JPS6219677B2 - - Google Patents

Info

Publication number
JPS6219677B2
JPS6219677B2 JP56179753A JP17975381A JPS6219677B2 JP S6219677 B2 JPS6219677 B2 JP S6219677B2 JP 56179753 A JP56179753 A JP 56179753A JP 17975381 A JP17975381 A JP 17975381A JP S6219677 B2 JPS6219677 B2 JP S6219677B2
Authority
JP
Japan
Prior art keywords
plenum
heat exchanger
sodium
hot
primary coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56179753A
Other languages
Japanese (ja)
Other versions
JPS5883181A (en
Inventor
Tsukasa Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56179753A priority Critical patent/JPS5883181A/en
Publication of JPS5883181A publication Critical patent/JPS5883181A/en
Publication of JPS6219677B2 publication Critical patent/JPS6219677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱交換器の流路構造に係り、特に、
タンク型原子炉の原子炉容器内に設けられる中間
熱交換器の流路構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flow path structure of a heat exchanger, and in particular,
The present invention relates to a flow path structure of an intermediate heat exchanger provided in a reactor vessel of a tank-type nuclear reactor.

〔従来の技術〕[Conventional technology]

タンク型原子炉の炉心に生じた熱は、一次冷却
材に吸収され、原子炉容器内に設けた中間熱交換
器を介して二次冷却材で取り出される。このよう
なタンク型原子炉の構造の一例を第3図に示す。
Heat generated in the core of a tank-type nuclear reactor is absorbed by the primary coolant and extracted by the secondary coolant via an intermediate heat exchanger provided within the reactor vessel. An example of the structure of such a tank-type nuclear reactor is shown in FIG.

図において、原子炉容器10は、仕切構造11
により、下部中心に炉心12を収納したホツトプ
レナム14と、その周囲に形成されたコールドプ
レナム16とに仕切られている。コールドプレナ
ム16には、複数の循環ポンプ18が設置され、
一次系配管20を介して、コールドプレナム中の
冷却材である液体金属ナトリウム22(以下ナト
リウムという)をホツトプレナム14に送つてい
る。また、上部がホツトプレナム14に開口し下
部がコールドプレナムに開口した流路を有する中
間熱交換器24(以下熱交換器という)には、二
次系配管26中を流れる冷却材である二次系ナト
リウムの流路が形成され、炉心12を冷却し暖め
られた一次系のナトリウム22と二次系ナトリウ
ムとの間で熱交換がなされる。すなわち、炉心1
2を冷却しつつホツトプレナム14内を上昇した
一次系ナトリウムは、ホツトプレナム14の周囲
に複数配設された熱交換器24の上部から熱交換
器内に入り、二次系ナトリウムを暖めて自らは冷
却され、熱交換器24内を流下し、コールドプレ
ナム16内に入る。一方、二次系ナトリウムは、
熱交換器24内で高温に暖められ、二次系配管2
6から図示しない蒸気発生器に送られる。
In the figure, the reactor vessel 10 includes a partition structure 11
The reactor core 12 is partitioned into a hot plenum 14 housing the core 12 in the center of the lower part, and a cold plenum 16 formed around the hot plenum 14. A plurality of circulation pumps 18 are installed in the cold plenum 16,
Liquid metal sodium 22 (hereinafter referred to as sodium), which is a coolant in the cold plenum, is sent to the hot plenum 14 via the primary system piping 20. In addition, the intermediate heat exchanger 24 (hereinafter referred to as a heat exchanger), which has a flow path whose upper part opens to the hot plenum 14 and whose lower part opens to the cold plenum, has a secondary system, which is a coolant flowing in the secondary system piping 26. A sodium flow path is formed, and heat exchange is performed between the primary system sodium 22, which has cooled and warmed the core 12, and the secondary system sodium. That is, core 1
The primary sodium, which has risen inside the hot plenum 14 while cooling the sodium, enters the heat exchanger from the upper part of the heat exchanger 24 arranged around the hot plenum 14, warms the secondary sodium, and cools itself. and flows down through the heat exchanger 24 and into the cold plenum 16. On the other hand, secondary sodium is
It is heated to a high temperature in the heat exchanger 24, and the secondary system piping 2
6 to a steam generator (not shown).

