JPS6273191A - Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop - Google Patents

Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop

Info

Publication number
JPS6273191A
JPS6273191A JP60213823A JP21382385A JPS6273191A JP S6273191 A JPS6273191 A JP S6273191A JP 60213823 A JP60213823 A JP 60213823A JP 21382385 A JP21382385 A JP 21382385A JP S6273191 A JPS6273191 A JP S6273191A
Authority
JP
Japan
Prior art keywords
liquid metal
flow
flow path
reactor
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60213823A
Other languages
Japanese (ja)
Other versions
JPH068889B2 (en
Inventor
孝志 池田
忠 後藤
元 山本
山川 正剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60213823A priority Critical patent/JPH068889B2/en
Publication of JPS6273191A publication Critical patent/JPS6273191A/en
Publication of JPH068889B2 publication Critical patent/JPH068889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、静圧差のある2流体をその間の1受なしに分
離する流体止め(・〜イドローリツク・ロック、 hy
draulic 1ock )に関するものであり、更
には、該流体止めを利用して、原子炉1次系の高温液体
金属と該1次系を格納するタンク中の低温液体金属とを
分離するようにした液体金属冷却タンク型高速原子炉に
関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to a fluid stop that separates two fluids having a static pressure difference without any pressure between them.
draulic 1ock), and furthermore, a liquid that uses the fluid stop to separate high-temperature liquid metal in the reactor primary system from low-temperature liquid metal in the tank storing the primary system. It concerns metal cooled tank fast reactors.

〔発明の背景〕[Background of the invention]

軽水炉を用いた原子力発電は、近年その稼動率も上昇し
、総発電量の中で原子力発電の占める割合は年とともに
上昇している。ところで、米国スリーマイルアイランド
の事故以来、原子炉の安全性を飛躍的に向上させようと
する動きがある。その一つとして・(イアス炉が提案さ
、れている(文献1.2)。・やイアス(PIUS)と
はグロセス固有究極安全性(Process Inhe
rent Ultimate 5afety )の意で
あり、以下、・ぐイアス炉を超安全炉と呼ぶ。
The operating rate of nuclear power generation using light water reactors has increased in recent years, and the proportion of nuclear power generation in total power generation has been increasing over the years. By the way, since the Three Mile Island accident in the United States, there has been a movement to dramatically improve the safety of nuclear reactors. As one of them, the PIUS has been proposed (Reference 1.2).
Rent Ultimate 5afety), and hereinafter, the Guias furnace will be referred to as an ultra-safe furnace.

超安全炉では、軽水炉の事故の中で最も原子炉炉心損傷
の確率が高いと考えられている冷却材配管破断にともな
う冷却材喪失事故上なくすため、1次系全体を高圧のプ
ール水中に格納する方式が採用されている。1次系とプ
ール水は、流体止め全通して物理的な隔壁なしにつなが
っておシ、事故時には流体止めを通してプール水が1次
系に流入するため、いかなる場合も炉心の燃料が冷却材
から露出する事態は生じないフェールセーフ構成とされ
ている。
In ultra-safe reactors, the entire primary system is housed in a high-pressure pool of water in order to prevent loss of coolant due to coolant pipe rupture, which is considered to have the highest probability of reactor core damage among light water reactor accidents. A method is adopted. The primary system and pool water are connected through a fluid stop without any physical partitions, and in the event of an accident, the pool water flows into the primary system through the fluid stop, so in any case, the core fuel will be removed from the coolant. It has a fail-safe configuration that prevents any exposure.

i10図はその構成と1次側・プール側の静圧分布を示
す。第10図に示す超安全炉はプール水を格納する容器
10、原子炉炉心11.1次系冷却水駆動ボンf13、
加圧器16.下部流体止め14′並びに上部流体止め1
5’で構成されている。
Figure i10 shows its configuration and static pressure distribution on the primary side and pool side. The ultra-safe reactor shown in Fig. 10 includes a container 10 for storing pool water, a reactor core 11, a primary system cooling water drive bomb f13,
Pressurizer 16. Lower fluid stop 14' and upper fluid stop 1
It consists of 5'.

炉心11で発生した熱は、ボン7’13で駆動される1
次側冷却水によシ熱交換器12へ榴送され、2久側へ云
達する。低温の高濃度ボロン水からなるプール水は高温
の1次側冷却水と流体止め14′。
The heat generated in the reactor core 11 is transferred to the
The cooling water on the next side is sent to the heat exchanger 12 and reaches the second side. Pool water consisting of low-temperature high-concentration boron water is connected to high-temperature primary cooling water and fluid stopper 14'.

15′により、定常運転時には分離・保持されている。15', they are separated and held during steady operation.

第10図における下部流体止め14′は第11図に示す
ように管群からなり、その中で1次側冷却水18とプー
ル水19とが隔壁なしに直接相互の境界面17で接して
いる。上部流体止め15′も同様の構成である。
The lower fluid stop 14' in FIG. 10 consists of a group of tubes as shown in FIG. 11, in which the primary cooling water 18 and the pool water 19 are in direct contact with each other at the boundary surface 17 without a partition wall. . The upper fluid stop 15' has a similar configuration.

第10図の右半分は静圧分布を示すもので、図中POは
加圧器内16の圧力を、1点鎖線は1次側高温水が静止
している場合の静圧分布を、2点鎖線は高温水がポン7
’13により昇圧(昇圧分ΔPpump)された場合で
且つ炉心での圧力損失(ΔPrrictj。n)がない
仮想的な場合の静圧分布を示す。定常運転時には、図示
のように、低温のプール水(実線)と高温の1次系冷却
水(破、4)の上下流体止め14’ 、 15’での静
圧は等しくなり、管群で構成する流体止め中に高温水を
上部tて低温水金下1゛1μに導くことにより(第10
図)、安定Q″C境界面17を保つことができる。他方
、加圧器16への加圧用蒸気供給配管あるいは熱交換器
の二次側配管等が破損した事故時には、上下流体止め1
4′。
The right half of Figure 10 shows the static pressure distribution. In the figure, PO indicates the pressure inside the pressurizer 16, and the dashed line indicates the static pressure distribution when the primary high temperature water is stationary. The chain line indicates high temperature water.
The static pressure distribution is shown in a hypothetical case where the pressure is increased by '13 (pressure increase amount ΔPpump) and there is no pressure loss (ΔPrrictj.n) in the core. During steady operation, as shown in the figure, the static pressures of the low-temperature pool water (solid line) and the high-temperature primary cooling water (broken, 4) at the upper and lower fluid stops 14' and 15' are equal, and the pipe group consists of By guiding the high temperature water through the upper part and the lower part of the low temperature water during the fluid stop (10th
), a stable Q''C boundary surface 17 can be maintained.On the other hand, in the event of an accident in which the pressurizing steam supply piping to the pressurizer 16 or the secondary side piping of the heat exchanger is damaged, the upper and lower fluid stops 1
4′.

