JPH10335641A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10335641A
JPH10335641A JP14224097A JP14224097A JPH10335641A JP H10335641 A JPH10335641 A JP H10335641A JP 14224097 A JP14224097 A JP 14224097A JP 14224097 A JP14224097 A JP 14224097A JP H10335641 A JPH10335641 A JP H10335641A
Authority
JP
Japan
Prior art keywords
source
drain
oxide film
semiconductor layer
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14224097A
Other languages
Japanese (ja)
Other versions
JP3229837B2 (en
Inventor
Eiji Nishibe
栄次 西部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14224097A priority Critical patent/JP3229837B2/en
Publication of JPH10335641A publication Critical patent/JPH10335641A/en
Application granted granted Critical
Publication of JP3229837B2 publication Critical patent/JP3229837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device where signals of large amplitude can be applied to a gate electrode by improving the device in operating withstand voltage. SOLUTION: N<-> source/drain regions 13 are formed on the surface of a semiconductor layer 11. A silicon oxide film is deposited to from an oxidation- resistant film 16. The diffusion window edge 18 of the N<-> source/drain regions 13 is made to recede from the edge 17 of the oxidation-resistant film 16 by a certain distance X. LOCOS oxide films 19 and 20 are formed using the oxidation-resistant film 16, and a gate electrode 23 is formed extending to an intermediate portion over the LOCOS oxide film 19. N<-> type impurity ions are implanted for the formation of N<+> source/drain regions 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐圧のMOS素
子を組み込んだ半導体装置の製造方法に関し、特にその
動作耐圧の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device incorporating a high withstand voltage MOS element, and more particularly to an improvement in the operating withstand voltage.

【0002】[0002]

【従来の技術】MOS型LSI内部に例えば数十Vもの
電圧振幅を制御する素子を集積化する場合、その素子は
他の小信号用の素子とは構造を別個に設計・製造する必
要が生じる。図4、図5に従来の高耐圧MOS素子の製
造方法を示した。尚、斯る素子は例えば特開平6ー26
8262号に記載されている。
2. Description of the Related Art When an element for controlling a voltage amplitude of, for example, several tens of volts is integrated in a MOS type LSI, it is necessary to design and manufacture the element separately from other small signal elements. . 4 and 5 show a method of manufacturing a conventional high voltage MOS device. Incidentally, such an element is disclosed in, for example, JP-A-6-26.
No. 8262.

【0003】先ず図4(A)を参照して、P型の半導体
層1上にレジストマスク2を形成し、リン(P)をイオ
ン注入することでNー型のソース・ドレイン領域3を形
成する。その後レジストマスク2を除去し、熱処理を与
えることによりソース・ドレイン領域3を所望の深さま
で拡散する。図4(B)を参照して、半導体層1表面に
新たな薄いシリコン酸化膜4を形成し、その上にシリコ
ン窒化膜を堆積し、これをパターニングすることにより
耐酸化膜5を形成する。
First, referring to FIG. 4A, a resist mask 2 is formed on a P-type semiconductor layer 1, and N-type source / drain regions 3 are formed by ion-implanting phosphorus (P). I do. Thereafter, the resist mask 2 is removed, and a heat treatment is applied to diffuse the source / drain region 3 to a desired depth. Referring to FIG. 4B, a new thin silicon oxide film 4 is formed on the surface of the semiconductor layer 1, a silicon nitride film is deposited thereon, and the silicon nitride film is patterned to form an oxidation-resistant film 5.

【0004】図4(C)を参照して、全体に酸化性熱処
理を与えることにより、ソース・ドレイン領域3の上に
LOCOS酸化膜6、7を形成する。図5(D)を参照
して、LOCOS酸化膜6の間の半導体層1上に多結晶
シリコンからなるゲート電極8を形成し、LOCOS酸
化膜6、7の間のN−ソース・ドレイン領域3表面にN
+ソース・ドレイン領域9を形成する。
Referring to FIG. 4C, LOCOS oxide films 6 and 7 are formed on source / drain regions 3 by applying an oxidizing heat treatment to the whole. Referring to FIG. 5D, a gate electrode 8 made of polycrystalline silicon is formed on semiconductor layer 1 between LOCOS oxide films 6, and N-source / drain regions 3 between LOCOS oxide films 6 and 7 are formed. N on the surface
+ Source / drain regions 9 are formed.

