JPS59121951A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS59121951A
JPS59121951A JP22761682A JP22761682A JPS59121951A JP S59121951 A JPS59121951 A JP S59121951A JP 22761682 A JP22761682 A JP 22761682A JP 22761682 A JP22761682 A JP 22761682A JP S59121951 A JPS59121951 A JP S59121951A
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
region
silicon
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22761682A
Other languages
Japanese (ja)
Inventor
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22761682A priority Critical patent/JPS59121951A/en
Publication of JPS59121951A publication Critical patent/JPS59121951A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76221Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO with a plurality of successive local oxidation steps

Abstract

PURPOSE:To isolate an element effectively and practically by forming a first insulator region for isolating the element buried in a groove formed to a base body and a second insulator region for isolating the element with an inclined plane more gentle than said region. CONSTITUTION:A silicon oxide film 22, a silicon nitride film 23 and a CVD silicon oxide film 24 are each formed on the surface of a silicon semiconductor substrate 21. The silicon oxide film 24 is patterned, a resist 25 is applied, the resist 25 is patterned, and the silicon nitride film 23 and the silicon oxide film 22 are etched selectively. The substrate 21 is etched, and the upper end surface of a select oxide film formed is lowered. Boron ions are implanted to form a P<+> region 26, and an element isolation (a field oxide film) 27 is formed through select oxidation. The resist is applied again, and the silicon nitride film 23 and the silicon oxide film 22 are each etched selectively. The exposed section of the substrate 1 is etched to form the groove for isolating the buried element, a P<+> type region 28 is formed in the groove, silicon oxide is buried in the groove on which a silicon oxide film 29 is formed, and the whole surface of the silicon nitride film 23 is etched. Accordingly, the semiconductor device, in which element isolations of different size mix and exist and which contains the element isolations of small size which cannot be attained through select oxidation, can be formed.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置、特に素子分離領域を含む半導体装
置とその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly to a semiconductor device including an element isolation region and a manufacturing method thereof.

(2)  従来技術と問題点 今日の集積回路の素子分離はもっばら選択酸化法によっ
ている。第1図を参照すると、シリコン半導体基板1表
面を薄く酸化した後、通常窒化シリコン膜3を被着し、
・クターニングして窓開けする(第1図((イ))。酸
素雰囲気に置けば、窒化シリコン膜3は酸素の侵透をブ
ロックするので窓部分4のみが選択的に酸化される(第
1図(→)。しかし、酸素は窓から下方向にのみ拡散す
るわけではないので、窓の端部から横方向に窒化シリコ
ン膜3の下側に向っても拡散し、窓の端部にいわゆるバ
ート・ビーク5を形成する。バード・ビーク5の横方向
の大きさは酸化膜4の厚さのほぼ半分であシ、厚さ1μ
mの酸化膜の場合約0.4〜0.5μmにもな広バード
・ピークは両端に形成されるので合計すると約0.8〜
1μmになる。従って、集積度を増加しようとするとき
このバード・ピークは障害となる。
(2) Prior Art and Problems Today's integrated circuit element isolation is mostly performed by selective oxidation. Referring to FIG. 1, after thinly oxidizing the surface of a silicon semiconductor substrate 1, a silicon nitride film 3 is usually deposited.
・Cutning and opening a window (Figure 1 (A)). When placed in an oxygen atmosphere, the silicon nitride film 3 blocks oxygen penetration, so only the window portion 4 is selectively oxidized (see Figure 1 (A)). Figure 1 (→).However, since oxygen does not only diffuse downward from the window, it also diffuses laterally from the edge of the window toward the bottom of the silicon nitride film 3, causing oxygen to diffuse to the edge of the window. A so-called bird's beak 5 is formed.The horizontal size of the bird's beak 5 is approximately half the thickness of the oxide film 4, and the thickness is 1 μm.
In the case of an oxide film of m, wide bird peaks of about 0.4 to 0.5 μm are formed at both ends, so the total peak is about 0.8 to 0.5 μm.
It becomes 1 μm. Therefore, this bird peak becomes an obstacle when trying to increase the density.

