JPS59120993A - Reactor cooling device - Google Patents

Reactor cooling device

Info

Publication number
JPS59120993A
JPS59120993A JP57227793A JP22779382A JPS59120993A JP S59120993 A JPS59120993 A JP S59120993A JP 57227793 A JP57227793 A JP 57227793A JP 22779382 A JP22779382 A JP 22779382A JP S59120993 A JPS59120993 A JP S59120993A
Authority
JP
Japan
Prior art keywords
reactor
cooler
coolant
gas
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57227793A
Other languages
Japanese (ja)
Inventor
名女川 文比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57227793A priority Critical patent/JPS59120993A/en
Publication of JPS59120993A publication Critical patent/JPS59120993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、全電源喪失等の原子炉プラントの異常時にお
いても原子炉の健全性を確保するため(二炉心を直接冷
却する直接炉心冷却器を設けた原子炉冷却装置に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to a direct core cooler that directly cools two cores in order to ensure the health of a nuclear reactor even in the event of an abnormality in a nuclear reactor plant such as a total loss of power. This invention relates to a nuclear reactor cooling system equipped with a

[発明の技術的背景とその問題点〕 原子炉の安全性の基本は、いかなる状態においても炉を
確実に停止させると共(二、炉内で発生する核熱を円滑
(−冷却することにある。例えば、多くの原子炉では炉
を停止させる制御棒に対しては多重の安全保護装置を設
けて種々の事故事象(二も的確に対応しうるものになっ
ている。一方、熱除去系については炉を停止した後でも
炉内で崩壊熱が発生するため、その崩壊熱を確実に冷却
することができるよう通常の熱除去系とは独立に専用の
冷却系を設ける場合が多い。例えば直接炉心冷却器は全
電源喪失事故等の原子炉プラントの異常事態に起因して
原子炉がスクラムした後も炉内で発生する崩壊熱を除去
するために設けられている。
[Technical background of the invention and its problems] The basics of nuclear reactor safety are ensuring that the reactor is stopped under any conditions (2. Smooth cooling of the nuclear heat generated within the reactor). For example, in many nuclear reactors, multiple safety protection devices are installed on the control rods that shut down the reactor, allowing them to respond accurately to various accident events.On the other hand, the heat removal system Since decay heat is generated within the furnace even after the furnace is shut down, a dedicated cooling system is often installed independent of the normal heat removal system in order to reliably cool down the decay heat.For example: Direct core coolers are provided to remove decay heat generated within the reactor even after the reactor has scrammed due to an abnormal situation in the reactor plant such as a total power loss accident.

従来の直接炉心冷却器を備えた原子炉を第1図について
説明する。同図に示すように原子炉容器!内に炉心2を
配設し、冷却材3は入口配管4から下部プレナム、通流
調整部8の流入ロアを経て、炉心支持構造体6、炉心2
を通り上部プレナムから出口配管5へ、さらには図示し
ない炉外熱交換装置を経て入口配管4に至る循環系によ
って炉心2を冷却している。炉容器lの上端部には遮蔽
プラグ9が設けられており、一方、直接炉心冷却器10
は炉内冷却器11と炉外冷却器12とから構成され、炉
内冷却器11は炉容器lの炉上部ブレナムに位置し冷却
材3中に浸漬しており、炉外冷却器12は炉容器1の外
側に位置し、両冷却器11と12間は遮蔽プラグ9を貫
通した配管によって接続されている。直接炉心冷却器1
0に充填される冷却材は熱輸送特性に優れ、しかも原子
炉冷却材と万一接触した場合においても化学的に安定な
ものが選ばれる。例えば、液体金属冷却高速増殖炉では
原子炉冷却材が液体ナトリウムであることから直接炉心
冷却器においても液体ナトリウムまたはナトリウムとカ
リウムの混合流体が用いられる。また、直接炉心冷却器
の冷却材駆動は一般的に自然循環力により行われるもの
が多い。この理由は、直接炉心冷却器が作動せざるを得
ない事象においては、全電源喪失事故のように外部駆動
力をあてにできないことが予想されるためである。
A nuclear reactor with a conventional direct core cooler will be described with reference to FIG. As shown in the figure, the reactor vessel! A reactor core 2 is disposed inside the reactor core 2, and the coolant 3 is passed through the inlet pipe 4, the lower plenum, the inlet lower of the flow adjustment section 8, and then the reactor core support structure 6 and the reactor core 2.
The core 2 is cooled by a circulation system that extends from the upper plenum to the outlet pipe 5, and further to the inlet pipe 4 via an external heat exchanger (not shown). A shielding plug 9 is provided at the upper end of the reactor vessel l, while a direct core cooler 10
is composed of an in-furnace cooler 11 and an out-of-furnace cooler 12, the in-furnace cooler 11 is located in the upper blenheim of the furnace vessel l and is immersed in the coolant 3, and the out-of-furnace cooler 12 is located in the upper blenheim of the furnace vessel l. The coolers 11 and 12 are located outside the container 1, and are connected by a pipe that passes through a shielding plug 9. Direct core cooler 1
The coolant to be filled in the reactor is selected from one that has excellent heat transport properties and is chemically stable even if it comes into contact with the reactor coolant. For example, in a liquid metal cooled fast breeder reactor, the reactor coolant is liquid sodium, so liquid sodium or a mixed fluid of sodium and potassium is used also in the direct core cooler. Furthermore, the coolant in the direct core cooler is generally driven by natural circulation force in many cases. The reason for this is that in an event where the direct core cooler is forced to operate, it is expected that external driving force cannot be relied upon, such as in a total power loss accident.