【0005】LOCOS酸化膜7は素子分離用の酸化膜
であるが、LOCOS酸化膜6はゲート電極8とソース
・ドレイン領域3、9との絶縁耐圧を向上する目的で設
けられている。そしてN−ソース・ドレイン領域3形成
用のレジストマスク2の端とLOCOS酸化膜5形成用
の耐酸化膜5の端とは一致させており、その結果N−ソ
ース・ドレイン領域3の端はゲート電極8下部において
LOCOS酸化膜6の端に一致するか、もしくは横方向
拡散によりもっと内側で半導体層表面1の平坦部分に終
端している。
The LOCOS oxide film 7 is an oxide film for element isolation. The LOCOS oxide film 6 is provided for the purpose of improving the dielectric strength between the gate electrode 8 and the source / drain regions 3 and 9. The end of the resist mask 2 for forming the N-source / drain region 3 and the end of the oxidation-resistant film 5 for forming the LOCOS oxide film 5 are aligned with each other. At the lower portion of the electrode 8, the edge of the LOCOS oxide film 6 coincides with the edge of the LOCOS oxide film 6.

【0006】[0006]

【発明が解決しようとする課題】ゲートに小振幅の信号
を印加することによってソース・ドレイン間に大振幅の
信号を制御する場合は、耐圧を維持すべきはゲート・ド
レイン間耐圧(Vdg)であり且つゲート開放でソース
・ドレイン間電圧を変化させたときの耐圧(BVds)
である。ところが、例えばレベルシフト回路等のように
ゲートに数十Vもの大振幅の信号が印加されるような場
合は、前記の特性に加えて、ゲートに斯る電圧を印加し
たときのソース・ドレイン間耐圧(動作耐圧)が最も重
要な特性となる。
When a large-amplitude signal is controlled between the source and drain by applying a small-amplitude signal to the gate, the breakdown voltage should be maintained by the gate-drain breakdown voltage (Vdg). Withstand voltage when the source-drain voltage is changed with the gate open (BVds)
It is. However, in the case where a signal having a large amplitude of several tens of volts is applied to the gate as in a level shift circuit or the like, in addition to the above characteristics, the voltage between the source and drain when the voltage is applied to the gate is increased. The withstand voltage (operating withstand voltage) is the most important characteristic.

【0007】図6に従来の動作耐圧特性を示した。ゲー
ト電圧VGを一定にし、ソース・ドレイン間電圧Vds
を変化させたときのソース・ドレイン間電流Idsを測
定し、且つゲート電圧VGを例えば10Vステップで変
化させた時の特性をプロットしたものである。従来の素
子、特にNチャンネル素子においては、例えばゲート電
圧が約40Vの時に所望のソース・ドレイン間電圧Vd
sを印加しただけで、接合破壊により素子自体が破壊し
てしまうことが明らかになった。従って動作耐圧が小さ
く、所望の振幅の信号制御ができないと言う欠点があっ
た。単純にゲート幅Wを広げることで動作耐圧を向上す
ることも可能ではあるが、パターンサイズを増大するこ
とになる。
FIG. 6 shows a conventional operation withstand voltage characteristic. The gate voltage VG is kept constant, and the source-drain voltage Vds
Is measured when the current Ids between the source and the drain is changed and the characteristic when the gate voltage VG is changed in, for example, a step of 10 V is plotted. In a conventional device, particularly an N-channel device, for example, when a gate voltage is about 40 V, a desired source-drain voltage Vd
It was clarified that the element itself was destroyed due to the junction breakdown only by applying s. Therefore, there is a drawback that the operation withstand voltage is small and a signal with a desired amplitude cannot be controlled. Although it is possible to improve the operation withstand voltage simply by increasing the gate width W, the pattern size is increased.

【0008】[0008]