そこで、シリコン半導体基板内に#Iを形成してその中
に酸化シリコンや多結晶シリコンなどを埋め込む方法が
提案されている。しかし、この方法は素子分離領域の寸
法に大きな差がある場合には次のような問題がある。第
2図を参照すると、シリコン半導体基板6上にレノスト
アを塗布し、zq p  −= ンf L、’cのレジ
ストパターンをマスクとして選択的にエツチングし、大
きな寸法の溝Aと小さな寸法の溝Bを形成する場合を考
える(第2図(イ))。レジスト7を除去し、溝A、B
の内側を酸化して酸化シリコン膜8を形成し、その上に
CVD法で酸化シリコン層9を被着して溝A、Hの内部
を埋める(第2図(ロ))。このとき、小さな溝Bの上
部の酸化シリコン層表面は平坦になるが、大きな溝Aの
上部では酸化シリコン層に凹所ができる。従って、溝内
以外の余分な酸化シリコンを除去するために全面エツチ
ングすると、小さい溝Bは酸化シリコンが残って溝が埋
まっているが、大きい溝Bはもとの酸化シリコン層の凹
所に当るために溝内の酸化シリコンがエツチングされて
溝内が埋め込まれないという問題がある(第2図(ハ)
)。
Therefore, a method has been proposed in which #I is formed in a silicon semiconductor substrate and silicon oxide, polycrystalline silicon, or the like is buried therein. However, this method has the following problems when there is a large difference in the dimensions of the element isolation regions. Referring to FIG. 2, rhenostore is applied onto a silicon semiconductor substrate 6, and selectively etched using a resist pattern of zq p -= nf L,'c as a mask to form a groove A with a large dimension and a groove with a small dimension. Consider the case of forming B (Fig. 2 (a)). Remove resist 7 and create grooves A and B.
A silicon oxide film 8 is formed by oxidizing the inside of the grooves A and H, and a silicon oxide layer 9 is deposited thereon by the CVD method to fill the insides of the trenches A and H (FIG. 2(b)). At this time, the surface of the silicon oxide layer above the small groove B becomes flat, but a depression is formed in the silicon oxide layer above the large groove A. Therefore, when the entire surface is etched to remove excess silicon oxide outside the grooves, the small grooves B are filled with silicon oxide, but the large grooves B hit the recesses in the original silicon oxide layer. Therefore, there is a problem that the silicon oxide inside the groove is etched and the inside of the groove is not filled (Figure 2 (c)).
).

(3)発明の目的 本発明は、以上の如き従来技術の問題点の本発明者によ
る発見に基づき、高集積度の半導体装置において有効か
つ実際的な素子分離を行なうことを目的とする。
(3) Purpose of the Invention The present invention is based on the inventor's discovery of the problems of the prior art as described above, and aims to perform effective and practical element isolation in a highly integrated semiconductor device.

(4)発明の構成 そして、上記目的を達成する本発明に依る半導体装置は
、半導体基体に形成された溝に埋込まれた第1の素子分
離用絶縁物領域と、該半導体基体内に形成され該半導体
基体内面に対して前記第1の素子分離用絶縁物領域より
もゆるやかな斜面を有する第2の素子分離用絶縁物領域
を備えてなることを特徴とする。
(4) Structure of the Invention A semiconductor device according to the present invention that achieves the above object includes a first element isolation insulator region embedded in a groove formed in a semiconductor substrate, and a first element isolation insulator region formed in the semiconductor substrate. and a second element isolation insulator region having a gentler slope with respect to the inner surface of the semiconductor substrate than the first element isolation insulator region.

また、同様に上記目的を達成する本発明に依る半導体装
置の製造方法は、半導体基体の第1の領域を選択的に酸
化して酸化物領域?形成する工程と、該半導体基体の前
記第1の領域とは異なる第2の領域に溝を形成し、該溝
内全絶縁物で埋める工程を有することを特徴とする。
Further, a method for manufacturing a semiconductor device according to the present invention which similarly achieves the above object includes selectively oxidizing a first region of a semiconductor substrate to form an oxide region. and forming a trench in a second region different from the first region of the semiconductor substrate, and filling the entire trench with an insulator.