15’での圧力バランスがくずれ、プール中の高濃度ボ
ロン水が流体止め14′から流入し、原子炉11を停止
させるとともに、事故後の崩壊熱を上部流体止め15′
からの流出流路をとる自然循環冷却により除去する。
The pressure balance at the upper fluid stop 15' is disrupted, and high concentration boron water in the pool flows in from the fluid stop 14', shutting down the reactor 11 and dissipating the decay heat after the accident to the upper fluid stop 15'.
It is removed by natural circulation cooling, which takes the outflow path from the

軽水炉の次の世代の原子炉として提案されている液体金
属冷却高速増殖炉でも同様に安全上の考えから、いわい
るタンク型炉が開発されている(タンク内の液体金属冷
却材は前記群水超安全炉でのプール水と機能的には同じ
)。炉心の発熱密度(熱出力密度)の高いタンク型高速
炉では、1次側冷却材の駆動源(ポンプ等)が故障した
場合、タンク内の炉心を通る流路での大きな自然循環流
量が必要となる。したがって、定常運転時に1次側冷却
材が流れる、流動抵抗の大きな熱交換d忌、ポンプ等金
経由する流路以外に、夕/り内の冷却材が炉心へ自然循
環で流入し得る流動抵抗の小さい流路を確保しておくこ
とが望lれる。
For liquid metal cooled fast breeder reactors, which have been proposed as the next generation of nuclear reactors after light water reactors, so-called tank-type reactors have been developed for safety reasons as well (the liquid metal coolant in the tank is Functionally the same as pool water in an ultra-safe reactor). In tank-type fast reactors with a high core heat generation density (thermal power density), if the primary coolant drive source (pump, etc.) fails, a large natural circulation flow rate is required in the flow path through the core in the tank. becomes. Therefore, in addition to the heat exchange path with large flow resistance through which the primary coolant flows during steady operation, and the flow path through which the coolant flows through pumps, etc., there is a flow resistance that allows the coolant in the reactor to flow into the core through natural circulation. It is desirable to secure a small flow path.

そこで軽水炉としての前記超安全炉と同様の考え方で、
液体金属冷却タンク型高速炉にも1次側冷却材とタンク
内冷却材とを、第10図、第11図に示した従来の流体
止めで定常運転時は分離しておく事が考えられる。しか
し、第10図の静圧分布から判るように、従来の流体止
めでは、定常時において、液体の境界面17が保たれる
ためには炉心での圧損ΔPyrictionがプール内
の低温冷却材と1次系内の高温冷却材との静圧差(ρ。
Therefore, using the same concept as the ultra-safe reactor mentioned above as a light water reactor,
In a liquid metal cooled tank type fast reactor, it is conceivable to separate the primary coolant and the coolant in the tank during steady operation using the conventional fluid stop shown in FIGS. 10 and 11. However, as can be seen from the static pressure distribution in Fig. 10, in the conventional fluid stop, in order to maintain the liquid interface 17 during steady state, the pressure drop ΔPyriction in the core must be equal to the low temperature coolant in the pool. Static pressure difference (ρ) with the high temperature coolant in the next system.

−ρhIgh1より小さいことが必要である。ここに、
ρ。、ρhは低温冷却材および高温冷却材の密度(添字
c、hはcold * hotの略)、gは重力加速度
、hlは上下の流体止め間の高さである。
-ρhIgh1. Here,
ρ. , ρh is the density of the cold coolant and hot coolant (subscript c, h stands for cold * hot), g is the gravitational acceleration, and hl is the height between the upper and lower fluid stops.

前記軽水超安全炉の場合には、炉心での圧損ΔPyrl
ctioユが比較的小さく、また高温水と低温水の密度
差(ρ。−ρh)が比較的太きいため、上記要件は実現
可能である。
In the case of the light water ultra-safe reactor, the pressure drop ΔPyrl in the core
The above requirements are achievable because ctioyu is relatively small and the density difference (ρ.−ρh) between high temperature water and low temperature water is relatively large.

これに対し、液体金属冷却タンク型高速炉では、炉心の
燃料ピッチが軽水炉の場合よりも密であり、冷却材の炉
心流速が速いこともあって炉心の圧倒ΔPyrietl
onは軽水炉の約10倍と大きいこと、また、高温冷却
材と低温冷却材の密度差は高速炉の方が小さいこと等の
ため、炉心圧損JPrrlction よpも上下流体
止め間の静圧差(ρ。−ρh)ghlを太きぐするには
、軽水炉のプール高さく第10図の超安全炉で40m)
の10倍以上の高さが必要となり、実際上実現は不可能
となる。
On the other hand, in a liquid metal cooled tank type fast reactor, the fuel pitch in the core is denser than that in a light water reactor, and the core flow velocity of the coolant is faster, so the core is overwhelmed by ΔPyrietl.
on is approximately 10 times larger than that of a light water reactor, and the difference in density between high-temperature and low-temperature coolants is smaller in a fast reactor. .-ρh) In order to increase the ghl, the pool height of the light water reactor should be 40 m in the ultra-safe reactor shown in Figure 10).
This would require a height more than 10 times that of the actual height, which would be practically impossible to realize.

このように、液体金属冷却高速炉で、事故時の自然循環
冷却上望ましい1次系開放型のタンク型原子炉全実現す
るためには新しい機構の流体止めの開発が必要であると
言える。而して、この流体止めは、固有安全性を実現す
るという見地からは、機械的な可動部のない機器(pa
ssive component r以下、受動的機器
と呼ぶ)として開発されることが必要である。
In this way, it can be said that it is necessary to develop a new fluid stop mechanism in liquid metal cooled fast reactors in order to fully realize the tank-type reactor with an open primary system, which is desirable for natural circulation cooling in the event of an accident. Therefore, from the standpoint of achieving inherent safety, this fluid stopper is suitable for equipment without mechanically moving parts.
It is necessary to develop the device as a passive component (hereinafter referred to as a passive device).

これまで液体金属の高い導4性を利用して電磁力に基づ
く受動的機器が開発されている(文献3)。
Passive devices based on electromagnetic force have been developed using the high conductivity of liquid metals (Reference 3).

第12図はその一例で液体金属の流れと抑制あるいは阻
止する1磁ブレーキ金示す、環状の磁石(必るいはル磁
石、以下間)2及び磁性体3で、構成する環状流路に、
液体金属lが矢印0知)の方向に流入すると、第12図
に示すように電流jが誘起される。誘起電流は磁石によ
る磁場と框互作用し、流れと逆向きの力が液体金属1に
働く。第2図に示す“ように磁極の部分の流れ方向の長
さをL、磁場全一様としその強さBとすれば電磁力だも
とづく流体の圧力上昇ΔPは ΔP=σuB L        (1)で与えられる
。式(1)でσは液体金属の電気α導率、Uは液体金属
の平均流速を表す。ΔPがポンプ等による上流側の液体
金属の圧力上昇分よりも大きければ流体の流れは止まる
。しかし、この電磁ブレーキは、磁場の強さを変える等
の制御機器または人手による操作によ一シ、流量を制御
することが可能であるので、電磁ブレーキを流体止めと
しての流量制御器に応用した場合、完全な受動機器とは
見なせない面がある。
FIG. 12 shows an example of this, in which a magnetic brake is used to suppress or block the flow of liquid metal, and an annular flow path is made up of an annular magnet (hereinafter referred to as a magnet) 2 and a magnetic material 3.
When the liquid metal l flows in the direction of the arrow 0), a current j is induced as shown in FIG. The induced current interacts with the magnetic field of the magnet, and a force in the opposite direction to the flow acts on the liquid metal 1. As shown in Figure 2, if the length of the magnetic pole part in the flow direction is L, the magnetic field is completely uniform, and its strength is B, then the pressure increase ΔP in the fluid due to electromagnetic force is ΔP=σuB L (1) In equation (1), σ represents the electrical α conductivity of the liquid metal, and U represents the average flow velocity of the liquid metal.If ΔP is larger than the pressure increase of the liquid metal on the upstream side due to a pump, etc., the fluid flow will be However, the flow rate of this electromagnetic brake can be controlled by a control device such as changing the strength of the magnetic field or by manual operation, so the electromagnetic brake can be used as a flow rate controller as a fluid stop. When applied, there are aspects in which it cannot be considered a completely passive device.