【課題を解決するための手段】本発明は上述した従来の
課題に鑑み成されたもので、ソース・ドレイン領域の拡
散窓の端をLOCOS酸化膜の耐酸化膜の端より後退せ
しめ、実質的なチャンネル長GLを拡大することによ
り、動作耐圧を向上した半導体装置の製造方法を提供す
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a structure in which the edge of a diffusion window in a source / drain region is set back from the edge of an oxidation-resistant film of a LOCOS oxide film. An object of the present invention is to provide a method of manufacturing a semiconductor device in which the operating voltage is improved by increasing the channel length GL.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を図1
を参照しながら詳細に説明する。図1〜図4は本発明の
集積回路の製造方法を工程順に示す断面図である。先
ず、図1(A)を参照して、シリコン半導体基板等から
なるP型半導体層11を準備し、その表面を初期酸化し
て酸化膜を形成する。酸化膜の上にレジスト膜を形成
し、ホトマスクにより所望パターンを露光、現像してレ
ジストマスク12を形成する。上方からリン(P)を加
速電圧100KeV、ドーズ量3E12程度でイオン注
入してN−型のソース・ドレイン領域13を形成する。
その後レジストマスク12を除去し、基板全体に100
0℃、数時間の熱処理を与えることによりN−ソース・
ドレイン領域13を拡散深さ2.0μ程度に拡散する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
This will be described in detail with reference to FIG. 1 to 4 are sectional views showing a method of manufacturing an integrated circuit according to the present invention in the order of steps. First, referring to FIG. 1A, a P-type semiconductor layer 11 made of a silicon semiconductor substrate or the like is prepared, and its surface is initially oxidized to form an oxide film. A resist film is formed on the oxide film, and a desired pattern is exposed and developed using a photomask to form a resist mask 12. Phosphorus (P) is ion-implanted from above with an acceleration voltage of 100 KeV and a dose of about 3E12 to form N-type source / drain regions 13.
Thereafter, the resist mask 12 is removed, and 100
By giving a heat treatment at 0 ° C. for several hours, the N-source
The drain region 13 is diffused to a diffusion depth of about 2.0 μ.

【0010】図1(B)を参照して、基板表面に新たに
膜厚500Å程度の酸化膜14を形成し、その上に常圧
CVD法等によりシリコン窒化膜を堆積する。シリコン
窒化膜の上にレジストマスクを形成し、該レジストマス
クによりシリコン窒化膜をパターニングして、N−ソー
ス・ドレイン領域13表面に位置する耐酸化膜15と、
N−ソース・ドレイン領域13間のP型半導体層11上
に位置する表面に位置する耐酸化膜16とを形成する。
設計上は、耐酸化膜16の線幅がこのトランジスタのゲ
ート長GL(5〜6μ)にほぼ等しくなる。そして図1
(A)の工程において、耐酸化膜15の端の位置17に
対して、N−ソース・ドレイン領域13を形成するレジ
ストマスク12の端の位置18を1.0μ〜2.0μ程
度後退させておく。この後退させた長さ(図示X)を以
下マイナスオーバーラップOLと称する。
Referring to FIG. 1B, a new oxide film 14 having a thickness of about 500.degree. Is formed on the substrate surface, and a silicon nitride film is deposited thereon by a normal pressure CVD method or the like. Forming a resist mask on the silicon nitride film, patterning the silicon nitride film with the resist mask, and an oxidation-resistant film 15 located on the surface of the N-source / drain region 13;
An oxidation resistant film 16 located on the surface located on the P-type semiconductor layer 11 between the N-source / drain regions 13 is formed.
In design, the line width of the oxidation-resistant film 16 is substantially equal to the gate length GL (5 to 6 μ) of this transistor. And FIG.
In the step (A), the position 18 at the end of the resist mask 12 for forming the N-source / drain region 13 is set back by about 1.0 to 2.0 μ with respect to the position 17 at the end of the oxidation-resistant film 15. deep. The retracted length (X in the drawing) is hereinafter referred to as minus overlap OL.

【0011】図1(C)を参照して、基板全体を酸化性
の雰囲気中で熱酸化することにより、LOCOS酸化膜
19、20を形成する。耐酸化膜16の位置に対してレ
ジストマスク12の位置18を後退させたことにより、
N−ソース・ドレイン領域13の端はLOCOS酸化膜
19の下部で終端する。図2(A)を参照して、LOC
OS酸化膜19、20で囲まれた基板表面を清浄化し新
たに酸化して膜厚500〜2000Åのゲート酸化膜2
1を形成し、次いでLOCOS酸化膜19とLOCOS
酸化膜20とで挟まれたN−ソース・ドレイン領域13
の表面にも形成された厚い酸化膜を除去し、再度酸化し
て薄い酸化膜22とする。それらの酸化膜21、22の
上に膜厚2000Å程度のポリシリコン層をCVD法に
より堆積し、これにリンドープした後、ポリシリコン層
をパターニングすることによりゲート電極23を形成す
る。ゲート電極23はLOCOS酸化膜19上部の途中
まで被覆する。そして、リン(P)を60KeV、5.
0E13程度の不純物濃度でイオン注入し、熱処理を加
えてN+ソース・ドレイン領域24を形成する。
Referring to FIG. 1C, LOCOS oxide films 19 and 20 are formed by thermally oxidizing the entire substrate in an oxidizing atmosphere. By retreating the position 18 of the resist mask 12 with respect to the position of the oxidation resistant film 16,
The end of the N-source / drain region 13 terminates below the LOCOS oxide film 19. Referring to FIG. 2A, LOC
The surface of the substrate surrounded by the OS oxide films 19 and 20 is cleaned and newly oxidized to form a gate oxide film 2 having a thickness of 500 to 2000 Å.
1 and then LOCOS oxide film 19 and LOCOS
N-source / drain region 13 sandwiched between oxide films 20
The thick oxide film also formed on the surface of the substrate is removed and oxidized again to form a thin oxide film 22. A gate electrode 23 is formed on the oxide films 21 and 22 by depositing a polysilicon layer having a thickness of about 2000 ° by a CVD method and performing phosphorus doping thereon, and then patterning the polysilicon layer. The gate electrode 23 covers part of the upper part of the LOCOS oxide film 19. Then, phosphorus (P) is adjusted to 60 KeV, 5.
Ion implantation is performed at an impurity concentration of about 0E13, and heat treatment is applied to form N + source / drain regions 24.