本発明の特徴は、要するに、−個の半導体装置において
高集積度が要求される部分の素子分離は前述の埋め込み
法を利用するが、大きな寸法の素子分離でもよいかそれ
が必要な部分では選択酸化を利用することにある。例え
ば、メモリー半導体装置では、第3図を参照すると、半
導体チップ11のメモリーセルの部分12に埋め込み法
を利用して集積度を高め、記憶容量を増加する一方、周
辺回路13やそれらを分離する領域14には選択酸化法
を利用するとよい。埋め込み法による絶縁溝は溝をエツ
チングで形成するために基板の校面に関し急峻な傾斜を
持つ一方、選択酸化法による酸化膜はバード・ピークと
して知られる通9基板表面に関しゆるやかな傾斜を持つ
The feature of the present invention is, in short, that the above-mentioned embedding method is used for element isolation in parts of a semiconductor device that require a high degree of integration; The purpose is to utilize oxidation. For example, in a memory semiconductor device, referring to FIG. 3, the embedding method is used in the memory cell portion 12 of the semiconductor chip 11 to increase the degree of integration and storage capacity, while at the same time separating the peripheral circuits 13 and them. A selective oxidation method may be used for the region 14. Insulating trenches formed by the embedding method have a steep slope with respect to the surface of the substrate because the grooves are formed by etching, whereas oxide films formed by the selective oxidation method have a gentle slope with respect to the surface of the substrate known as Bird's peak.

(5)発明の実施例 以下、実施例を用いて詳述するが、素子分離は大きな寸
法の選択酸化法によるものと小さな寸法の埋込み法によ
るものとをそれぞれ1個づつ代表して取シ出して説明す
る。一般的には、埋込み法による素子分離は寸法的には
大きく違わない小寸法のものであり、他方選択酸化法に
よる素子分離は比較的大きな寸法のものすべてでろシ寸
法差は問題としない。
(5) Examples of the invention The following is a detailed explanation using examples. Element isolation is carried out by selective oxidation for large dimensions and by embedding for small dimensions. I will explain. In general, element isolation by the embedding method is for small dimensions that do not differ greatly, while element isolation by the selective oxidation method is for relatively large dimensions, and differences in the dimensions of the filter do not matter.

第4図を参照する。シリコン半導体基板21の表面に酸
化シリコン膜(厚さ500 尺) 22、窒化シリコン
膜(厚さ1ooo〜15ooX)23、CVD酸化シリ
コン膜(厚さ15oo〜2oooX)24をそれぞれ形
成する(第4図(イ))。酸化シリコン膜24を79タ
ーニングして、選択酸化による素子分離領域と埋め込み
による素子分離領域の両方のためのノ4’ターンをここ
でセルファライン的に形成しておく(第4図(ロ))。
Please refer to FIG. A silicon oxide film (500 mm thick) 22, a silicon nitride film (1500 mm thick) 23, and a CVD silicon oxide film (150 mm to 200 mm thick) 24 are formed on the surface of the silicon semiconductor substrate 21 (FIG. 4). (stomach)). The silicon oxide film 24 is turned 79 times to form a 4' turn in a self-aligned manner for both the element isolation region by selective oxidation and the element isolation region by burying (FIG. 4(b)). .

レジスト(厚さ1μm)25を塗布し、埋め込みによる
素子分離領域のだめの前記・ぐターンの窓部の上のレジ
ストを残し、選択酸化による素子分離のための前記パタ
ーンの窓部ノ上のレノストを除去するように、レジスト
25をパターニングし、パターニングされたレジスト2
5と酸化シリコン膜24をマスクとして窒化シリコン膜
23を選択エツチングし、生じる窒化シリコン膜23の
パターンと同じに酸化シリコン膜22を選択エツチング
する(第4図e−9)。任意に、シリコン半導体基板2
1の露出部分即ち選択酸化されるべき部分を異方性エッ
チ(KOH)または等方性エッチ(ドライエッチ)シ、
形成される選択酸化膜の上端面を下げる。ホウ素をイオ
ン注入して戸領域26を形成した後、選択酸化して素子
分離(フィールド酸化膜)27を形成する(第4図に)
)。
A resist (thickness: 1 μm) 25 is applied, leaving the resist above the window of the pattern for the device isolation region by embedding, and applying resist on the window of the pattern for device isolation by selective oxidation. The resist 25 is patterned so as to be removed, and the patterned resist 2
The silicon nitride film 23 is selectively etched using 5 and the silicon oxide film 24 as a mask, and the silicon oxide film 22 is selectively etched in the same pattern as the resulting silicon nitride film 23 (FIG. 4e-9). Optionally, a silicon semiconductor substrate 2
The exposed portion of 1, that is, the portion to be selectively oxidized, is subjected to anisotropic etching (KOH) or isotropic etching (dry etching).
The upper end surface of the selective oxide film to be formed is lowered. After ion-implanting boron to form a door region 26, selective oxidation is performed to form an element isolation (field oxide film) 27 (see FIG. 4).
).