第13図は、駆動側の液体金属がもつ流れのエネルギー
を利用して被駆動側の液体金属と流動させる電磁フロー
カブラと呼ばれる機器の一例を示す断面図である(文献
3)。磁石5.6の間の環状空間に導電性の隔壁9で仕
切られた軸線方向に延びる流路7および8があり、流路
7同志は連通、流路8同志は連通している。流路7は駆
動側液体金属用、流路8は被動側液体金属用流路である
FIG. 13 is a cross-sectional view showing an example of a device called an electromagnetic flow coupler that uses the flow energy of the liquid metal on the driving side to flow with the liquid metal on the driven side (Reference 3). In the annular space between the magnets 5.6, there are passages 7 and 8 that extend in the axial direction and are partitioned by a conductive partition wall 9, and the passages 7 and 8 communicate with each other. The flow path 7 is for the liquid metal on the driving side, and the flow path 8 is for the liquid metal on the driven side.

磁石5.6間に生ずる磁場を横切って軸線方向に流路7
中を流動する駆動側の液体金属中には電磁ブレーキの場
合と同様に第13図の矢印方向に誘導電流が生じる。流
路7と被駆動側液体金属の流路8との間は導体9で仕切
っであるので、上記誘導電流はループ電流となり、矢印
で示すように被駆動側の液体金属中をも流れる。被駆動
側液体金属はこの誘起電流と一様磁場とのため駆動側液
体金属の流れとは逆向きの力を受け、該逆向きの方向に
流れる。
A flow path 7 is formed in the axial direction across the magnetic field generated between the magnets 5 and 6.
In the driving side liquid metal flowing therein, an induced current is generated in the direction of the arrow in FIG. 13, as in the case of an electromagnetic brake. Since the flow path 7 and the flow path 8 for the liquid metal on the driven side are separated by a conductor 9, the above-mentioned induced current becomes a loop current, which also flows in the liquid metal on the driven side as shown by the arrow. Due to this induced current and the uniform magnetic field, the liquid metal on the driven side receives a force in the opposite direction to the flow of the liquid metal on the driving side, and flows in the opposite direction.

しかし、この′電磁70−カノラでは、駆動側の流れを
持続させた状態で被駆動側の流れを制御するためには、
人手により、又は別に制御機器を設けて磁場の強さを制
御するか、あるいは被駆動側の流路に弁等を設けないか
ぎり不可能であシ、完全な受動的機器とは言えない。ま
た、互に仕切られた独立の2流路を設けるものであるの
で、このままでは直接だ相接する2流体間の分離を行う
タイプの流体止めとしては用いることができない。
However, in this electromagnetic 70-canola, in order to control the flow on the driven side while maintaining the flow on the driving side,
This is not possible unless the strength of the magnetic field is controlled manually or by installing a separate control device, or unless a valve or the like is installed in the flow path on the driven side, so it cannot be called a completely passive device. Further, since two independent flow paths are provided that are partitioned off from each other, it cannot be used as it is as a type of fluid stopper that separates two fluids that are in direct contact with each other.

文献 1)  K、Hann@rtz:”App11ngPi
u+3topowarHenerat1on:the 
5ecure −PLWR’ 、 Nuclear E
ngineeringInternational  
+  Nov、  1983  (vol、  28 
 r  )%  348  )  rpp、4l−46 2)若林宏明二′″PIUS炉の概要”、 UTNL−
R。
Reference 1) K, Hann@rtz: “App11ngPi
u+3topowarHenerat1on:the
5ecure-PLWR', Nuclear E
ngineering International
+ Nov, 1983 (vol, 28
r)% 348) rpp, 4l-46 2) Hiroaki Wakabayashi'"Overview of PIUS Reactor", UTNL-
R.

0172 (東大工学部原子カニ学研究施設)1985
年3月 3)  D、 F、 Davidaon r E、Du
ncomba * G、Thatchar :@5oi
1+、a eleatro−technology a
t the R15ley NuclearPower
 Deveiopm@nt Laboratories
 ’ 、 NuclearEner’+r)’+ 19
81 * vol、 20 、 Feb−*A1 t 
pp、79−90〔発明の目的〕 本発明の1目的は、静圧の異る二つの液体金属を直接接
触させ、定常時にはその境界面を保持し、異常時には一
方の流体を流入させるのに好適な流体止めを提供するこ
とにあシ、他の目的は同流体止めを用いた自然循!4I
性の良い液体金属冷却りを互に直接接触させた状態で流
れを止めるための電磁流体止めであって、上記二流体の
うち静圧の大なる方の流体が流れる第1流路と、導〔と
性の隔壁を介して第1流路と並行に隣接し且つ一端にて
@X流路と連通しており、内部に上記二流体の直接接触
境界面を保持する第2流路と、第1および第2流路を横
切る磁場を発生させる手段と、からなることを%徴とす
る戒磁流体止めが提供される。
0172 (Atomic Crab Science Research Facility, Faculty of Engineering, University of Tokyo) 1985
March 3) D, F, Davidaon r E, Du
ncomba * G, Thatchar: @5oi
1+, a eleatro-technology a
t the R15ley NuclearPower
Development@nt Laboratories
', NuclearEner'+r)'+19
81 * vol, 20, Feb-*A1 t
pp, 79-90 [Object of the Invention] One object of the present invention is to bring two liquid metals with different static pressures into direct contact, to maintain the interface between them in normal conditions, and to allow one fluid to flow in in abnormal situations. The other purpose is to provide a suitable fluid stop, and the other purpose is natural circulation using the same fluid stop! 4I
This electromagnetic fluid stopper is for stopping the flow of highly resistant liquid metal cooling fluids when they are in direct contact with each other, and includes a first flow path through which a fluid with a higher static pressure flows between the two fluids, and a conductor. [A second flow path that is adjacent to the first flow path in parallel through a male partition wall, communicates with the @X flow path at one end, and maintains a direct contact interface between the two fluids inside; and means for generating a magnetic field across the first and second flow paths.

