20 from a voltage source 18 of, for example, about -35V through a zener 19, and a high voltage resistor 17 of about 10 OKΩ is connected between the voltage source 18 and the grid 0. This prevents flickering when blinking.

このような高耐圧抵抗器17は1つの螢光表示管に1つ
づつ外付けするためコスト的には抵抗器1個の値は廉価
であるが多数の螢光表示管を有するシステムにおいては
、実装面積が増大してシステムのコンパクト化には大き
な弊害となっていた。
Since such a high voltage resistor 17 is attached externally to each fluorescent display tube, the value of one resistor is low in terms of cost, but in a system having a large number of fluorescent display tubes, This increases the mounting area, which is a major problem in making the system more compact.

(4) 発明の目的 本発明は上記従来の欠点に鑑み高耐圧素子を含む集積回
路内に不純物拡散層からなる高抵抗素子を集積化するこ
とを第1の目的とするものである。
(4) Object of the Invention In view of the above-mentioned conventional drawbacks, the first object of the present invention is to integrate a high resistance element made of an impurity diffusion layer in an integrated circuit including a high breakdown voltage element.

本発明の第2の目的は高耐圧抵抗を集積化することにあ
る。
A second object of the present invention is to integrate high-voltage resistors.

本発明の第3の目的は極めて微小な面積内(W/L=1
0μ/100μ程度)で−40V以上の耐圧を有する高
耐圧抵抗を提供することにある。
The third object of the present invention is to
The object of the present invention is to provide a high-voltage resistor having a breakdown voltage of -40V or more at a voltage of about 0μ/100μ).

本発明の更に他の目的は高耐圧トランジスタまたは高耐
圧保護素子等の高耐圧素子と同時に高耐圧抵抗の得られ
る製作方法を提供することにある。
Still another object of the present invention is to provide a manufacturing method that allows a high voltage resistor to be obtained at the same time as a high voltage element such as a high voltage transistor or a high voltage protection element.

(5)発明の構成 この目的は本発明によれば半導体基体の厚い絶縁膜によ
り分離された活性化領域内に該基体と逆導電型の二つの
不純物高濃度領域を上記厚い絶縁膜に接して形成すると
共に該不純物高濃度領域間に該不純物高濃度領域と同一
導電型の不純物低濃度領域を設け、該不純物高濃度Vi
域と離間した位置にチャンネルストッパ領域を形成して
なる高耐圧抵抗素子を含むことを特徴とする半導体装置
によって達成される。
(5) Structure of the Invention According to the present invention, the object is to provide two high impurity concentration regions of opposite conductivity type to the semiconductor substrate in an active region separated by a thick insulating film in contact with the thick insulating film. At the same time, a low impurity concentration region of the same conductivity type as the high impurity concentration region is provided between the high impurity concentration regions, and the high impurity concentration Vi
This is achieved by a semiconductor device characterized by including a high breakdown voltage resistance element having a channel stopper region formed at a position spaced apart from the region.

(6) 発明の実施例 以下1本発明の一実施例を第4図乃至第6図について詳
記する。
(6) Embodiment of the Invention An embodiment of the present invention will be described in detail below with reference to FIGS. 4 to 6.