再びレノスト(図示せず)を塗布し、今度は埋め込みに
よる素子分離領域のための酸化シリコン膜24の窓部の
上のレジメ)k除去し、窒化シリコン膜23および酸化
シリコン膜22とそれぞれ選択的にエツチングする。シ
リコン半導体基板1の露出部分を異方性エッチ捷たは等
方性エッチして埋め込み素子分離用の溝を形成する。溝
の中にホウ素をイオン注入してビ形領域28を形成した
後、酸化して表面に酸化シリコン膜(厚さ1500X)
29を形成する(第4図(ホ))。酸化シリコン膜29
を形成した溝の中に、CVDで酸化シリコンもしくは低
燐濃度のPSGを、またはス・4′ツタで酸化シリコン
を埋め込む(第4図(へ)1参照番号30参照)。窒化
シリコン膜23を全面エツチングする。
Renost (not shown) is applied again, and this time the regimen on the window part of the silicon oxide film 24 for the element isolation region by embedding is removed, and the silicon nitride film 23 and the silicon oxide film 22 are selectively coated. Etching. The exposed portion of the silicon semiconductor substrate 1 is anisotropically etched or isotropically etched to form trenches for buried element isolation. After ion-implanting boron into the groove to form a V-shaped region 28, it is oxidized to form a silicon oxide film (thickness 1500X) on the surface.
29 (Fig. 4 (e)). Silicon oxide film 29
Silicon oxide or PSG with a low phosphorous concentration is buried in the groove formed by CVD, or silicon oxide is buried with a 4' ivy (see reference numeral 30 in FIG. 4(f)1). The entire surface of the silicon nitride film 23 is etched.

シリコン半導体基板1に選択酸化による大寸法の素子分
離27と埋込みによる小寸法の素子分離30が共存する
(第4図(ト))。
A large-sized element isolation 27 formed by selective oxidation and a small-sized element isolation 30 formed by embedding coexist in the silicon semiconductor substrate 1 (FIG. 4(G)).

選択的に、上記の例と同様にして、シリコン半導体基板
21上に酸化シリコン膜22、窒化シリコン膜23、酸
化シリコン膜24を形成し、酸化シリコン膜24とパタ
ーニングした(第4図(イ)。
Selectively, in the same manner as in the above example, a silicon oxide film 22, a silicon nitride film 23, and a silicon oxide film 24 were formed on a silicon semiconductor substrate 21, and patterned with the silicon oxide film 24 (FIG. 4(A)). .

(ロ))後、上記の例と逆に、埋め込み素子分離を先に
形成してから選択酸化素子分離を形成してもよい。パタ
ーニングした酸化シリコン膜24の上にレジスト31を
塗布し、埋め込みによる素子分離のだめの酸化シリコン
膜24の窓部分の上のレジスト分除去し、窒化シリコン
膜23および酸化シリコン膜22をそれぞれ選択的にエ
ツチングする。
After (b)), contrary to the above example, the buried element isolation may be formed first and then the selective oxidation element isolation may be formed. A resist 31 is applied on the patterned silicon oxide film 24, and the resist on the window portion of the silicon oxide film 24 for element isolation by embedding is removed, and the silicon nitride film 23 and the silicon oxide film 22 are selectively removed. Etching.

露出したシリコン半導体基板21を異方性エッチまたは
等方性エッチして埋め込み用の溝を形成する(第4図(
イ))。レジスト31を除去し、新たなレノスト(図示
せず)を用いて選択酸化領域の窒化シリコン膜を選択的
にエツチングして除去する。
The exposed silicon semiconductor substrate 21 is anisotropically or isotropically etched to form a trench for embedding (see FIG. 4).
stomach)). The resist 31 is removed, and the silicon nitride film in the selectively oxidized region is selectively etched and removed using new renost (not shown).

ホウ素をイオン注入して埋込み用溝および選択酸化領域
の両方にP+形領領域32.33を形成し、その上を酸
化して酸化シリコン膜(厚さ1500i)34で榎う。
Boron ions are implanted to form P+ type regions 32 and 33 in both the buried trench and the selective oxidation region, and the regions are oxidized and covered with a silicon oxide film (1500i thick) 34.

