JPS59121784A - Manufacture of cadmium electrode - Google Patents

Manufacture of cadmium electrode

Info

Publication number
JPS59121784A
JPS59121784A JP57233148A JP23314882A JPS59121784A JP S59121784 A JPS59121784 A JP S59121784A JP 57233148 A JP57233148 A JP 57233148A JP 23314882 A JP23314882 A JP 23314882A JP S59121784 A JPS59121784 A JP S59121784A
Authority
JP
Japan
Prior art keywords
nickel
sintered
substrate
amount
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57233148A
Other languages
Japanese (ja)
Other versions
JPH024107B2 (en
Inventor
Makoto Konishi
真 小西
Takao Kikuoka
菊岡 孝雄
So Sato
佐藤 宗
Masami Nishimura
西村 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP57233148A priority Critical patent/JPS59121784A/en
Publication of JPS59121784A publication Critical patent/JPS59121784A/en
Publication of JPH024107B2 publication Critical patent/JPH024107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To prevent ionization if nickel metal during later manufacturing process, by forming a thin anti-oxidation nickel layer on the surface of sintered nickel metal. CONSTITUTION:A nickel substrate is sintered in inert gas environment containing micro amount of oxygen such that the amount of nickel oxide after sintering will be higher than 0.01% but lower than 3%. For example, it is held for 5min at 920 deg.C in nitrogen flow containing 0.1% of oxygen to produce a sintered nickel substrate oxidized in the range of 0.01-3%. Consequently in a substrate having nickel oxidized surface, deterioration of impregnation of active substance or emblittlement is not so high while corrosion during manufacturing process is prevented by anti-oxidation film.

Description

【発明の詳細な説明】 本発明はニッケル・カドミウム電池等で使用されている
焼結式カドミウム電極の製造法Iこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing sintered cadmium electrodes used in nickel-cadmium batteries and the like.

従来ニッケルeカドミウム等lこ使用されている焼結ニ
ッケル基板は、還元性雰囲気中で800乃至1.000
°Cで焼結されてきた。これは、ニッケルか酸化される
と脆くなり、またカドミウム含浸量か低下するためであ
った。さらに焼結式カドミウム電極は、大電流充放電か
可能で利泉 用事か高く、寿命か長いという特徴有しているΔ か、高価であり、また電位降下(メモリ効果)か生じる
という欠点を有している。
Conventionally, sintered nickel substrates such as nickel, cadmium, etc.
It has been sintered at °C. This is because nickel becomes brittle when oxidized and the amount of cadmium impregnated decreases. Furthermore, sintered cadmium electrodes can be charged and discharged with large currents, are expensive to use, and have a long lifespan, but they are expensive and have the disadvantage of causing a potential drop (memory effect). are doing.

本発明は上記の点lc鑑み、焼結式カドミウム電極のメ
モリ効果を小さくぜんとするものである。
In view of the above point lc, the present invention is intended to reduce and eliminate the memory effect of the sintered cadmium electrode.

焼結カドミウム電極のメモリ効果に関する研究は近年多
くの軸告か見られるようζこなった。
Research on the memory effect of sintered cadmium electrodes has been gaining momentum in recent years.

メモリ効果の主な原因は、ニッケルとカドミウムの合金
生成であることか一般的に認められるよう1こなった。
It is generally accepted that the main cause of the memory effect is the formation of an alloy between nickel and cadmium.

焼結ニッケル金属から直接生成する速度は遅く、焼結ニ
ッケル金属か製造工程中1ζイオン化した場合には合金
生成速度か速いことか分った。焼結ニッケル金属の製造
工程中でのイオン化(酸化)は、硝酸カドミウムなどの
活物質原料を含む含浸液に浸漬中及びその後の放置(表
面に付着した含浸液を落とす)1仁より起ることか分っ
た。特1こ硝酸塩を用い、温度か高くなった場合ζこ激
しいことか明らかになった。本発明では、焼結ニッケル
金属の表面Iこ薄い耐酸化性のある酸化ニッケル層を形
成せしめて以後の製造工程中でニッケル金属かイオン化
するのを防止することを目的としている。
It was found that the rate of direct formation from sintered nickel metal is slow, but the rate of alloy formation is faster when sintered nickel metal is 1ζ ionized during the manufacturing process. Ionization (oxidation) during the manufacturing process of sintered nickel metal occurs during immersion in an impregnating solution containing active material raw materials such as cadmium nitrate, and after leaving it (removing the impregnating solution attached to the surface). I understand. In particular, it became clear that when nitrates were used, the effect of ζ was severe when the temperature was raised. The object of the present invention is to form a thin oxidation-resistant nickel oxide layer on the surface of sintered nickel metal to prevent ionization of the nickel metal during subsequent manufacturing steps.