一方、炉外冷却器12は空気や不活性ガスで冷却される
が、ここでも不活性ガスの流動は前述した理由によって
自然対流力で与えられる構成のものが多い。
On the other hand, the outside cooler 12 is cooled with air or inert gas, but the flow of the inert gas here is often provided by natural convection force for the reasons mentioned above.

このような直接炉心冷却器を備えた原子炉において、先
ず問題となることは、原子炉の通常運転時すなわち直接
炉心冷却器の休止状態における直接炉心冷却器からの熱
損失である。そこで、通常運転時には直接炉心冷却器内
で大きな温度差が冷却材の流れに泊って発生し、非常時
に直接炉心冷却器を起動した場合に、伝熱管に大きな熱
衝撃を与え、直接炉心冷却器の健全性を損うことが懸念
される。一方、炉外冷却器を電気ヒータ等で覆い直接炉
心冷却器内の温度分布を一様にするとともに、断熱を維
持した場合には、直接炉心冷却器の速やかな起動が犀し
くなり、一時的に炉心が過熱状態となり、原子炉の健全
性を損なうということが考えられる。
In a nuclear reactor equipped with such a direct core cooler, the first problem is heat loss from the direct core cooler during normal operation of the reactor, that is, when the direct core cooler is in a rest state. Therefore, during normal operation, a large temperature difference occurs in the direct core cooler due to the flow of coolant, and when the direct core cooler is activated in an emergency, it causes a large thermal shock to the heat transfer tubes, causing a large temperature difference in the direct core cooler. There are concerns that this may damage the health of the company. On the other hand, if the external cooler is covered with an electric heater, etc. to uniform the temperature distribution inside the direct core cooler and maintain insulation, the direct core cooler will not be able to start up quickly, and temporary It is conceivable that the reactor core could become overheated, impairing the integrity of the reactor.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点を解消するためになされた
もので、その目的は、通常運転時における直接炉心冷却
器からの熱放出を防止するとともに直接炉心冷却器の起
動を円滑に行うようにした原子炉冷却装置を提供するに
ある。
The present invention has been made to solve the above conventional problems, and its purpose is to prevent heat release from the direct core cooler during normal operation and to smoothly start up the direct core cooler. The aim is to provide a nuclear reactor cooling system that has been developed.