埋込み用溝の中に、CvDで酸化シリコンもしくは低燐
濃度のPSGを、またはス・ゼッタで酸化シリコンを埋
め込む(第4図(史、同図の35参照)。酸化シリコン
またはPSG35を全面エツチングして溝の中だけに残
し、表面に窒化シリコン膜(厚さ500X)36を形成
する。レノスト(図示せず)を塗布し、パターニングし
たものをマスクとして、選択酸化すべき領域に窒化シリ
コン膜36と同時に形成された窒化シリコン膜(図示せ
ず)をエツチングして除去し、レジストを除去する(第
4図し))。窒化シリコン膜23゜36をマスクとして
選択酸化による素子分離(フィールド酸化膜)37を形
成し、窒化シリコン膜23.36を全面エツチングする
。シリコン半導体基板1上に埋込みによる素子分離35
と選択酸化による素子分離37が共存する(第4図に)
)。
Into the embedding trench, bury silicon oxide or PSG with a low phosphorous concentration using CvD, or silicon oxide using suzetta (see 35 in Figure 4). Etch the entire surface of the silicon oxide or PSG35. A silicon nitride film (thickness: 500×) 36 is formed on the surface, leaving it only in the groove. Using the patterned film as a mask, apply Renost (not shown) and apply the silicon nitride film 36 to the area to be selectively oxidized. At the same time, the formed silicon nitride film (not shown) is etched and removed, and the resist is removed (FIG. 4). Using the silicon nitride film 23.36 as a mask, an element isolation (field oxide film) 37 is formed by selective oxidation, and the entire surface of the silicon nitride film 23.36 is etched. Element isolation 35 by embedding on silicon semiconductor substrate 1
and element isolation 37 by selective oxidation coexist (see Figure 4).
).

(6)発明の効果 以上の説明から明らかなように、本発明に依シ、大きさ
の異なる素子分離が混在し、かつ選択酸化では達成でき
ない小寸法の素子分離と含む半導体装置を実際的に提供
することが可能になる。
(6) Effects of the Invention As is clear from the above explanation, the present invention makes it practical to manufacture semiconductor devices in which element isolations of different sizes coexist and include element isolations of small dimensions that cannot be achieved by selective oxidation. It becomes possible to provide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は選択酸化による素子分離を説明する半導体装置
の工程順の断面図、第2図は埋め込みによる素子分離を
説明する半導体装置の工程順の断面図、第3図はメモリ
ー半導体装置の平面図、第4図は本発明の詳細な説明す
る半導体装置の工程順の断面図である。 1.6.21・・・基板、4.27.37・・・選択酸
化膜、30.35・・・埋め込み領域、11・・・メモ
リー半導体装置、12・・・メモリーセル部。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士  内 1)幸 男 弁理士  山 口 昭 之 第 4 図     (イ) (ニ) ′)7 伊・) 9 26     28 (へ) 628 (ト)
Figure 1 is a cross-sectional view of a semiconductor device in order of process to explain element isolation by selective oxidation, Figure 2 is a cross-sectional view of a semiconductor device in order of process to explain element isolation by embedding, and Figure 3 is a plan view of a memory semiconductor device. 4A and 4B are sectional views showing the steps of manufacturing a semiconductor device to explain the present invention in detail. 1.6.21...Substrate, 4.27.37...Selective oxide film, 30.35...Buried region, 11...Memory semiconductor device, 12...Memory cell section. Patent applicant Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akiyuki Yamaguchi Figure 4 (a) (d) ′) 7 Italy) 9 26 28 (f) 628 (g)

Claims (1)