第4図(al 、 (blは本発明に係る高耐圧抵抗の
断面図と平面図であり2二つの不純物高濃度拡散領域8
.10間に形成した不純物低濃度拡散領域9は上記不純
物高濃度拡散領域と同導電型であり、厚い絶縁膜である
フィルド酸化膜2の下端のチャンネルストッパ11と上
記高濃度拡散領域8.10間には空隙部22を設けたも
ので、第2図に本出願人が提案した不純物高濃度拡散領
域8,10にチャンネルカットストッパが衝突している
場合に比べて格段に耐圧が向上して一40V以上の耐圧
を持つ高耐圧抵抗を得ることができた。上述の如き半導
体基板に拡散領域を形成して、外付は用の抵抗器17を
第3図に示すように接続する代りに点線で示したように
高耐圧抵抗17′を集積回路12内に高耐圧素子15で
ある駆動用出力MO5FETと同時に基板上に形成する
工程を第5図について説明する。
FIG. 4 (al, (bl) is a cross-sectional view and a plan view of a high breakdown voltage resistor according to the present invention, and two high impurity concentration diffusion regions 8
.. The low impurity concentration diffusion region 9 formed between 10 and 10 has the same conductivity type as the high impurity concentration diffusion region, and is between the channel stopper 11 at the lower end of the filled oxide film 2, which is a thick insulating film, and the high concentration diffusion region 8 and 10. 2 is provided with a cavity 22, and compared to the case where a channel cut stopper collides with the high impurity concentration diffusion regions 8 and 10 proposed by the present applicant as shown in FIG. A high-voltage resistor with a withstand voltage of 40V or more could be obtained. A diffusion region is formed in the semiconductor substrate as described above, and instead of connecting the external resistor 17 as shown in FIG. The process of forming the drive output MO5FET, which is the high breakdown voltage element 15, on the substrate at the same time will be described with reference to FIG.

なお、第5図において図面の左側には高耐圧素子15の
製造工程を図面の右側には高耐圧抵抗17′の製造工程
を同時に併設して示す。
In FIG. 5, the manufacturing process of the high voltage resistor 15 is shown on the left side of the drawing, and the manufacturing process of the high voltage resistor 17' is shown on the right side of the drawing.

第5図[8)において、基板1はシリコンで濃度5×1
019cm−2のn型であり、該基板1上に酸化膜40
(SiO2)を500人厚定形成後に、該SiO2より
なる絶縁膜40上に窒化膜23 (Si3Na)を10
00人厚に形成して、活性領域を決めるマスクによって
レジスト24を露光して該窒化膜23を第5図(b)の
ように選択的にエツチングする。
In FIG. 5 [8], the substrate 1 is made of silicon with a concentration of 5×1
019 cm-2, and an oxide film 40 is formed on the substrate 1.
After forming (SiO2) to a constant thickness of 500 layers, a nitride film 23 (Si3Na) of 100 nm is formed on the insulating film 40 made of SiO2.
The nitride film 23 is selectively etched by exposing the resist 24 to light using a mask that defines the active region, as shown in FIG. 5(b).

第5図(blはチャンネルカット用のレジスト25を窒
化膜23と絶縁膜40上に塗布してマスクでパターニン
グして窓開きを行った後に窓開き部26より燐(P)を
イオン注入27する。ドーズ量は6 X 10”’Cm
−’で80K eVで打ち込むことでチャンネルストッ
パ領域11.11が基板1に形成される。
FIG. 5 (bl) shows that a resist 25 for channel cutting is applied on the nitride film 23 and the insulating film 40, patterned with a mask, and a window is opened, and then phosphorus (P) is ion-implanted 27 through the window opening 26. .Dose amount is 6 x 10'''Cm
A channel stopper region 11.11 is formed in the substrate 1 by implanting at 80 K eV at -'.

次にレジスト膜25を除去して窒化膜23をマスクとし
て熱酸化するとフィルド酸化膜、すなわち厚い絶縁膜2
が形成される。(第5図(C))ここで窒化膜23及び
窒化膜23の下側に形成されていた酸化膜40は除去さ
れる。
Next, when the resist film 25 is removed and thermally oxidized using the nitride film 23 as a mask, a filled oxide film, that is, a thick insulating film 2
is formed. (FIG. 5(C)) Here, the nitride film 23 and the oxide film 40 formed under the nitride film 23 are removed.

次に第5図(diに示すようにゲート酸化膜30が厚い
絶縁膜2,2間に形成される。該ゲート酸化膜30の厚
さは700人程度である。
Next, as shown in FIG. 5(di), a gate oxide film 30 is formed between the thick insulating films 2. The thickness of the gate oxide film 30 is approximately 700 mm.