し発明の概要〕 本発明は、上記目的を達成するために、炉容器下部プレ
ナムの流入配管から流入し、炉心を経て炉容器上部プレ
ナムの流出配管から流出するように冷却材を通流せしめ
、かつ炉容器上部プレナム内にガスを封入せしめるとと
もに前記炉容器の上端部に遮蔽プラグを配設し、この遮
蔽プラグを貫通する直接炉心冷却器を設けた原子炉冷却
装置において、圧力管の一端を前記遮蔽プラグに固定し
、その他端を冷却材中に没入させるとともにこの圧力管
側壁に方向性流路遮断器を設け、さらに前記直接炉心冷
却器が配置されている前記上部プレナム空間のガス圧力
を調整するガス圧力調整装置を設けたものであり、前記
直接炉心冷却器が休止中はガス雰囲気中に、また、作動
中は冷却材雰囲気中に存在するように構成されており、
また、方向性流路遮断器としては逆止弁が用いられる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention allows a coolant to flow through an inflow pipe of a lower plenum of a reactor vessel, passes through a reactor core, and flows out of an outflow pipe of an upper plenum of a reactor vessel, In a reactor cooling system, in which gas is sealed in the upper plenum of the reactor vessel, a shielding plug is disposed at the upper end of the reactor vessel, and a core cooler is provided directly passing through the shielding plug, one end of the pressure pipe is The pressure tube is fixed to the shielding plug, the other end is immersed in the coolant, and a directional flow path breaker is provided on the side wall of the pressure tube, and the gas pressure in the upper plenum space where the direct core cooler is arranged is controlled. A gas pressure adjustment device is provided to adjust the pressure, and the direct core cooler is configured to exist in a gas atmosphere when it is inactive and in a coolant atmosphere when it is in operation,
Further, a check valve is used as the directional flow path breaker.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.

第2図は、本発明に係る原子炉冷却装置の縦断面図であ
り、第1図と同一な部分には同一符号を符している。す
なわち、第2図に示すように、炉容器l内に炉心2を配
設し、冷却材3は炉容器lの入口配管4、下部プレナム
にある冷却材通流調整部8の流入ロアから、炉心支持構
造体6、炉心2を、通り、上部プレナムから出口配管5
へ通流し、さらに図示しない炉外熱交換器を経て入口配
管4に至る循環系によって炉心2を冷却している。炉容
器lの上端部には遮蔽プラグ9が設けられている。直接
炉心冷却器10は炉内冷却器11と炉外冷却器12とか
ら構成され、この中炉内冷却器11は炉容器l内の上部
プレナムに位置して移り、この周囲は、その一端が遮蔽
プラグ9と気密に固定され、他端は開放され冷却材3中
に没入された圧力管13で囲まれている。この圧力管1
3の側壁には逆止弁等の方向性を持っ流路遮断器14が
配設されている。流路遮断器14は第3図の拡大図に示
すように圧力管13の内部圧力が炉上部プレナムのガス
圧よりも高い場合にはバネ2oに打勝って流路遮断器1
4を閉じる。なお21はパツキンである。しかるに、圧
力管13の内部圧力が低下し、炉上部プレナムの圧力と
同程度になると、バネ20の反発力により流路遮断器1
4は開放状態となり冷却材が流通孔19を通って圧力管
10内へ流入する。第4図は流路遮断器の変形例を示す
ものである。この図に示すように、圧力管13の流通孔
19を囲むように断面り字形の壁22によって小室23
を作る。この小室23の上端部にはスプリング24によ
って開閉動作する流路遮断器25が形成されている。今
、圧力管13の内部圧力が炉上部ブレナムのガス圧より
高い場合にはバネ24に打勝って流路遮断器25を閉じ
る。一方、圧力管13の内部圧力が低下し、炉上部プレ
ナムの圧力と同程度になるとバネ24の反発力および重
力により流路遮断器25は開放状態となり、冷却材が流
通孔26.19を通って圧力管13内に流入する。また
、圧力管13は第2図に示すように炉容器l外に配置さ
れているガス貯蔵タンク15と配管接続されている。こ
のガス貯蔵タンク15と圧力管13との間にはガス供給
弁17を設けており、また、分岐管には排気弁18を設
けている。
FIG. 2 is a longitudinal cross-sectional view of a nuclear reactor cooling system according to the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. That is, as shown in FIG. 2, the reactor core 2 is disposed in the reactor vessel l, and the coolant 3 is supplied from the inlet pipe 4 of the reactor vessel l and the inflow lower of the coolant flow adjustment section 8 located in the lower plenum. Exit piping 5 passes through the core support structure 6, the core 2, and from the upper plenum.
The reactor core 2 is cooled by a circulation system that flows through the reactor to the inlet pipe 4 via an external heat exchanger (not shown). A shielding plug 9 is provided at the upper end of the furnace vessel l. The direct core cooler 10 is composed of an in-core cooler 11 and an external cooler 12. It is airtightly fixed to the shielding plug 9 and surrounded by a pressure pipe 13 whose other end is open and immersed in the coolant 3. This pressure pipe 1
A directional flow path breaker 14 such as a check valve is disposed on the side wall of 3. As shown in the enlarged view of FIG. 3, when the internal pressure of the pressure pipe 13 is higher than the gas pressure in the upper furnace plenum, the flow path breaker 14 overcomes the spring 2o and closes the flow path breaker 1.
Close 4. Note that 21 is Patsukin. However, when the internal pressure of the pressure pipe 13 decreases to the same level as the pressure in the upper furnace plenum, the flow path breaker 1 is closed due to the repulsive force of the spring 20.
4 is in an open state, and the coolant flows into the pressure pipe 10 through the flow hole 19. FIG. 4 shows a modification of the flow path breaker. As shown in this figure, a small chamber 23 is formed by a wall 22 having an angular cross section so as to surround the communication hole 19 of the pressure pipe 13.
make. A flow path breaker 25 is formed at the upper end of the small chamber 23 and is opened and closed by a spring 24 . Now, if the internal pressure of the pressure pipe 13 is higher than the gas pressure in the upper furnace brenum, it overcomes the spring 24 and closes the flow path breaker 25. On the other hand, when the internal pressure of the pressure pipe 13 decreases and becomes comparable to the pressure in the upper furnace plenum, the flow path breaker 25 is opened due to the repulsive force of the spring 24 and gravity, and the coolant passes through the flow holes 26.19. and flows into the pressure pipe 13. Further, the pressure pipe 13 is connected to a gas storage tank 15 arranged outside the furnace vessel l, as shown in FIG. A gas supply valve 17 is provided between the gas storage tank 15 and the pressure pipe 13, and an exhaust valve 18 is provided in the branch pipe.