【0012】以上の方法によって得られた素子は、図2
(A)に示したように、設計上のゲート長GLに対し
て、マイナスのオーバーラップOLを設けた分だけ実効
的なゲート長Leffが拡大する。また、図2(B)に
示したようにN−ソース・ドレイン領域13の端がLO
COS酸化膜19の下部で終端する事により、チャネル
に最も近い部分のリンの不純物濃度が従来より上昇する
(図示斜線部分25)。これはLOCOS酸化膜19を
形成した事によるリンの偏析(パイルアップ)現象によ
るものである。この領域は等価的にN+層と考えること
ができるので、抵抗値が小さく、故にドレイン電界の勾
配が上昇部分25内部では小さい。従ってソース・ドレ
イン間の電位差の解消は主としてP型半導体層11内部
で行われることになる。
The device obtained by the above method is shown in FIG.
As shown in (A), the effective gate length Leff is increased by the amount provided with the negative overlap OL with respect to the designed gate length GL. Further, as shown in FIG. 2B, the end of the N-source / drain region 13 is
By terminating at the lower portion of the COS oxide film 19, the impurity concentration of phosphorus in the portion closest to the channel is higher than in the conventional case (the hatched portion 25 in the figure). This is due to the segregation (pile-up) of phosphorus due to the formation of the LOCOS oxide film 19. Since this region can be considered as an N + layer equivalently, the resistance value is small, and therefore, the gradient of the drain electric field is small inside the rising portion 25. Therefore, the elimination of the potential difference between the source and the drain is mainly performed inside the P-type semiconductor layer 11.

【0013】以上の方法によって作られた素子の動作耐
圧を図6に示した特性図と同様に測定した結果、ソース
・ドレイン間電圧Vdsを最大80Vまで変動させたと
ころ、従来の素子がゲート電圧VG=40Vで破壊に至
ったのに対し、オーバーラップOLをマイナス1.0μ
としたときにはVG=70Vまで耐えることができ、オ
ーバーラップOLをマイナス1.5μとしたときにはV
G=100Vまで耐えることができ、オーバーラップO
Lをマイナス2.0μとしたときにはVG=100Vで
も破壊には至らなかった。
As a result of measuring the operating withstand voltage of the device manufactured by the above method in the same manner as the characteristic diagram shown in FIG. 6, when the source-drain voltage Vds was changed to a maximum of 80 V, the conventional device was found to have a gate voltage. While VG = 40V resulted in destruction, overlap OL was minus 1.0μ.
, It can withstand up to VG = 70 V, and when the overlap OL is -1.5 μm, V
Can withstand up to G = 100V, overlap O
When L was set to −2.0 μm, no destruction occurred even at VG = 100 V.