第5図(d)の左側に示す高耐圧素子15のゲート酸化
膜′30上からイオン注入29によってボロン(B+)
を10// cm−1程度注入することでスレーショル
ドコントロールN31が形成される。厚G〜絶縁膜2上
の層はレジスト層28である。
Boron (B+) is injected into the gate oxide film '30 of the high voltage element 15 shown on the left side of FIG.
A threshold control N31 is formed by implanting about 10//cm-1 of. Thickness G ~ The layer on the insulating film 2 is the resist layer 28 .

第5図(dlの右側に示した高耐圧抵抗17′は必要に
応じてスレーショルドコントロール層31を形成しても
不純物のドーズ量がl Q //cm−’のオーダであ
るため特に問題はないがデー11化膜30及び厚い絶縁
膜2上に全面にレジスト層28を形成してボロン注入を
行なわないようにしでもよい。
The high breakdown voltage resistor 17' shown on the right side of dl in FIG. However, a resist layer 28 may be formed over the entire surface of the di-11-oxide film 30 and the thick insulating film 2 to prevent boron implantation.

次に第5図(e)のようにレジスト層28を除去して高
耐圧素子15は左側に示すようにゲート酸化膜30上に
ポリシリコンを塗布してパターニングしてゲート32部
分を形成する。
Next, as shown in FIG. 5(e), the resist layer 28 is removed, and as shown on the left side of the high breakdown voltage element 15, polysilicon is coated on the gate oxide film 30 and patterned to form the gate 32 portion.

次に高耐圧素子15側はポリシリコンのゲート32の下
のゲート酸化膜30のみ残して活性領域内のゲート酸化
膜30を除去する。その際、高耐圧抵抗17′側のゲー
ト酸化膜30も除去される。
Next, on the high voltage element 15 side, the gate oxide film 30 in the active region is removed, leaving only the gate oxide film 30 under the polysilicon gate 32. At this time, the gate oxide film 30 on the high voltage resistor 17' side is also removed.

そして5第5図(flのように新たに酸化膜33を50
0人厚定形成してレジスト層34を塗布してソース36
及びドレイン37領域を除去するようなパターニングを
行ってドーズ量10” cm−’のボロンをイオン注入
35する。
Then, a new oxide film 33 is added at 50° as shown in Fig.
After forming a resist layer 34 to a certain thickness and applying a resist layer 34, a source 36 is formed.
Then, patterning is performed to remove the drain 37 region, and boron ions are implanted 35 at a dose of 10''cm-'.

高耐圧抵抗17′側は不純物高濃度拡散領域8.10を
形成するようなパターニングするためにレジスト層34
が形成され、ボロンが101ゝcm−’のドーズ量でイ
オン注入35される。
On the high voltage resistor 17' side, a resist layer 34 is used for patterning to form a high impurity concentration diffusion region 8.10.
is formed and boron is ion-implanted 35 at a dose of 101 cm-'.

次に第5図(glに示すようにレジスト層34を除去し
た後に高耐圧素子15も高耐圧抵抗17′も共に全面に
ドーズ量がl Q ” cm−’程度のボロンをイオン
注入38して基板1中に拡散させ高耐圧素子15のドレ
イン領域37の周囲に不純物低濃度拡散領域39を形成
する。
Next, after removing the resist layer 34 as shown in FIG. A low impurity concentration diffusion region 39 is formed around the drain region 37 of the high voltage element 15 by diffusing into the substrate 1 .

次に第5図fh)の如< PSG6をCVD等で厚い酸
化膜2及び酸化膜33上に形成する。
Next, PSG 6 is formed on the thick oxide film 2 and the oxide film 33 by CVD or the like as shown in FIG. 5fh).