ここで分岐管(二ある排気弁18は原子炉のカバーガス
に通じている。
Here, a branch pipe (two exhaust valves 18) communicates with the cover gas of the reactor.

次に、本発明の原子炉冷却装置の作用について説明する
Next, the operation of the nuclear reactor cooling system of the present invention will be explained.

先ず、原子炉運転時にはガス供給弁17を開とし、排気
弁18を閉にすることにより、ガス貯蔵タンク15のガ
スを圧力管13内に供給する。その結果、圧力管13の
内部圧力は上昇するので、圧力管13内にある冷却材の
液位り、は第2図に示すように炉上部ブレナムの冷却材
の液位L2よりも低下する。すなわち、圧力管13内の
冷却材液位の制御はガス貯蔵タンク15の容積とガス充
填圧力により任意に変えることができ、充填ガスの温度
はガス貯蔵タンク15に内蔵した電気ヒータ16により
調節される。
First, during reactor operation, the gas supply valve 17 is opened and the exhaust valve 18 is closed, thereby supplying gas from the gas storage tank 15 into the pressure pipe 13. As a result, the internal pressure of the pressure pipe 13 increases, so that the liquid level of the coolant in the pressure pipe 13 becomes lower than the liquid level L2 of the coolant in the upper furnace blennium, as shown in FIG. That is, the control of the coolant liquid level in the pressure pipe 13 can be arbitrarily changed by the volume of the gas storage tank 15 and the gas filling pressure, and the temperature of the filling gas is adjusted by the electric heater 16 built into the gas storage tank 15. Ru.