また更に本発明によれば、原子炉炉心への1次系液体金
属の流れる第1流路を該炉心の下方に設け、タンク側液
体金属と上端にて連通し且つ下端において第1流路と連
通している第2流路を4也性の隔壁を介して第1流路と
運行に隣接せしめ、第1および第2流路を横切る磁場全
発生する手段を設け、第2流路内に1次系液体金属とタ
ンク側液体金属との直接接触境界面を保持するように構
成したことを特徴とする液体金属冷却タンク型高速増殖
炉が提供される。
Furthermore, according to the present invention, the first flow path through which the primary liquid metal flows into the reactor core is provided below the reactor core, and communicates with the tank side liquid metal at the upper end and communicates with the first flow path at the lower end. The communicating second flow path is adjacent to the first flow path through a four-sided partition wall, and means for generating a magnetic field across the first and second flow paths is provided, and within the second flow path. A liquid metal cooled tank type fast breeder reactor is provided, characterized in that it is configured to maintain a direct contact interface between a primary liquid metal and a tank side liquid metal.

以下、本発明の原理について解説する。The principle of the present invention will be explained below.

第14図−は、タンク側に開放された1次系をもつ液体
金属冷却タンク型高速炉の深さ方向の静圧分布を示す。
Figure 14 shows the static pressure distribution in the depth direction of a liquid metal cooled tank type fast reactor with a primary system open to the tank side.

実線はタンク側の低温液体金属の静圧分布を、1点鎖線
は1次系の高温液体金属が仮想的に静止している場合の
1次糸の静圧分布を、破線はそれが流動している場合の
1次系の静圧分布を示す。第14図は第1Q図と比較す
るとΔPrrietion > (ρ。−ρh)g)i
すなわち、炉心の圧損が1次系とタンク側の静圧差より
も大きくなっている点が異る。
The solid line represents the static pressure distribution of the low temperature liquid metal on the tank side, the dashed line represents the static pressure distribution of the primary thread when the high temperature liquid metal in the primary system is virtually stationary, and the dashed line represents the static pressure distribution when it flows. This shows the static pressure distribution of the primary system when When Figure 14 is compared with Figure 1Q, ΔPrietion > (ρ.-ρh)g)i
That is, the difference is that the pressure drop in the core is larger than the static pressure difference between the primary system and the tank side.

もし、この液体金属冷却高速炉の下部に第11図の如き
従来の管群で構成する流体止め14′を取付けた場合を
考えると、1次側扁諷冷却材18とタンク側低温冷却材
19の流体止め14′内の境界面17での圧力バランス
を考えるに、高温冷却材18側の圧力は第14図よシ、
P0+ρhgh+ΔP、い、。
If we consider the case where a fluid stop 14' consisting of a conventional tube group as shown in FIG. Considering the pressure balance at the interface 17 in the fluid stop 14', the pressure on the high temperature coolant 18 side is as shown in Fig. 14.
P0+ρhgh+ΔP, yes.

一方、低温冷却材19側の圧力はP0+ρcghとなる
On the other hand, the pressure on the low temperature coolant 19 side becomes P0+ρcgh.

この差ΔPKXtar□11:補正しない限シ、1次系
の高温冷却材18は下部流体止め14’からタンク側へ
流出してしまうことになる。このΔPmxternal
 ’ir: M正する方法として、第1,1図の流体止
め14’を通って下方に流出しようとする高温冷却材に
に12図にならって磁場をかけて電磁ブレーキを作用さ
せることが考えられる。しかし、この方法では、事故時
にタンク内の低温冷却材19が流体止めl 4’を逆流
して炉心11へ自然循環する場合にも、電磁ブレーキと
して働くため、事故時には磁界を切る等の機能を持つ制
御回路及び操作が必要となり、固有安全性は完全ではな
い。
Unless this difference ΔPKXtar□11 is corrected, the primary system high temperature coolant 18 will flow out from the lower fluid stop 14' to the tank side. This ΔPmxternal
'ir: As a way to correct M, it is possible to apply an electromagnetic brake by applying a magnetic field to the high-temperature coolant that is about to flow downward through the fluid stop 14' in Figures 1 and 1, as shown in Figure 12. It will be done. However, with this method, even if the low-temperature coolant 19 in the tank flows back through the fluid stop l4' and naturally circulates to the reactor core 11 in the event of an accident, it will function as an electromagnetic brake, so functions such as cutting off the magnetic field will not work in the event of an accident. It requires a control circuit and operation, and the inherent safety is not perfect.

したがって、液体金属冷却タンク型高速炉の場合には、
第14図に示す静圧差ΔP工ternalを補正しうる
新たな流体止めが必要となる。同流体止めは、l入側ポ
ング作動時(lPPい、昇圧時)にはΔPixtarn
alを補正し、ポンプ停止時(事故時等)にはタンク内
の液体金属の自然m壌により炉心を冷却するようにする
ため、下部流体止めはその流動抵抗を小さくする必要が
ある。
Therefore, in the case of a liquid metal cooled tank fast reactor,
A new fluid stop that can correct the static pressure difference ΔP internal shown in FIG. 14 is required. The same fluid stop is set to ΔPixturn when the inlet pump is activated (lPP, pressure is increased).
The flow resistance of the lower fluid stop must be reduced in order to correct the Al and allow the reactor core to be cooled by the natural flow of liquid metal in the tank when the pumps are stopped (in the event of an accident, etc.).

wcs図は本発明の原理的構成を説明する九めの図であ
って、タンク型液体金属冷却高速炉のタンク側と1次系
を仕切る筒20の下端周囲だ流体路14を配置しである
The wcs diagram is the ninth diagram illustrating the basic configuration of the present invention, in which the fluid path 14 is arranged around the lower end of the cylinder 20 that partitions the tank side and the primary system of a tank-type liquid metal cooled fast reactor. .

筒20の下端においてタンク側と1次系側とは図示の如
き連通しており、1次系側の高温冷却材18とタンク側
の低温冷却材19(いずれも液体金属)は流路14内で
境界面17を以て互((直接接触している。第5図の構
成では、ポング作幼時の定常運転中には仕切シ円筒2o
内で1次系側の冷却材は18は上昇流となる。流路14
内に境界面17を保持するためには、第14図に示すΔ
Pgxternalを補正しうる流れあるいは力を流路
14中の低温冷却材に作用させる必要がある。
At the lower end of the cylinder 20, the tank side and the primary system side are in communication as shown in the figure, and the high temperature coolant 18 on the primary system side and the low temperature coolant 19 (both liquid metal) on the tank side are in flow path 14. In the configuration shown in FIG. 5, the partition cylinder 2 o
The coolant on the primary system side flows upward in 18. Channel 14
In order to maintain the boundary surface 17 within the Δ
It is necessary to apply a flow or force to the low temperature coolant in the flow path 14 that can correct Pgxternal.