【0014】と同時に、動作時におけるチャネルから半
導体層11への漏れ電流Isubの減少を観測すること
ができた。図3は、ソース・ドレイン間電圧Vdsを6
0Vで固定し、ゲート電圧を0V〜100Vまで変化さ
せたときの基板電流Isubを測定した特性図である。
オーバーラップOL=0の従来品では、ゲート電圧VG
の増大に伴い一旦飽和してピークを迎え、その後再度上
昇するようなカーブを描く。ドレイン接合には基板電流
Isubが重畳して流れるので、基板電流Isubが大
きいことは素子の耐圧を低下させる要因であり、このよ
うに再度上昇する現象が動作耐圧を低下させている一因
と考えている。これに対して、オーバーラップOLを設
けたものでは、従来のような再度上昇するようなカーブ
が観測されず、更にオーバーラップOLをマイナス1.
0μからマイナス2.0μまで変化させたときに、その
値が大きくなるほど最大基板電流値が低下することが確
認された。これは上記パイルアップによりチャネルに隣
接するN−ソース・ドレイン領域13の不純物濃度が実
質的に従来より増大していることが一因であると考えて
いる。
At the same time, a decrease in leakage current Isub from the channel to the semiconductor layer 11 during operation was observed. FIG. 3 shows that the source-drain voltage Vds is 6
FIG. 11 is a characteristic diagram showing a measured substrate current Isub when the gate voltage is fixed at 0 V and the gate voltage is changed from 0 V to 100 V.
In the conventional product having the overlap OL = 0, the gate voltage VG
Draws a curve that once saturates and peaks with the increase of, then rises again. Since the substrate current Isub is superimposed and flows through the drain junction, the large substrate current Isub is a factor that lowers the withstand voltage of the element, and such a phenomenon that increases again is considered to be a factor that lowers the operating withstand voltage. ing. On the other hand, in the case where the overlap OL is provided, a curve which rises again as in the related art is not observed, and the overlap OL is further reduced by -1.
When the value was changed from 0μ to −2.0μ, it was confirmed that the larger the value was, the lower the maximum substrate current value was. This is considered to be attributable in part to the fact that the impurity concentration in the N-source / drain region 13 adjacent to the channel is substantially increased due to the pile-up.

【0015】従って本発明によれば、N−ソース・ドレ
イン領域13の端部を後退させることにより、素子の動
作耐圧を向上できるものである。これにより、Pチャン
ネル型素子と組み合わせて高耐圧の相補型回路を構成で
きるものである。
Therefore, according to the present invention, the operating withstand voltage of the element can be improved by retreating the end of the N-source / drain region 13. This makes it possible to form a high withstand voltage complementary circuit in combination with the P-channel element.

【0016】[0016]

【発明の効果】以上に説明したとおり、本発明によれば
N−ソース・ドレイン領域13とLOCOS酸化膜19
との位置を調整することにより、パターンサイズの増大
無く素子の動作耐圧を大幅に増大できる利点を有する。
しかもマスク変更だけで済むので、何ら付加工程を要す
ることなく実施できる利点を有する。
As described above, according to the present invention, the N-source / drain region 13 and the LOCOS oxide film 19 are formed.
By adjusting the positions, the operation withstand voltage of the element can be greatly increased without increasing the pattern size.
In addition, since only a mask change is required, there is an advantage that the method can be performed without any additional process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を説明するための断面図であ
る。
FIG. 1 is a cross-sectional view for explaining a manufacturing method of the present invention.

【図2】本発明の製造方法を説明するための断面図であ
る。
FIG. 2 is a cross-sectional view for explaining the manufacturing method of the present invention.

【図3】本発明を説明するための特性図である。FIG. 3 is a characteristic diagram for explaining the present invention.

【図4】従来例を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a conventional example.

【図5】従来例を説明するための回路図である。FIG. 5 is a circuit diagram for explaining a conventional example.

【図6】従来例を説明する特性図である。FIG. 6 is a characteristic diagram illustrating a conventional example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体層の表面に、ソース・
ドレイン形成用の拡散窓を形成する工程と、 前記拡散窓から逆導電型の不純物を拡散して第1のソー
ス・ドレイン領域を形成する工程と、 前記ソース・ドレイン領域の上部、および前記ソース・
ドレイン領域間の前記一導電型半導体層の上部に、耐酸
化マスクを形成する工程と、 前記半導体層の表面を選択酸化して、LOCOS絶縁膜
を形成する工程と、 前記ソース・ドレイン領域間の半導体層上に、前記LO
COS酸化膜の上部の途中まで延在するゲート電極を形
成する工程と、を具備する半導体装置の製造方法におい
て、 前記拡散窓の位置を、ゲート長の実行値が拡大するよう
に前記耐酸化膜の位置より後退させたことを特徴とする
半導体装置の製造方法。
1. A semiconductor device according to claim 1, wherein a source layer is formed on a surface of the semiconductor layer of one conductivity type.
A step of forming a diffusion window for forming a drain; a step of forming a first source / drain region by diffusing an impurity of the opposite conductivity type from the diffusion window; an upper portion of the source / drain region;
Forming an oxidation-resistant mask on the one conductivity type semiconductor layer between the drain regions; selectively oxidizing the surface of the semiconductor layer to form a LOCOS insulating film; On the semiconductor layer, the LO
Forming a gate electrode extending halfway to the upper part of the COS oxide film, wherein the position of the diffusion window is changed so that the effective value of the gate length is increased. A method of manufacturing a semiconductor device, wherein the semiconductor device is retracted from a position.
【請求項2】 前記半導体層がP型であり前記ソース・
ドレイン領域がN型であることを特徴とする請求項1記
載の半導体装置の製造方法。
2. The semiconductor device according to claim 1, wherein said semiconductor layer is P-type,
2. The method according to claim 1, wherein the drain region is N-type.
JP14224097A 1997-05-30 1997-05-30 Method for manufacturing semiconductor device Expired - Fee Related JP3229837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14224097A JP3229837B2 (en) 1997-05-30 1997-05-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14224097A JP3229837B2 (en) 1997-05-30 1997-05-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH10335641A true JPH10335641A (en) 1998-12-18
JP3229837B2 JP3229837B2 (en) 2001-11-19