次に高耐圧素子15ではソース、ドレイン、及びゲート
の電極窓用の孔明けを行ない一方、高耐圧抵抗17′で
は二つの不純物高濃度拡散領域8.10に窓開きをする
。 次にPSG膜6からのリンのアウト拡散を抑えるた
め薄い酸化膜を成長させる。次に高耐圧素子15部のソ
ース、ドレイン拡散領域36.37及び高耐圧抵抗17
′部の高濃度拡散領域8.10の拡散層深さを制御する
ための熱処理を行い電極窓部に形成した薄い酸化膜を全
面エンチングすることにより除去して後、A7!電極7
a、7b、7cをパターニングし高耐圧素子を形成し、
またAβ電極7a、7bをパターニングすることで不純
物高濃度拡散領域8゜10間に高耐圧抵抗素子器が構成
される。
Next, holes for source, drain, and gate electrode windows are formed in the high voltage resistor 15, while windows are opened in the two high impurity concentration diffusion regions 8 and 10 in the high voltage resistor 17'. Next, a thin oxide film is grown to suppress out-diffusion of phosphorus from the PSG film 6. Next, the source and drain diffusion regions 36 and 37 of the high voltage element 15 and the high voltage resistance 17
After carrying out heat treatment to control the depth of the diffusion layer of the high concentration diffusion region 8.10 in the part '' and removing the thin oxide film formed in the electrode window part by etching the entire surface, A7! Electrode 7
Pattern a, 7b, and 7c to form a high voltage element,
Further, by patterning the Aβ electrodes 7a and 7b, a high breakdown voltage resistance element is constructed between the high impurity concentration diffusion regions 8° and 10°.

上述の如き製造工程によって第4図(al 、 (bl
に示した高耐圧抵抗が構成される。
Through the manufacturing process as described above, the manufacturing process shown in FIG. 4 (al, (bl)
The high voltage resistor shown in is constructed.

上記実施例では高耐圧素子15及び高耐圧抵抗17をn
型導電型基板に形成した場合を説明したが第6図(al
〜(ilに示すように高耐圧素子15aと高耐圧抵抗1
7a′をp型の導電型基板内にn型ウェルを作り、該ウ
ェル内にp型のソースドレイン領域或いは低高濃度拡散
領域を形成したり、n型基板内にP型ウェルを作り該ウ
ェル内にn型のソース、トレイン領域或いは低高濃度拡
散領域を形成してもよい。
In the above embodiment, the high voltage element 15 and the high voltage resistance 17 are
Although we have explained the case where it is formed on a type conductivity type substrate, FIG.
~(As shown in il, high voltage resistance element 15a and high voltage resistance 1
7a', an n-type well is formed in a p-type conductivity type substrate, and a p-type source/drain region or a low and high concentration diffusion region is formed in the well, or a p-type well is formed in an n-type substrate and the well is formed. An n-type source, train region, or low and high concentration diffusion region may be formed inside.

第6図GこはP型基板内にn型のウェルを作ってp型の
低濃度或いは高濃度領域を形成した高耐圧素子並びに高
耐圧抵抗器の製作工程を説明する。
FIG. 6G describes the manufacturing process of a high breakdown voltage element and a high breakdown voltage resistor in which an n-type well is formed in a p-type substrate to form a p-type low concentration or high concentration region.

第6図で左側には高耐圧素子15aを右側には高耐圧抵
抗17a′を同時に製作する工程を示す。
FIG. 6 shows the process of simultaneously manufacturing the high voltage resistor 15a on the left and the high voltage resistor 17a' on the right.

第6図(alにおいて基板1はp型20ΩcITlのシ
リコンであり、該基板上は酸化膜(SiO2)40を5
00人厚定形成後に、該5tO2上に窒化膜23(St
3Na)を1000人厚に形成して活性領域を決めるマ
スクによって窒化膜23をパターニングすることでレジ
スト膜24の下側の窒化膜23のみが残される。次に第
6図(blのように窓開きを行ってNウェル形成のため
に燐(P+)をドーズ量4 X 10” cm −’ 
、  250K eVでイオン注入422次に1200
℃のN2零囲気中360分程度のランニングが行なわれ
てn型ウェル43がp型基板内に形成される。
In FIG. 6 (al), the substrate 1 is p-type 20ΩcITl silicon, and an oxide film (SiO2) 40 is formed on the substrate.
After forming a nitride film 23 (St
3Na) to a thickness of 1,000 layers and patterning the nitride film 23 using a mask that defines the active region, only the nitride film 23 below the resist film 24 is left. Next, as shown in Figure 6 (bl), a window was opened and phosphorus (P+) was added at a dose of 4 x 10" cm -' to form an N well.
, 422 ion implantation at 250K eV then 1200
Running is performed for about 360 minutes in a N2 atmosphere at .degree. C. to form an n-type well 43 in the p-type substrate.