原子炉運転時には、前記したように圧力管13内の冷却
材の液位を下げ、炉内冷却器11を原子炉冷却材3から
隔離する。このように炉内冷却器llと冷却材3との間
にガスが介在することにより、炉内冷却器11と冷却材
3との熱交換が抑制される。そして、このような状態の
とき、ガスの温度を原子炉冷却材温度まで加熱すること
により断熱性は更に向上する。しかも、ガスを加熱する
のに要する熱エネルギーは従来のように炉外冷却器12
を予熱して断熱性を維持する場合より格段に少なくてす
むものである。さらに、圧力管13に充填したガスから
の熱輸送をもとじ直接炉心冷却器lOの冷却材は自然循
環を維持させることができる。すなわち、直接炉心冷却
器【0が休止中においても直接炉心冷却器10内では冷
却材は流れている状態となっている。したがって、原子
炉の異常時には、直接炉心冷却器10は即座に起動し、
所定の能力を発揮することができる。
During reactor operation, the liquid level of the coolant in the pressure pipe 13 is lowered to isolate the reactor cooler 11 from the reactor coolant 3 as described above. Since the gas is present between the in-furnace cooler 11 and the coolant 3 in this way, heat exchange between the in-furnace cooler 11 and the coolant 3 is suppressed. In such a state, the heat insulation properties can be further improved by heating the gas to the reactor coolant temperature. Moreover, the thermal energy required to heat the gas is not used in the outside cooler 12 as in the conventional case.
The amount of heat required is significantly less than that required when maintaining heat insulation by preheating. Furthermore, natural circulation of the coolant in the direct core cooler IO can be maintained based on heat transport from the gas filled in the pressure pipe 13. That is, even when the direct core cooler 0 is inactive, the coolant continues to flow in the direct core cooler 10. Therefore, in the event of an abnormality in the reactor, the direct core cooler 10 is activated immediately,
Able to demonstrate predetermined abilities.

第5図は本発明の原子炉冷却装置の作動時すなわち、例
えば全電源喪失時の状態を示している。
FIG. 5 shows the state in which the nuclear reactor cooling system of the present invention is in operation, ie, when all power is lost, for example.

直接炉心冷却器IOを作動させる場合には、ガス供給弁
17を閉じ、排気弁18を開くことにより、圧力管13
のカバーガス圧力と原子炉容器りのカバーガス圧力を同
じにする。その結果、圧力管I3内の液位は上昇し、流
路遮断器14も開き、直接炉心冷却器lOの炉内冷却器
L1を介して原子炉容器内で自然循環除熱を行なう。
When directly operating the core cooler IO, the pressure pipe 13 is closed by closing the gas supply valve 17 and opening the exhaust valve 18.
Make the cover gas pressure in the reactor vessel the same as the cover gas pressure in the reactor vessel. As a result, the liquid level in the pressure pipe I3 rises, the flow path breaker 14 also opens, and natural circulation heat removal is performed in the reactor vessel via the in-core cooler L1 of the direct core cooler IO.

上記説明したように、原子炉の通常運転時には、ガス供
給弁17を開、排気弁L8を閉とし、全電源喪失時には
ガス供給弁17を閉、排気弁」8を開とすることによっ
て所期の機能を発揮するととができる。
As explained above, during normal operation of the reactor, the gas supply valve 17 is opened and the exhaust valve L8 is closed, and when all power is lost, the gas supply valve 17 is closed and the exhaust valve ``8'' is opened. It is possible to perform the functions of .

第6図は、本発明の他の実施例を示したものである。第
2図と同一部分には同一符号を附している。同図に示す
ように、圧力管27は炉上部プレナムのはy中央部に位
置し、その一端は遮蔽プラタンに気密に固定されており
、他端は冷却材3中に没入している。このような圧力管
の配置構成によって、炉容器上部プレナムのガス封入空
間部は圧力管27内部と圧力管27外部すなわち圧力管
27と原子炉容器」とによって囲まれる環状部とに部分
される。直接炉心冷却器IOの炉内冷却器11は図示す
るように前記環状部に配置されている。また、冷却材3
は、炉容器の入口配管4、通流調整部8の流入ロアを経
て炉心2を冷却し、上部プレナムから炉容器の出口配管
5へと通流する。
FIG. 6 shows another embodiment of the invention. The same parts as in FIG. 2 are given the same reference numerals. As shown in the figure, the pressure pipe 27 is located in the center of the upper plenum of the furnace, one end of which is airtightly fixed to the shielding platen, and the other end immersed in the coolant 3. Due to this arrangement of the pressure tubes, the gas-filled space in the upper plenum of the reactor vessel is divided into the inside of the pressure tube 27 and the outside of the pressure tube 27, that is, an annular portion surrounded by the pressure tube 27 and the reactor vessel. The in-core cooler 11 of the direct core cooler IO is arranged in the annular portion as shown. In addition, coolant 3
Cools the reactor core 2 through the inlet pipe 4 of the reactor vessel and the inlet lower of the flow adjustment section 8, and flows from the upper plenum to the outlet pipe 5 of the reactor vessel.