本発明は、第5図において流路14に横方向の磁場金か
けることによって、円筒2oの内側の1次糸側液体金楓
18の上昇流を駆動流として、前述の電磁フローカブラ
−と同じ原理を利用して流路14内のタンク側液体金属
に誘起電流による電磁内金下向きに発生させ(図の点線
矢印)、これてより、炉の定常運転中、前記ΔPIXt
6r□lを補正するのである。ポンプ事故等により、上
記の上昇流、ツ;弱まれば、境界面17での力のバラン
スが崩れ、タンク側液体金属は1次系内に流入し、自然
循1により炉心11を冷却することができる。
The present invention is similar to the electromagnetic flow coupler described above, by applying a horizontal magnetic field to the flow path 14 in FIG. Using this principle, an induced current is generated in the liquid metal on the tank side in the flow path 14 downward in the electromagnetic metal (dotted line arrow in the figure), and as a result, during steady operation of the furnace, the above-mentioned ΔPIXt
6r□l is corrected. If the above-mentioned upward flow weakens due to a pump accident, etc., the balance of forces at the interface 17 will collapse, and the liquid metal on the tank side will flow into the primary system, cooling the reactor core 11 through natural circulation 1. I can do it.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の流体止めの1実施例およびそれ全相い
たタ不ンク型液体金属冷却高速炉の1実施例の一部の概
要断面図である。磁石21を、炉心11の下部の仕切り
筒20の内側と、仕切り簡20の下部周辺を囲む平行流
路14の周囲に設けている。鉛直方向に平行な流路14
は第1図(&)のA−A’断面(水平断面)である第1
図(b) K示すように、導電性の隔壁23により上部
が周方向に四つに仕切られている。第1図(&)は同図
(b)のB−0−B’断面図であって、並列流路14の
下部はいずれも1次系冷却材の駆動源(ポンプ13)に
つながる配管22に接続されている。一方、隔壁23で
仕切られた流路14の上部は、一つおきに炉心11の下
部の空間(流路ンて接続された流路と、タンク側に開放
された流路に分れている。
FIG. 1 is a schematic sectional view of a part of an embodiment of the fluid stop of the present invention and an embodiment of a tank-type liquid metal cooled fast reactor in which the same is incorporated. Magnets 21 are provided inside the partition tube 20 at the bottom of the core 11 and around the parallel flow path 14 surrounding the bottom of the partition tube 20. Flow path 14 parallel to the vertical direction
is the 1st
As shown in Figure (b) K, the upper part is partitioned into four sections in the circumferential direction by conductive partition walls 23. FIG. 1 (&) is a sectional view taken along line B-0-B' in FIG. It is connected to the. On the other hand, the upper part of the flow passage 14 partitioned by the partition wall 23 is divided into a flow passage connected to the lower part of the core 11 (flow passage) and a flow passage opened to the tank side. .

第2図は磁石21がつくる磁場の磁力線、定常運転時(
ボッ7’13の作動時)の1次1JIIl冷却材(液体
金属)の流出の方向、及び誘4′rIL流の方向を示す
。ポンプ等により駆動圧を受けた高温の1次系液体金属
18は1つおきの流路14を上向きに流れる。また、磁
石21は水平断面内に半径方向の磁場をつくる。導電性
の液体金PAisが磁場(水平面内)に垂直(鉛直方向
)に流れるため同液体金属18中に周方向の誘導鑞流を
生じる。誘導、[流は専一性材料の隔壁23を通って、
タンク側の低温の液体金属19を流れ4第2図(b)中
の実線矢印で示すようにルーf電流を形成する。タンク
側の液体金属19は、同ルーグ試流と径方向の磁場のた
め鉛直下方向の電磁力を受け、1次側とはili!!に
下向きに流れようとする。この*磁力によって生じる圧
力上昇ΔPgmf Kより、1K11JBj’ンク側の
圧力圧ΔPgxternal (弔14図参照)を相殺
し、1次側とタンク側との液体金属の境界面17全流路
14中で一定位置に保持できる。
Figure 2 shows the lines of magnetic force of the magnetic field created by the magnet 21 during steady operation (
The direction of the outflow of the primary 1JIIl coolant (liquid metal) during operation of the cylinder 7'13) and the direction of the dielectric 4'rIL flow are shown. The high-temperature primary liquid metal 18 that has received driving pressure from a pump or the like flows upward through every other channel 14 . The magnet 21 also creates a radial magnetic field within the horizontal section. Since the conductive liquid gold PAis flows perpendicularly (in the vertical direction) to the magnetic field (in the horizontal plane), an induced solder flow in the circumferential direction is generated in the liquid metal 18. Direction, [the flow passes through the bulkhead 23 of proprietary material;
The low-temperature liquid metal 19 on the tank side flows to form a rf current as shown by the solid arrow in FIG. 2(b). The liquid metal 19 on the tank side receives a vertically downward electromagnetic force due to the same Roug trial flow and a radial magnetic field, and is different from the primary side. ! It tries to flow downward. The pressure increase ΔPgmf K caused by this *magnetic force cancels out the pressure pressure ΔPgxternal (see Figure 14) on the tank side, and the liquid metal interface 17 between the primary side and the tank side remains constant throughout the entire flow path 14. Can be held in position.

第3図は1次系ポンプ等が停止した事故時及び起動時の
冷却材の流れを示す。ポンプが停止した場合、配管22
中の液体金属の駆動圧はなくなる。
Figure 3 shows the flow of coolant at the time of an accident when the primary system pump etc. stopped and when it started up. If the pump stops, pipe 22
The driving pressure of the liquid metal inside disappears.

境界面17における圧力バランスは崩れ、タンク側液体
金属19は流路14を通って1次側に流入するようにな
る。かくて、原子炉スクラム後、炉心11での崩壊熱発
生のため、ポンプ、熱交換器等゛1つ宝ない、流動抵抗
が小さいタンク側の流路をとる自然循環が形成される。
The pressure balance at the boundary surface 17 is disrupted, and the tank side liquid metal 19 comes to flow into the primary side through the flow path 14. In this way, after the reactor scram, due to the generation of decay heat in the reactor core 11, a natural circulation is formed in which a pump, a heat exchanger, etc. are not needed, and the flow path is on the tank side where the flow resistance is small.

磁場中の並列流路141は、タンク側の液体金属19を
炉心11に循環させるU字型の電磁フローカブラとして
機能するのみで実質的な流動抵抗の増加はない。
The parallel flow path 141 in the magnetic field only functions as a U-shaped electromagnetic flow coupler that circulates the liquid metal 19 on the tank side into the reactor core 11, and there is no substantial increase in flow resistance.

起動時には、タンク側の流路をとる自然循環にM3図に
示す流れ)によシ立上げた後、1次側のポンプ′4を作
動させ、タンク側に接続された配ばからの流れ全止めて
、第2図の流れの状態に移行させる。
At startup, the natural circulation that takes the flow path on the tank side (the flow shown in figure M3) is started. After startup, the primary side pump '4 is activated and the entire flow from the distribution outlet connected to the tank side is started. Stop and shift to the flow state shown in Figure 2.

第4図は本実施例の流体止め(電磁流体止め)を採用し
た高速増殖炉の全体構成と定常時及び事故時の液体金属
の流れを示す。図中、10はプール容器、11は炉心、
12は熱交換器、13は1次系のポンプ、15は上部流
体止め(第11図に示したものと同様の構造のもの)、
20は仕切シ筒、22は1次系流路壁、28は液体金属
の自由液面、29は熱交換器2次側配管であり、14お
よび21け夫々前述した流体止めの流路および磁石であ
る。炉心圧損ΔPyrictionをIMPaとし、液
体金属としての400℃のナトリウムの4電率σ= 4
.5 X 10 S/m、仕切り筒20内ぞのその流速
u = 2 m/Sとして、高さL = 1 mの電磁
流体止めに必要な磁場の強さBを前記式(1)から求め
ると0、33 Wb/m2となり、十分実現し得る。
FIG. 4 shows the overall configuration of a fast breeder reactor employing the fluid stop (magnetic fluid stop) of this embodiment and the flow of liquid metal during steady state and accident. In the figure, 10 is a pool container, 11 is a reactor core,
12 is a heat exchanger, 13 is a primary system pump, 15 is an upper fluid stop (similar structure to that shown in Fig. 11),
20 is a partition cylinder, 22 is a primary system channel wall, 28 is a free liquid surface of liquid metal, 29 is a heat exchanger secondary side piping, 14 and 21 are the above-mentioned fluid stop channel and magnet, respectively. It is. The core pressure drop ΔPyriction is IMPa, and the four-electric constant σ of sodium at 400°C as a liquid metal is 4.
.. 5 x 10 S/m, and the flow velocity inside the partition tube 20 is u = 2 m/s, and the strength B of the magnetic field required for a magnetic fluid stop of height L = 1 m is calculated from the above formula (1). 0.33 Wb/m2, which is quite achievable.