次に第6図(C)に示すように、チャンネルカット用の
レジスト25を窒化1%23と絶縁膜40上に形成して
通常のフォトリソグラフィによって窓開き部26を形成
し燐(P)をイオン注入27する。
Next, as shown in FIG. 6(C), a resist 25 for channel cutting is formed on the 1% nitride 23 and insulating film 40, a window opening 26 is formed by ordinary photolithography, and phosphorus (P) is formed. Ion implantation 27 is carried out.

この場合のドーズ量は6 X 10” cm−’で80
K eVで打ち込むことでNウェル43内にチャンネル
カット領域のn+が形成される。以後第6図(dl乃至
01までの製作工程は第5図(C)乃至fhlまでの製
作工程と同様でありNウェル43内にドレイン領域37
゜ソース領域36.ゲート電極32及び高濃度拡散領域
8.10低濃度拡散領域9が形成されているのみで他は
同様であるので重複説明は省略する。
The dose in this case is 6 x 10"cm-' = 80
By implanting at K eV, a channel cut region n+ is formed in the N well 43. Thereafter, the manufacturing steps from FIG. 6 (dl to 01) are the same as the manufacturing steps from FIG. 5(C) to fhl, and the drain region 37 is
゜Source area 36. Since the rest is the same except that the gate electrode 32, high concentration diffusion regions 8, 10 and low concentration diffusion regions 9 are formed, repeated explanation will be omitted.

なお、第6図(gl乃至(1)はNウェル43部分を拡
大して示している。
Note that FIG. 6 (gl to (1)) shows an enlarged view of the N well 43 portion.

以上、説明は高耐圧素子15 (15a )並びに高耐
圧抵抗17 ′(17a’)のみの製造プロセスに限り
行ってきたが、実際には集積回路12はC−MO3構成
であり、逆チヤンネル側は上記製造中はマスクされてい
る。また逆チヤンネル側を製造する場合は上記高耐圧素
子15(15a)及び高耐圧抵抗17′(17a ’)
はマスクされていると考えればよい。
The above explanation has been limited to the manufacturing process of the high voltage resistor 15 (15a) and the high voltage resistor 17'(17a'), but in reality the integrated circuit 12 has a C-MO3 configuration, and the reverse channel side is It is masked during the above manufacturing process. In addition, when manufacturing the reverse channel side, the high voltage resistor 15 (15a) and the high voltage resistor 17'(17a') are used.
can be considered to be masked.

(7) 発明の効果 以上、詳細に説明したように本発明の高耐圧抵抗によれ
ば不純物高濃度領域8,10よりの空乏層の拡りば通常
では基板側だけであるが本発明の場合は不純物高濃度領
域8.10を囲繞して形成したチャンネルカット領域が
第4図で明らかなように離間22しているために空乏層
はこの部分も拡がっていくために耐圧をより増加させる
ことが出来る。第4図の場合は耐圧を一40V以上に高
めることがてきた。
(7) Effects of the Invention As explained in detail above, according to the high breakdown voltage resistor of the present invention, the depletion layer from the high impurity concentration regions 8 and 10 normally extends only to the substrate side, but in the case of the present invention. Since the channel cut region formed surrounding the high impurity concentration region 8.10 is spaced apart 22 as shown in FIG. 4, the depletion layer also expands in this region, thereby increasing the breakdown voltage. I can do it. In the case of FIG. 4, the breakdown voltage has been increased to -40V or more.