本発明は微弱な酸化雰囲気中でニッケル粉末を焼結する
こと1こより、0.01%乃至3%の範囲で酸化された
焼結ニッケル基板を製造するもので、このように表面か
酸化二ソケル化した基板では、活物質含浸量の低下や脆
化は、それほど大きくはな(、耐酸化性被膜の生成1こ
より製造工程中における腐蝕か防止される。
The present invention produces a sintered nickel substrate oxidized to a concentration of 0.01% to 3% by sintering nickel powder in a weak oxidizing atmosphere. The reduced amount of active material impregnated and the embrittlement of the substrate are not so large (and corrosion during the manufacturing process is prevented due to the formation of an oxidation-resistant film).

次に本発明の一実施例を説明する。Next, one embodiment of the present invention will be described.

焼結に使用するニッケル粉末のスラリ状液体は、カーボ
ニル・ニッケル粉末(INCO社#255タイプ)をC
MC水溶液で混練したものを用いた。このスラリ状液体
をスリットを通し成形し、乾燥して090簡厚の薄板と
した。成形用の芯材としては、鉄にニッケル・メッキし
た多孔板(約0.09m++n)を用いた。このように
して作製したものを、窒素気流中(酸素を01係含有さ
せた)で920℃で5分間保ち焼結を行なった。このよ
うにして作った焼結ニッケル基板は、酸化ニッケルを1
5%含有していた。
The liquid slurry of nickel powder used for sintering is carbonyl nickel powder (INCO #255 type).
A mixture kneaded with an aqueous MC solution was used. This slurry liquid was molded through a slit and dried to form a thin plate with a thickness of 090. As a core material for molding, a perforated plate (approximately 0.09 m++n) of iron plated with nickel was used. The product thus produced was sintered by keeping it at 920° C. for 5 minutes in a nitrogen stream (containing 0.1% oxygen). The sintered nickel substrate made in this way contains 1 nickel oxide.
It contained 5%.

多孔度は82%で、水素気流中で同様に焼結したものと
同一であった。この焼結ニッケル基板を用いて1通常の
化学含浸法でカドミウムを含浸し電池を組立てた。含浸
量は従来メモリ効果の大小を比較するため1こ、メモリ
効果か加速される条件即ち、高温での充電(周囲温度4
5℃で0.2CmA充電)を10日間行なった後解体し
カドミウム電極を取り出し、30%K OH水溶液中で
ニッケルダミー板を相手機として放電した。第1図にそ
の時の端子電圧を示した。放電電流は0.2CmA (
0,24A)とした。第1図に示すようIこ本発明1こ
よるカドミウム電極Aは0合金生成Iこ伴なう電位降下
(メモリ効果)は全く認められなかった。Bは従来のカ
ドミウム電極である。
The porosity was 82%, the same as that similarly sintered in a hydrogen stream. Using this sintered nickel substrate, a battery was assembled by impregnating it with cadmium using a conventional chemical impregnation method. The amount of impregnation was determined in order to compare the size of the conventional memory effect.
After charging at 0.2 CmA at 5° C. for 10 days, it was disassembled, the cadmium electrode was taken out, and discharged in a 30% KOH aqueous solution using a nickel dummy plate as a partner device. Figure 1 shows the terminal voltage at that time. The discharge current is 0.2CmA (
0.24A). As shown in FIG. 1, in the cadmium electrode A according to the present invention, no potential drop (memory effect) accompanying zero alloy formation was observed. B is a conventional cadmium electrode.

第2図1c上記実施例と同様な操作を酸素濃度を変えて
行なった場合の酸化ニッケル含有量とメモリ電気iE及
び活物質含浸量Nの関係を示した。(試験にはKR−C
形電池を用いた)メモリ電気量Eの低減効果は01%程
度の酸化ニッケル含有量でも見られる。特に1%以上で
はメモリ電気iiEは零となっている。しかし、3チ以
上になると活物質含浸量Nの低下か見られた。このよう
に、01%〜3%の酸化ニッケルを含む焼結ニッケル基
板を用いることにより活物質含浸量Nの低下なしにメモ
リ効果を抑えることかできた。
FIG. 2C shows the relationship between the nickel oxide content, the memory electricity iE, and the active material impregnation amount N when the same operation as in the above example was performed with different oxygen concentrations. (KR-C for the test
The effect of reducing the memory electricity amount E (using a type battery) can be seen even with a nickel oxide content of about 0.01%. In particular, at 1% or more, the memory electricity iiE becomes zero. However, when the thickness was 3 or more, a decrease in the amount N of active material impregnated was observed. In this way, by using a sintered nickel substrate containing 01% to 3% nickel oxide, it was possible to suppress the memory effect without reducing the amount N of active material impregnated.