第6図は本発明の液体金属冷却高速炉の他の実施例を示
す。本実施例は、前記第4図の実施例において、ブール
10に高速中性子及び熱中性子の吸収断面積が大きい非
核分裂性物質を一様に混入させた液体金属35を満たし
たものである。また、1次系配管に前記混入物質の浄化
未配・g34を設けている。前記の実施例と同様にポン
プ13の故障時にはブールlOを通る自然循環が生じ、
炉心11に流入した中性子吸収材入り液体金属は炉心1
1の核分裂反応を停止させる。再起動時には浄化系を作
動させ1次系の液体金属中の中性子吸収材の濃度を低下
させて運転を始める。本実施例によれば事故時の炉心1
1の崩壊熱を除去できるのみならず原子炉の停止を制御
棒挿入といった能動的機器によらず実施できる効果があ
る。
FIG. 6 shows another embodiment of the liquid metal cooled fast reactor of the present invention. In this embodiment, in the embodiment shown in FIG. 4, the boule 10 is filled with a liquid metal 35 uniformly mixed with a non-fissile material having a large absorption cross section for fast neutrons and thermal neutrons. In addition, the primary system piping is provided with g34, which does not purify the contaminated substances. As in the previous embodiment, in the event of a failure of the pump 13, natural circulation occurs through the boule lO;
The liquid metal containing the neutron absorber that has flowed into the reactor core 11 is
Stop the nuclear fission reaction in step 1. When restarting, the purification system is activated to reduce the concentration of neutron absorbing material in the liquid metal in the primary system, and operation begins. According to this embodiment, the reactor core 1 at the time of an accident
Not only can the decay heat of No. 1 be removed, but the reactor can be shut down without using active equipment such as control rod insertion.

8g7図は本発明の原子炉の第3の実施例である液体金
属冷却のタンク型高速増殖炉を示す。タンク10内に原
子炉炉心11、熱交換器12、ポンflEを配置し、炉
心11の下部に前記実施例と同様に磁石21.電磁流路
14よりなる流体止めを設けている。タンク上部と下部
は仕切り板33で隔離している。ボッ113作動時には
実線の矢印で示すよつに、ポンプ13を出た液体金属は
炉心11で加熱され上部ブレナム100を経て、熱交換
器12に流入する。高温の1次側液体金属は熱交換器1
2で低温の2次側冷却材に熱と輸送し、温度を下げて下
部ブレナム101へ流出する。下部ブレナム内の液体金
属は流入口131からポンプ13に流入し、ポンプ13
で駆動圧を受けて1次系流路22を経て炉心11に環流
する。流体止めではこの駆動圧を電磁力で相殺して下部
ブレナム101から流路14を経て1次系に直接入ろう
とする液体金属の流れ?とめている。ポンプ13停止時
には、流動抵抗の小さい同流体止めの流路14を通りて
下部プレナム中の流体金属は炉心11へ環流することが
できる。本実施例によれば、ポンプ停止時に流動抵抗が
小さい流路を確保できるため、従来のタンク型高速炉よ
シもポンプ停止時の炉心流量が大きく、よシ安全性が高
まる効果がある。
Figure 8g7 shows a liquid metal cooled tank type fast breeder reactor which is a third embodiment of the nuclear reactor of the present invention. A reactor core 11, a heat exchanger 12, and a pump flE are arranged in the tank 10, and magnets 21. A fluid stop consisting of an electromagnetic flow path 14 is provided. The upper and lower parts of the tank are separated by a partition plate 33. When the pump 113 is activated, the liquid metal leaving the pump 13 is heated in the reactor core 11 and flows into the heat exchanger 12 via the upper blemish 100, as shown by the solid arrow. The high temperature primary liquid metal is transferred to heat exchanger 1.
At step 2, the heat is transferred to the low temperature secondary coolant, the temperature is lowered, and the coolant flows out to the lower blenheim 101. The liquid metal in the lower blenheim flows into pump 13 through inlet 131;
It receives a driving pressure and flows back into the reactor core 11 through the primary flow path 22. At the fluid stop, this driving pressure is offset by electromagnetic force, and the liquid metal flows directly from the lower brenum 101 through the flow path 14 into the primary system? It's stopped. When the pump 13 is stopped, the fluid metal in the lower plenum can flow back to the core 11 through the same fluid stop flow path 14 with low flow resistance. According to this embodiment, since a flow path with low flow resistance can be secured when the pump is stopped, the reactor core flow rate is large when the pump is stopped, which improves safety even in conventional tank-type fast reactors.

本発明の流体止めの他の実施例を第8図により説明する
。磁石210つくる磁場中に並列二流路25.26を磁
界(破線の矢印)に垂直方向に設ける。流路壁24及び
流路の隔離壁23は導逼注材料で作られてお9、磁界に
垂直な流路内面は絶縁材36で内張すしている。差動流
路下端では隔!23の一部を取除いてあり、従りて両流
路25゜26は下端でつながっている。一方の流路26
の下端は邪ま板27で閉塞している。
Another embodiment of the fluid stopper of the present invention will be described with reference to FIG. Two parallel channels 25 and 26 are provided in the magnetic field created by the magnet 210 in a direction perpendicular to the magnetic field (dashed arrow). The flow channel wall 24 and the flow channel separation wall 23 are made of a conductive material 9, and the inner surface of the flow channel perpendicular to the magnetic field is lined with an insulating material 36. There is a gap at the bottom end of the differential flow path! 23 has been removed, so that both channels 25 and 26 are connected at their lower ends. One channel 26
The lower end of is closed by a baffle plate 27.

第9図は第8図に示した実施例の流体止めをタンク型液
体金属冷却原子炉の炉心11の下部て設置した構成及び
その動作を示している。第9図中の流体止めの図示は第
8図(b)と同じ対応関係にあり、流路25.26中の
磁場は紙面に垂直な方向にかかつている。ポンプ13の
駆動圧で流路上端の静圧が小さい流路25は上昇流とな
る。導に性の流体たる液体金属が磁場を横切るため、同
液体金属中に第8図に示すように磁力線と流速ベクトル
が作る平面に垂直な方向に誘導電流を生じる。
FIG. 9 shows a structure in which the fluid stop of the embodiment shown in FIG. 8 is installed below the core 11 of a tank-type liquid metal cooled nuclear reactor, and its operation. The illustration of the fluid stops in FIG. 9 has the same correspondence as in FIG. 8(b), and the magnetic field in the flow channels 25, 26 is applied in a direction perpendicular to the plane of the paper. The driving pressure of the pump 13 causes an upward flow in the flow path 25 where the static pressure at the end of the flow path is small. Since the liquid metal, which is a conductive fluid, crosses the magnetic field, an induced current is generated in the liquid metal in a direction perpendicular to the plane formed by the magnetic lines of force and the flow velocity vector, as shown in FIG.