このときの値は二つの高濃度領域8,10間の低濃度領
域9の幅を10μ、長さを100μ離間距離を3μに選
択した値である。
At this time, the values are such that the width of the low concentration region 9 between the two high concentration regions 8 and 10 is 10 μm, the length is 100 μm, and the distance is 3 μm.

また、高抵抗値も不純物低濃度拡散領域のドーズ量を任
意に選択して高抵抗を微細パターンで形成できるので高
耐圧集積回路のコンパクト化に寄与するところが大きい
In addition, since a high resistance value can be formed in a fine pattern by arbitrarily selecting the dose of the low impurity concentration diffusion region, it greatly contributes to the miniaturization of high voltage integrated circuits.

なお、上記実施例では螢光表示管の高電圧装置に通用し
た例を説明したがこれに限定されることなく高耐圧を必
要とする高電圧回路に本発明の高耐圧抵抗を適用し得る
ことは明らかである。
In addition, although the above embodiment describes an example that is applicable to a high voltage device such as a fluorescent display tube, the present invention is not limited to this, and the high voltage resistor of the present invention can be applied to a high voltage circuit that requires a high voltage resistance. is clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMO3抵抗器の断面図、第2図は従来の
不純物高低濃度拡散層を基板上に形成した抵抗体の断面
図5第3図は従来の高耐圧集積回路(螢光表示管の高電
圧装置)に高耐圧抵抗器を利用した場合を説明するため
の回路図、第4図(a)。 (blは本発明の高耐圧抵抗の側断面図と平面図、第5
図(a)乃至(h)は本発明の高耐圧抵抗を高耐圧素子
(MOS)ランジスタ)と同時に形成する工程を示す各
々の側断面図、第6図(al乃至(ilは本発明の他の
実施例を示す高耐圧抵抗を高耐圧素子と同時に形成する
工程を示す各々の側断面図である。 1・・・基板、  2・・・厚い絶縁膜、3.33.4
0・・・酸化膜、  4. 8. 10・・・不純物高
濃度拡散領域、  5a、5b・・・電極窓、6・・・
PSG等の絶縁層、7a。 7b・・・電極、   9.39・・・不純物低濃度拡
散領域、−11・・・チャンネルストッパ、12・・・
集積回路、  15,152・・・高耐圧素子、   
17.17’、11a’−−−高耐圧抵抗、  20・
・・螢光表示管、23・・・窒化膜、   24,25
,28.34・・・レジスト、  30・・・ゲート酸
化膜、  32・・・ケート電極  36・・・ソース
領域、37・ ・ ・トレイン領域、   43・ ・
 ・n型ウェル領域 t+1 第 Il、¥1 らh 第2図 一
Figure 1 is a cross-sectional view of a conventional MO3 resistor, Figure 2 is a cross-sectional view of a resistor in which a conventional impurity concentration diffusion layer is formed on a substrate. FIG. 4(a) is a circuit diagram illustrating a case where a high voltage resistor is used in a high voltage device (tube high voltage device). (bl is a side sectional view and a plan view of the high voltage resistor of the present invention,
Figures (a) to (h) are side sectional views showing the process of simultaneously forming the high voltage resistor of the present invention (a high voltage resistor (MOS) transistor), and Figures 6 (al to (il) are the resistors of the present invention). 1. It is each side sectional view which shows the process of forming a high voltage resistance and a high voltage resistance element simultaneously showing an Example. 1... Substrate, 2... Thick insulating film, 3.33.4
0...Oxide film, 4. 8. 10... High impurity concentration diffusion region, 5a, 5b... Electrode window, 6...
Insulating layer, such as PSG, 7a. 7b... Electrode, 9.39... Low impurity concentration diffusion region, -11... Channel stopper, 12...
Integrated circuit, 15,152...high voltage element,
17.17', 11a' --- High voltage resistance, 20.
...Fluorescent display tube, 23...Nitride film, 24, 25
, 28. 34... Resist, 30... Gate oxide film, 32... Kate electrode 36... Source region, 37... Train region, 43...
・N-type well region t+1 No. Il, ¥1 et h Fig. 2 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基体の厚い絶縁膜により分離された活性化領域内
に該基体と逆導電型の二つの不純物高濃度領域を上記厚
い絶縁膜に接して形成すると共に該不純物高濃度領域間
に該不純物高濃度領域と同一導電型の不純物低濃度領域
を設け、該不純物高濃度領域と離間した位置にチャンネ
ルストッパ領域を形成してなる高耐圧抵抗素子を含むこ
とを特徴とする半導体装置。
Two high impurity concentration regions of the opposite conductivity type to the semiconductor substrate are formed in contact with the thick insulation film in an active region separated by a thick insulating film of a semiconductor substrate, and the high impurity concentration is formed between the high impurity concentration regions. What is claimed is: 1. A semiconductor device comprising a high breakdown voltage resistance element comprising a low impurity concentration region of the same conductivity type as the high impurity concentration region and a channel stopper region formed at a position spaced apart from the high impurity concentration region.
JP22871382A 1982-12-28 1982-12-28 Semiconductor device Pending JPS59121965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22871382A JPS59121965A (en) 1982-12-28 1982-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22871382A JPS59121965A (en) 1982-12-28 1982-12-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59121965A true JPS59121965A (en) 1984-07-14