【特許請求の範囲】 1、半導体基体に形成された溝に埋込まれた第1の素子
分離用絶縁物領域と、該半導体基体内に形成され該半導
体基体表面に対して前記第1の素子分離用絶縁物領域よ
シもゆるやかな斜面を有する第2の素子分離用絶縁物領
域を備えてなることを特徴とする半導体装置。 2、半導体基体の第1の領域を選択的に酸化して酸化物
領域を形成する工程と、該半導体基体の前記第1の領域
とは異なる第2の領域に溝を形成し、該溝内を絶縁物で
埋める工程を有することを特徴とする半導体装置の製造
方法。
[Scope of Claims] 1. A first element isolation insulator region embedded in a groove formed in a semiconductor substrate; 1. A semiconductor device comprising a second element isolation insulator region which also has a gentle slope than the isolation insulator region. 2. selectively oxidizing a first region of the semiconductor substrate to form an oxide region; forming a groove in a second region of the semiconductor substrate different from the first region; 1. A method for manufacturing a semiconductor device, comprising the step of filling the area with an insulator.
JP22761682A 1982-12-28 1982-12-28 Semiconductor device and its manufacture Pending JPS59121951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22761682A JPS59121951A (en) 1982-12-28 1982-12-28 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22761682A JPS59121951A (en) 1982-12-28 1982-12-28 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS59121951A true JPS59121951A (en) 1984-07-14

Family

ID=16863720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22761682A Pending JPS59121951A (en) 1982-12-28 1982-12-28 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS59121951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983537A (en) * 1986-12-29 1991-01-08 General Electric Company Method of making a buried oxide field isolation structure
KR970023978A (en) * 1995-10-04 1997-05-30 김주용 Method for manufacturing planar device isolation film of semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094891A (en) * 1973-12-22 1975-07-28
JPS55110066A (en) * 1979-02-17 1980-08-25 Fujitsu Ltd Semiconductor device
JPS55160446A (en) * 1979-05-31 1980-12-13 Fujitsu Ltd Manufacture of semiconductor device
JPS5791535A (en) * 1980-11-29 1982-06-07 Toshiba Corp Manufacture of semiconductor device
JPS57204150A (en) * 1981-06-10 1982-12-14 Fujitsu Ltd Manufacture of semiconductor device
JPS57204146A (en) * 1981-06-10 1982-12-14 Toshiba Corp Manufacture of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094891A (en) * 1973-12-22 1975-07-28
JPS55110066A (en) * 1979-02-17 1980-08-25 Fujitsu Ltd Semiconductor device
JPS55160446A (en) * 1979-05-31 1980-12-13 Fujitsu Ltd Manufacture of semiconductor device
JPS5791535A (en) * 1980-11-29 1982-06-07 Toshiba Corp Manufacture of semiconductor device
JPS57204150A (en) * 1981-06-10 1982-12-14 Fujitsu Ltd Manufacture of semiconductor device
JPS57204146A (en) * 1981-06-10 1982-12-14 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983537A (en) * 1986-12-29 1991-01-08 General Electric Company Method of making a buried oxide field isolation structure
KR970023978A (en) * 1995-10-04 1997-05-30 김주용 Method for manufacturing planar device isolation film of semiconductor device

Similar Documents

Publication Publication Date Title
US5783476A (en) Integrated circuit devices including shallow trench isolation
US5516720A (en) Stress relaxation in dielectric before metallization
KR100226488B1 (en) Isolation structure of semiconductor device and manufacturing method thereof
US5229315A (en) Method for forming an isolated film on a semiconductor device
US5646052A (en) Isolation region structure of semiconductor device and method for making
KR960043108A (en) A device isolation film and method for forming the same in a semiconductor device
US5372950A (en) Method for forming isolation regions in a semiconductor memory device
JPS6175540A (en) Making of integrated circuit
JPH04234146A (en) Formation method of field oxide film for semiconductor device
US4877750A (en) Method of fabricating a trench capacitor cell for a semiconductor memory device
US4876214A (en) Method for fabricating an isolation region in a semiconductor substrate
JP3003250B2 (en) Method for manufacturing semiconductor device
JP2861856B2 (en) Method for manufacturing semiconductor device
JPS59121951A (en) Semiconductor device and its manufacture
JP2955838B2 (en) Method for manufacturing semiconductor device
JPH1092806A (en) Method of forming semiconductor element isolation region
JP3160928B2 (en) Element isolation formation method
KR100529667B1 (en) A method for forming a trench in semiconductor device
JP2517751B2 (en) Method for manufacturing semiconductor device
JP3923584B2 (en) Method for forming element isolation film of semiconductor device
KR100546752B1 (en) Method for fabricating field oxide isolation of semiconductor devices
KR20000021278A (en) Method for isolating trench device
JP2811689B2 (en) Method for manufacturing semiconductor device
JPH0834241B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS62120040A (en) Manufacture of semiconductor device