この誘導電流は隔離壁23を通って流路26中の液体金
属中を流れ、磁場と作用して同液体金属に下向きの′電
磁力を生ずる。この力は磁場の強で、磁場の領域(すな
わち流路中)によシ任意の強さに設定できる。この下向
きの力はIンプ13の駆動圧に起因する力と相殺して流
路26申の液体金属は静止する。一方、ポンプ13が停
止した場合には、駆動圧は音速で液体金属中を伝播する
ためほぼ瞬時になくなる。このため流路26中の液体金
属は下向きに流れ、次いで流路25f!:上昇するU字
流れとなる。以上のように、本実施例によれば任意の大
きさの静圧差のある二流体間に物理的な障壁を設けるこ
となく両者の間の流れを止めることができる。
This induced current flows through the separating wall 23 into the liquid metal in the channel 26 and interacts with the magnetic field to produce a downward electromagnetic force in the liquid metal. This force is the strength of the magnetic field and can be set to any strength depending on the region of the magnetic field (ie in the flow path). This downward force cancels out the force caused by the driving pressure of the I pump 13, and the liquid metal in the flow path 26 becomes stationary. On the other hand, when the pump 13 stops, the driving pressure disappears almost instantly because it propagates through the liquid metal at the speed of sound. Therefore, the liquid metal in the flow path 26 flows downward, and then flows through the flow path 25f! : An upward U-shaped flow. As described above, according to this embodiment, the flow between two fluids having an arbitrary magnitude of static pressure difference can be stopped without providing a physical barrier between the two fluids.

〔発明の効果〕〔Effect of the invention〕

本発明の電磁流体止めによれば、静圧の異る導電性の二
流体を直接接触させ、定常時にはその静圧差を補償して
その境界面を保持し、異常時には一方の流路内の流体を
他方の流路に流入させることができる。しかも本発明電
磁流体止めは、定常状態から事故状態への変化時に、動
作、機能上の変更が不要であシ、変更に必要な制御回路
、操作員の介入等が一切不要な固有安全性を有する。
According to the electromagnetic fluid stop of the present invention, two conductive fluids with different static pressures are brought into direct contact, and during normal conditions, the static pressure difference is compensated for and the interface is maintained, and during abnormal conditions, the fluid in one flow path is can flow into the other channel. Moreover, the electromagnetic fluid stop of the present invention does not require any changes in operation or function when changing from a steady state to an accident state, and has inherent safety that does not require any control circuitry or operator intervention for changes. have

また本発明の液体金属冷却タンク型高速原子炉によれば
、定常運転時には高温の1次系液体金属と低温のタンク
側液体金属との静圧差を補償して、両者の直接接触状態
で後者の前者への流入を止め、1次系ポンf事故時(C
はタンク側液体金属全炉心へ流入させ、流動抵抗の小さ
い自然循環冷却流路を確保できる。しかも定常運転状態
から事故状態への上記作動の切替りに際して可動部の動
作や制御回路、操作員の介入が一切不要であって、固有
安全性が得られる。
Further, according to the liquid metal cooled tank type fast reactor of the present invention, during steady operation, the static pressure difference between the high temperature primary liquid metal and the low temperature tank side liquid metal is compensated for, and the latter is kept in direct contact with the latter. Stop the flow to the former, and in the event of a primary system pon f accident (C
The liquid metal flows into the entire core on the tank side, ensuring a natural circulation cooling channel with low flow resistance. Furthermore, when the operation is switched from a steady state of operation to an accident state, there is no need for any movement of moving parts, control circuits, or operator intervention, thereby providing inherent safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は本発明の流体止めの1実施
例の夫々B −0−B’断面およびA −A’断面図、
第2図(a) 、 (b)は該実施例の定常運転時の状
態を示す夫々B −0−B’断面およびA −A’断面
図、第3図は該実施例のポンプ故障時の状、寒と示すB
 −0−B’断面図、第4図は上記流体止めを用いた本
発明のタンク型液体金属冷却高速炉の、断面図、第5図
;よ本発明の原理説明用断面図、第6図、′d本発明の
タンク型液体金属冷却原子炉の他の実施例を示す断面図
、第7図は本発明のタンク型液体金属冷却原子炉の更に
他の実施例を示す断面図、第8図(a、) 、 (b)
は本発明の流体止めの他の実施例を示す夫々乎t11i
断面およびA −A’断面図、第9図は第8図(a) 
、 (b)の流体止めを用いたタンク型液体金属冷却原
子炉の実施例を示す部分断面図、第10図は従来の・P
イアス軽水炉の構成および静圧分布金示す図、第11図
は第10図中の従来の流体止めと示す断面図、第12図
(a) 、 (b)は従来の電磁ブレーキを示す夫々横
断面および縦断面図、第13図は従来の電磁70−カプ
ラの横断面図、第14図はタンク型液体金属冷却高速炉
における静圧分布?示す図である。 ■・・液体金属    2・・・磁石 3・・・強磁性体    4・・・流路壁5.6・・・
磁石     7・・・素勅側液体金48・・・被駆動
側液体金属  9・・・金属導体仕切シ10・・・プー
ル容iG    l 1・・・原子炉炉心12・・・熱
交換器    13・・・1次系ポンプ14・・・下部
流体止め   15・・・上部流体止め16・・・加圧
器       17・・・高低温冷却材の境界面18
・・・高温冷却材   19・・・低温冷却材20・・
・仕切り筒    21・・・磁石22・・・流路壁 
    23・・・隔111傘24・・・e縁板   
  25,26・・・流路27・・・邪ま板     
28・・・自由液面29・・・熱交換2に次側配管  
30・・・熱遮へい板31・・・ルーフヌラプ  32
・・・炉上部機構33・・・隔壁もw造    34・
・・浄化系配管35・・・中性子吸収材入り液体金属。 :、+−,−”+ 谷  浩太部 第1図(0) 第2図(α) Φ冶れ ぐ=流れ (−−−一 磁力井原 □ 誘博電況 〈′;::’T:  事故時及び起動間の〉梵れ第6図 (ン=−コ 事故間の流れ −ボンブイ乍動開の1升で。 =−−−ポンプ不作初回の侃九 吟−一 力の方向 第10図 (Ph< P、、 p、  力[11H器y王刀)第1
2図(α) (−一磁界 く=コ)すれ O租面に平置、裏面がら表面方向への流れO紙面に単直
4表面カ゛ら裏面方向への流れ−誘F電;光
FIGS. 1(a) and 1(b) are B-0-B' cross-sectional views and A-A' cross-sectional views of one embodiment of the fluid stopper of the present invention, respectively;
Figures 2 (a) and (b) are B-0-B' and A-A' cross-sectional views, respectively, showing the state of this embodiment during steady operation, and Figure 3 is a diagram showing the state of this embodiment during pump failure. condition, cold B
-0-B' sectional view; FIG. 4 is a sectional view of the tank-type liquid metal cooled fast reactor of the present invention using the above fluid stop; FIG. 5 is a sectional view for explaining the principle of the present invention; FIG. , 'd is a cross-sectional view showing another embodiment of the tank-type liquid metal cooled nuclear reactor of the present invention; FIG. 7 is a cross-sectional view showing still another embodiment of the tank-type liquid metal cooled reactor of the present invention; Figures (a,), (b)
11i and 11i respectively show other embodiments of the fluid stopper of the present invention.
Cross section and A-A' sectional view, Figure 9 is Figure 8 (a)
, (b) is a partial cross-sectional view showing an embodiment of a tank-type liquid metal cooled reactor using a fluid stop; FIG.
A diagram showing the configuration and static pressure distribution of the IAS light water reactor, Figure 11 is a cross-sectional view showing the conventional fluid stop in Figure 10, and Figures 12 (a) and (b) are cross-sectional views showing the conventional electromagnetic brake. 13 is a cross-sectional view of a conventional electromagnetic 70-coupler, and FIG. 14 is a static pressure distribution in a tank-type liquid metal cooled fast reactor. FIG. ■...Liquid metal 2...Magnet 3...Ferromagnetic material 4...Channel wall 5.6...
Magnet 7...Liquid metal on the base side 48...Liquid metal on the driven side 9...Metal conductor partition 10...Pool volume iGl 1...Reactor core 12...Heat exchanger 13 ... Primary system pump 14 ... Lower fluid stop 15 ... Upper fluid stop 16 ... Pressurizer 17 ... Boundary surface of high and low temperature coolant 18
...High temperature coolant 19...Low temperature coolant 20...
・Partition tube 21... Magnet 22... Channel wall
23... Separation 111 Umbrella 24... e Edge plate
25, 26... Channel 27... Obstruction board
28...Free liquid level 29...Next piping to heat exchange 2
30... Heat shield plate 31... Roof nullap 32
... Furnace upper mechanism 33 ... Partition walls are also made of w 34.
...Purification system piping 35...Liquid metal containing neutron absorbing material. :,+-,-"+ Kota Tani Figure 1 (0) Figure 2 (α) Flow between time and start-up Fig. 6 (N=-ko Flow during the accident - 1 sho of the opening of the bonbuoy. Ph< P,, p, Power [11H y King Sword) 1st
Figure 2 (α) (-1 magnetic field = ko) Grasping O Laid flat on a flat surface, flow from the back side towards the front side