12は直接炉心冷却器10の炉外冷却器、15はガス貯
蔵タンクで充填ガスの温度はヒータ16により調節され
る。28は流路遮断器である。
12 is an external cooler of the direct core cooler 10; 15 is a gas storage tank; the temperature of the filling gas is regulated by a heater 16; 28 is a flow path breaker.

原子炉の通常運転時には、前記実施例と同様に、ガス供
給弁17を開とし、排気弁18を閉とじてガス貯蔵タン
ク15内のガスを前記環状部に供給し、環状部の冷却材
を下方に押し下げると、炉内冷却器11は冷却材3から
露出するようになる。
During normal operation of the reactor, the gas supply valve 17 is opened and the exhaust valve 18 is closed to supply the gas in the gas storage tank 15 to the annular portion, and to drain the coolant in the annular portion, as in the previous embodiment. When pushed downward, the in-furnace cooler 11 becomes exposed from the coolant 3.

そうすると、炉内冷却器11と冷却材3との熱交換は抑
制され、また、直接炉心冷却器IOが休止中においても
、この冷却器内では冷却材は流れているので、原子炉の
異常時には直接炉心冷却器lOは直ちに起動することが
できる。
Then, heat exchange between the in-core cooler 11 and the coolant 3 is suppressed, and even when the direct core cooler IO is inactive, the coolant continues to flow in this cooler, so in the event of a reactor abnormality, Direct core cooler lO can be activated immediately.