メモリ効果は、長期間の放置やトリクル充電。Memory effects occur when left unused for long periods of time or trickle charging.

深放電を行なわないようなサイクル・サービス用途など
で表われ、電池容量を著しく減少させる。特ζこ、高温
時1こは比較的短期に客員劣化を招くなど電池特性に非
常に大きな影響を与えるか1本発明を実施することによ
りこのような欠点を除去することかできた。
It appears in cycle service applications where deep discharge is not performed, and significantly reduces battery capacity. In particular, high temperatures can have a very large effect on battery characteristics, such as causing deterioration in a relatively short period of time.By implementing the present invention, these drawbacks could be eliminated.

上述せる如く1本発明によれば基板に耐酸化性被膜を形
成せしめること1こより、製造工程中における腐食か防
止される等工業的価鎮甚た大なるものである。
As described above, according to the present invention, an oxidation-resistant coating is formed on the substrate, thereby preventing corrosion during the manufacturing process, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における45℃。 = 5− 0.2CmA過充亀JO日間後のカドミウム電極単板放
電試験結果を示す曲線図、第2図は焼結体中の酸化ニッ
ケル含有量とメモリ電気■及び活物質含浸量の関係を示
す曲線図である。 特許出願人
Figure 1 shows the temperature at 45°C in one embodiment of the present invention. = 5- A curve diagram showing the results of a cadmium electrode single plate discharge test after 0.2 CmA overcharging JO days. Figure 2 shows the relationship between the nickel oxide content in the sintered body and the amount of memory electricity and active material impregnated. FIG. patent applicant

Claims (1)

【特許請求の範囲】[Claims] 焼結ニッケル基板の焼結を焼結後の酸化ニッケル量か0
01%以上3%以下ζこなるような微量の酸素を含む不
活性ガス雰囲気中で行なうことを特徴とするカドミウム
電極の製造法。
The amount of nickel oxide after sintering the sintered nickel substrate is 0.
1. A method for producing a cadmium electrode, characterized in that the process is carried out in an inert gas atmosphere containing a trace amount of oxygen of 0.1% or more and 3% or less.
JP57233148A 1982-12-27 1982-12-27 Manufacture of cadmium electrode Granted JPS59121784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233148A JPS59121784A (en) 1982-12-27 1982-12-27 Manufacture of cadmium electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233148A JPS59121784A (en) 1982-12-27 1982-12-27 Manufacture of cadmium electrode

Publications (2)

Publication Number Publication Date
JPS59121784A true JPS59121784A (en) 1984-07-13
JPH024107B2 JPH024107B2 (en) 1990-01-26

Family

ID=16950468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233148A Granted JPS59121784A (en) 1982-12-27 1982-12-27 Manufacture of cadmium electrode

Country Status (1)

Country Link
JP (1) JPS59121784A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295521A (en) * 1991-03-25 1992-10-20 Matsushita Electric Ind Co Ltd Device for thermal cooking

Also Published As

Publication number Publication date
JPH024107B2 (en) 1990-01-26

Similar Documents

Publication Publication Date Title
Rüetschi et al. Surface coverage during hydrogen and oxygen evolution
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JPS59121784A (en) Manufacture of cadmium electrode
JP2962957B2 (en) Method for producing paste-type nickel plate for storage battery, storage battery and conductive material
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPS5916269A (en) Manufacture of positive plate for alkaline battery
Amlie et al. Adsorption of Hydrogen and Oxygen on Electrode Surfaces
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH1079246A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH024106B2 (en)
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS5998458A (en) Manufacture of sintered cadmium electrode
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPS5996659A (en) Sintered substrate for alkaline battery
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JPS5978457A (en) Manufacture of sintered substrate for alkaline battery
JPS5979976A (en) Manufacturing method of sintered substrate for alkaline storage battery
JPS6081765A (en) Manufacturing method for paste type cadmium negative electrode plate
JPH1131505A (en) Alkaline storage battery electrode and its manufacture, and alkaline storage battery
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
RU2140121C1 (en) Method for manufacturing alkaline cell cadmium plate
JPH11339813A (en) Electrode substrate for battery
JP3185529B2 (en) Method for producing sintered substrate for alkaline storage battery