Claims (1)

【特許請求の範囲】 1、静圧差のある導電性の二流体を互に直接接触させた
状態で流れを止めるための電磁流体止めであって、上記
二流体のうち静圧の大なる方の流体が流れる第1流路と
、導電性の隔壁を介して第1流路と並行に隣接し且つ一
端にて第1流路と連通しており、内部に上記二流体の直
接接触境界面を保持する第2流路と、第1および第2流
路を横切る磁場を発生させる手段と、からなることを特
徴とする電磁流体止め。 2、原子炉炉心への1次系液体金属の流れる第1流路を
該炉心の下方に設け、タンク側液体金属と上端にて連通
し且つ下端において第1流路と連通している第2流路を
導電性の隔壁を介して第1流路と並行に隣接配置し、第
1および第2流路を横切る磁場を発生する手段を設け、
第2流路内に1次系液体金属とタンク側液体金属との直
接接触境界面を保持するように構成したことを特徴とす
る液体金属冷却タンク型高速炉。
[Claims] 1. An electromagnetic fluid stop for stopping the flow of two conductive fluids with a static pressure difference in direct contact with each other, which of the two fluids has a greater static pressure. A first flow path through which a fluid flows, and is adjacent to the first flow path in parallel with the first flow path through a conductive partition wall and communicates with the first flow path at one end, and has a direct contact interface between the two fluids inside. A magnetic fluid stop comprising: a second flow path for holding; and means for generating a magnetic field across the first and second flow paths. 2. A first channel through which the primary liquid metal flows to the reactor core is provided below the reactor core, and a second channel communicates with the liquid metal on the tank side at the upper end and the first channel at the lower end. disposing the flow channel parallel to and adjacent to the first flow channel via a conductive partition, and providing means for generating a magnetic field across the first and second flow channels;
A liquid metal cooled tank type fast reactor characterized in that it is configured to maintain a direct contact interface between the primary liquid metal and the tank side liquid metal in the second flow path.
JP60213823A 1985-09-27 1985-09-27 Electromagnetic fluid stopper and liquid metal cooling tank type fast reactor using the same Expired - Lifetime JPH068889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213823A JPH068889B2 (en) 1985-09-27 1985-09-27 Electromagnetic fluid stopper and liquid metal cooling tank type fast reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213823A JPH068889B2 (en) 1985-09-27 1985-09-27 Electromagnetic fluid stopper and liquid metal cooling tank type fast reactor using the same

Publications (2)

Publication Number Publication Date
JPS6273191A true JPS6273191A (en) 1987-04-03
JPH068889B2 JPH068889B2 (en) 1994-02-02

Family

ID=16645616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213823A Expired - Lifetime JPH068889B2 (en) 1985-09-27 1985-09-27 Electromagnetic fluid stopper and liquid metal cooling tank type fast reactor using the same

Country Status (1)

Country Link
JP (1) JPH068889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065203A (en) * 2022-08-16 2022-09-16 成都微精电机股份公司 Relative position adjusting structure and method for motor and rotary encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065203A (en) * 2022-08-16 2022-09-16 成都微精电机股份公司 Relative position adjusting structure and method for motor and rotary encoder
CN115065203B (en) * 2022-08-16 2022-11-11 成都微精电机股份公司 Relative position adjusting structure and method for motor and rotary encoder

Also Published As

Publication number Publication date
JPH068889B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP2659632B2 (en) Passive cooling safety system for liquid metal cooled reactor
US4367194A (en) Emergency core cooling system
US7526057B2 (en) Decay heat removal system for liquid metal reactor
US5276720A (en) Emergency cooling system and method
JP2002156485A (en) Reactor
JPS62265597A (en) Auxiliary cooling system of radiating vessel
EP0397509A2 (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
EP0410667B1 (en) Liquid metal cooled nuclear reactors with passive cooling system
JPS61262501A (en) Double pipe helical coil type steam generator
US3830695A (en) Nuclear reactor
CN109473184B (en) Embedded lead bismuth alloy loop for fuel irradiation test
JPS6273191A (en) Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop
US5289511A (en) Liquid-metal cooled nuclear reactor
JPH067180B2 (en) Reactor with integrated pressure vessel structure
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
JPH02210295A (en) Auxiliary reactor core cooling device
JPH03226695A (en) Fast breeder reactor without secondary system, and its steam generator
JPS6219677B2 (en)
JPS60113190A (en) Cooling system of boiling-water type reactor
JPS6130237B2 (en)
JPH058996B2 (en)
JPS59217198A (en) Reactor heat transfer facility
JPS59120993A (en) Reactor cooling device
JPS5929840B2 (en) Nuclear reactor core cooling system