〔発明の効果〕〔Effect of the invention〕

本発明の原子炉冷却装置によれば、直接炉心冷却器の休
止中における断熱性向上するばかりでなく、その起動も
円滑に行なえるので原子炉の信頼性を一層高いものにす
ることができる。
According to the nuclear reactor cooling system of the present invention, not only the heat insulation properties of the direct core cooler when it is inactive is improved, but also its startup can be performed smoothly, so that the reliability of the nuclear reactor can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子炉冷却装置の縦断面図、第2図およ
び第5図はそれぞれ本発明の原子炉冷却装置の休止時お
よび作動時の縦断面図、第3図は第2図の流路遮断器の
拡大断面図、第4図は本発明に係る流路遮断器の変形例
の縦断面図、第6図は本発明の他の実施例の縦断面図で
ある。 1・・・炉容器     2・・・炉心3・・・冷却材
     4,5・・・配管6・・・炉心支持構造体 
9・・・遮蔽プラグIO・・・直接炉心冷却器 13.
27・・・圧力管14.25.28・・・流路遮断器 【5・・・191タンク   16・・・ヒータ17・
・・ガス供給弁   18・・・排気弁19.26・・
・流通孔 (8733)  代理人 弁理士 猪 股 祥 晃 (
ほか1名)第1図 第2図 第3図  第4図 第5図
FIG. 1 is a vertical cross-sectional view of a conventional reactor cooling system, FIGS. 2 and 5 are vertical cross-sectional views of the reactor cooling system of the present invention during shutdown and operation, respectively, and FIG. 3 is a vertical cross-sectional view of a conventional nuclear reactor cooling system. FIG. 4 is a longitudinal sectional view of a modified example of the flow path breaker according to the present invention, and FIG. 6 is a longitudinal sectional view of another embodiment of the present invention. 1... Reactor vessel 2... Core 3... Coolant 4, 5... Piping 6... Core support structure
9...Shielding plug IO...Direct core cooler 13.
27...Pressure pipe 14.25.28...Flow path breaker [5...191 tank 16...Heater 17.
...Gas supply valve 18...Exhaust valve 19.26...
- Distribution hole (8733) Agent Patent attorney Yoshiaki Inomata (
(and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 +1)  炉容器下部ブレナムの流入配管から流入し、
炉心を経て炉容器上部ブレナムの流出配管から流出する
ように冷却材を通流せしめ、かつ炉容器上部ブレナム内
にガスを封入せしめるとともに前記炉容器の上端部に遮
蔽プラグを配設し、この遮蔽プラグを貫通する直接炉心
冷却器を設けた原子炉冷却装置において、圧力管の一端
を前記遮蔽プラグに固定し、その他端を冷却材中に没入
させるとともにこの圧力管側壁に方向性流路遮蔽器を設
け、さらに前記直接炉心冷却器が配置されている前記上
部ブレナム空間のガス圧力を調整するガス圧力調整装置
を設けてなることを特徴とする原子炉冷却装置。 (2)直接炉心冷却器は、この冷却器が休止中はガス雰
囲気中に存在し、また、作動中は冷却打算囲気中に存在
するようにしてなる特許請求の範囲第1項記載の原子炉
冷却装置。 (3) 方向性流路遮断器は逆止弁である特許請求の範
囲第1項記載の原子炉冷却装置。
[Scope of Claims] +1) Inflow from the inflow pipe of the lower blennium of the furnace vessel,
Coolant is made to flow through the reactor core and flows out from the outflow piping of the upper blemish of the reactor vessel, gas is sealed in the upper blemish of the reactor vessel, and a shielding plug is disposed at the upper end of the reactor vessel. In a reactor cooling system equipped with a direct core cooler that penetrates the plug, one end of the pressure pipe is fixed to the shielding plug, the other end is immersed in the coolant, and a directional flow path shield is installed on the side wall of the pressure pipe. A nuclear reactor cooling system, further comprising: a gas pressure adjustment device for adjusting the gas pressure in the upper brenum space in which the direct core cooler is disposed. (2) The nuclear reactor according to claim 1, wherein the direct core cooler exists in a gas atmosphere when the cooler is inactive, and in the cooling environment when it is in operation. Cooling system. (3) The reactor cooling system according to claim 1, wherein the directional flow path breaker is a check valve.
JP57227793A 1982-12-28 1982-12-28 Reactor cooling device Pending JPS59120993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227793A JPS59120993A (en) 1982-12-28 1982-12-28 Reactor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227793A JPS59120993A (en) 1982-12-28 1982-12-28 Reactor cooling device

Publications (1)

Publication Number Publication Date
JPS59120993A true JPS59120993A (en) 1984-07-12

Family

ID=16866471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227793A Pending JPS59120993A (en) 1982-12-28 1982-12-28 Reactor cooling device

Country Status (1)

Country Link
JP (1) JPS59120993A (en)

Similar Documents

Publication Publication Date Title
JP4148417B2 (en) Stable passive residual heat removal system for liquid metal furnace
JP2634738B2 (en) Passive cooling system for liquid metal-cooled reactors with back-up cooling channels
US4367194A (en) Emergency core cooling system
JP2659632B2 (en) Passive cooling safety system for liquid metal cooled reactor
JPH02268295A (en) Heat removing system for containment vessel
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
JPS59120993A (en) Reactor cooling device
JPH02210295A (en) Auxiliary reactor core cooling device
JPH0715503B2 (en) Liquid metal cooling fast reactor
JPH01263594A (en) Fast breeder reactor
JP3110901B2 (en) Fast breeder reactor
JPH06235789A (en) Nuclear reactor
JPS587591A (en) Theremal shielding device for fast breeder
JPS6130237B2 (en)
JPS6273191A (en) Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop
CZ37645U1 (en) Equipment to cool the nuclear fuel reactor
JPS58124989A (en) Reactor shutdown device
JPS6015598A (en) Heat exchanger for direct core cooling system
JPS5811892A (en) Reactor container
JPS62188994A (en) Thermal shielding device for fast breeder reactor
JPH02222879A (en) Self-operation type auxiliary equipment for cooling reactor core
JPH0735882A (en) Liquid metal cooled fast reactor
JPS62191796A (en) Shielding device for flow path
JPS6219677B2 (en)
JPH06242277A (en) Control rod assembly