Family

ID=15310702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14224097A Expired - Fee Related JP3229837B2 (en) 1997-05-30 1997-05-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3229837B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196546A (en) * 1999-09-17 2001-07-19 Sony Corp Semiconductor device and manufacturing method therefor
JP2002289847A (en) * 2001-03-28 2002-10-04 Seiko Instruments Inc Manufacturing method for semiconductor device
JP2006261227A (en) * 2005-03-15 2006-09-28 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7125787B2 (en) 2000-08-10 2006-10-24 Sanyo Electric Co., Ltd. Method of manufacturing insulated gate semiconductor device
JP2007165767A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Semiconductor device and method of manufacturing same
JP2007324225A (en) * 2006-05-30 2007-12-13 Mitsumi Electric Co Ltd Semiconductor device and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177947C (en) 1999-06-11 2004-12-01 株式会社丰田中央研究所 Titanium alloy and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196546A (en) * 1999-09-17 2001-07-19 Sony Corp Semiconductor device and manufacturing method therefor
JP4686829B2 (en) * 1999-09-17 2011-05-25 ソニー株式会社 Semiconductor device and manufacturing method of semiconductor device
US7125787B2 (en) 2000-08-10 2006-10-24 Sanyo Electric Co., Ltd. Method of manufacturing insulated gate semiconductor device
JP2002289847A (en) * 2001-03-28 2002-10-04 Seiko Instruments Inc Manufacturing method for semiconductor device
JP4541582B2 (en) * 2001-03-28 2010-09-08 セイコーインスツル株式会社 Manufacturing method of semiconductor device
JP2006261227A (en) * 2005-03-15 2006-09-28 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2007165767A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Semiconductor device and method of manufacturing same
JP2007324225A (en) * 2006-05-30 2007-12-13 Mitsumi Electric Co Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP3229837B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
KR100292567B1 (en) Side double diffused insulated gate field effect transistor and its manufacturing method
US6514810B1 (en) Buried channel PMOS transistor in dual gate CMOS with reduced masking steps
US5397715A (en) MOS transistor having increased gate-drain capacitance
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JP2002359294A (en) Semiconductor integrated circuit device and manufacturing method therefor
US20070212823A1 (en) Method for integrating DMOS into sub-micron CMOS process
KR100381347B1 (en) Semiconductor deⅴice and method of manufacturing the same
US4229756A (en) Ultra high speed complementary MOS device
JP3229837B2 (en) Method for manufacturing semiconductor device
JP2997377B2 (en) Semiconductor device and manufacturing method thereof
JPH0237777A (en) Vertical type field-effect transistor
JPH09129868A (en) Semiconductor device and its manufacture
KR100374280B1 (en) Semiconductor device and method of manufacturing the same
JPH05291517A (en) Structure of very accurate and high-resistance resistor and manufacture thereof
US7736961B2 (en) High voltage depletion FET employing a channel stopping implant
JP4580161B2 (en) Manufacturing method of semiconductor device
JPH09223793A (en) Semiconductor device and its manufacture
US7202538B1 (en) Ultra low leakage MOSFET transistor
JPH0737991A (en) Semiconductor integrated circuit and its manufacture method
KR20010098746A (en) Cmos transistor semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH07249760A (en) Fabrication of semiconductor device
JPH1126766A (en) Mos field effect transistor and manufacture thereof
JPS6141150B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120907

LAPS Cancellation because of no payment of annual fees