Family

ID=16880640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22871382A Pending JPS59121965A (en) 1982-12-28 1982-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59121965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965341A (en) * 1988-06-08 1990-10-23 Shell Oil Company Polymerization of co/olefin with catalyst comprising sulfur bidentate ligand
US7413996B2 (en) * 2003-04-14 2008-08-19 Lsi Corporation High k gate insulator removal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123157A (en) * 1979-03-16 1980-09-22 Oki Electric Ind Co Ltd High-stability ion-injected resistor
JPS56130960A (en) * 1980-03-17 1981-10-14 Fujitsu Ltd Manufacture of semiconductor integrated circuit
JPS57143855A (en) * 1981-02-27 1982-09-06 Nec Corp Semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123157A (en) * 1979-03-16 1980-09-22 Oki Electric Ind Co Ltd High-stability ion-injected resistor
JPS56130960A (en) * 1980-03-17 1981-10-14 Fujitsu Ltd Manufacture of semiconductor integrated circuit
JPS57143855A (en) * 1981-02-27 1982-09-06 Nec Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965341A (en) * 1988-06-08 1990-10-23 Shell Oil Company Polymerization of co/olefin with catalyst comprising sulfur bidentate ligand
US7413996B2 (en) * 2003-04-14 2008-08-19 Lsi Corporation High k gate insulator removal

Similar Documents

Publication Publication Date Title
JPH0525393B2 (en)
JP2609619B2 (en) Semiconductor device
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JPS59121976A (en) Semiconductor device
JPS60100469A (en) Semiconductor device
JPS59121965A (en) Semiconductor device
US6080609A (en) Method of making MOSFET structure
JPH0228939A (en) Mos type transistor
JPH08195443A (en) Semiconductor device and its manufacture
JPH10335641A (en) Manufacture of semiconductor device
JPS59124755A (en) Semiconductor device
JPH05114734A (en) Semiconductor device
JPH0382163A (en) Power mosfet and manufacture thereof
JPS6325977A (en) Manufacture of semiconductor integrated circuit deivce
JPH0456280A (en) Semiconductor device and manufacture thereof
JPS60143656A (en) Semiconductor device
JPH0128509B2 (en)
JPH01238066A (en) High withstand voltage transistor
KR970011379B1 (en) Thin film transistor manufacturing method
JPS59195869A (en) Manufacture of semiconductor device
JPH03293759A (en) Capacitor to be incorporated into mos integrated circuit device
JPH08306801A (en) Manufacture of semiconductor integrated circuit device
JPH0320047A (en) Semicondcutor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPS6254959A (en) Manufacture of mis semiconductor device