なお、符号28は、ホツトプレナム14中のナ
トリウム22の自由液面を示し、符号30はコー
ルドプレナム16中のナトリウム22の自由液面
を示す。
Note that the reference numeral 28 indicates the free liquid level of the sodium 22 in the hot plenum 14, and the reference numeral 30 indicates the free liquid level of the sodium 22 in the cold plenum 16.

上記タンク型原子炉内に設けられている熱交換
器の従来の流路構造を第4図、第5図に示す。
The conventional flow path structure of the heat exchanger provided in the tank-type nuclear reactor is shown in FIGS. 4 and 5.

第4図はゲートバルブ方式の熱交換器である。
熱交換器24の本体の25の上部フランジ32は
原子炉格納器のルーフスラブ34に取り付けら
れ、中心に二次系ナトリウムを流下させる下降管
36が二次系配管26と一体的に形成されてい
る。この下降管36の周囲には、二次系ナトリウ
ムの上昇管38があり、上部で二次系配管26に
接続されている。上昇管38の大径部40上端に
は上管板42が形成され、下端には下管板44が
形成されている。さらに、上管板42、大径部4
0、下管板44を貫通して多数の伝熱管46が設
けられており、上管板42の上方の入口部48及
び開口50を介して、ホツトプレナム14とコー
ルドプレナム16とを連通している。なお、開口
50の上端は、ホツトプレナム14のナトリウム
の自由液面28よりも低い位置にある。
Figure 4 shows a gate valve type heat exchanger.
The upper flange 32 of 25 of the main body of the heat exchanger 24 is attached to the roof slab 34 of the reactor containment vessel, and a downcomer pipe 36 through which secondary system sodium flows down is formed integrally with the secondary system piping 26 at the center. There is. Surrounding this downcomer pipe 36 is a secondary sodium riser pipe 38, which is connected to the secondary system piping 26 at the upper part. An upper tube plate 42 is formed at the upper end of the large diameter portion 40 of the riser pipe 38, and a lower tube plate 44 is formed at the lower end. Further, the upper tube plate 42, the large diameter portion 4
0, a large number of heat transfer tubes 46 are provided passing through the lower tube plate 44, and communicate the hot plenum 14 and the cold plenum 16 via the upper inlet portion 48 and opening 50 of the upper tube plate 42. . Note that the upper end of the opening 50 is located at a position lower than the free sodium liquid level 28 of the hot plenum 14.

熱交換器24の本体25の周囲には、ホツトプ
レナム14とコールドプレナム16とを区分する
仕切板52が設けられている。仕切板52は、上
端が開口50の下端とほぼ同じ高さにある。仕切
板52の中間部には、本体25と仕切板52との
間にシール部54が形成され、ホツトプレナム1
4とコールドプレナム16との連絡を断つてい
る。また、仕切板上端付近の周側面にはフランジ
56を設けてあり、上下するゲートバルブ58の
ゲート下端をフランジ56の上面に受け、ホツト
プレナム14とコールドプレナム16との連通を
遮断できる。
A partition plate 52 is provided around the main body 25 of the heat exchanger 24 to separate the hot plenum 14 and the cold plenum 16. The upper end of the partition plate 52 is located at approximately the same height as the lower end of the opening 50. A seal portion 54 is formed between the main body 25 and the partition plate 52 at an intermediate portion of the partition plate 52, and a seal portion 54 is formed between the main body 25 and the partition plate 52.
4 and Cold Plenum 16 have been cut off. Further, a flange 56 is provided on the circumferential side near the upper end of the partition plate, and the lower end of the gate of the gate valve 58 that moves up and down is received on the upper surface of the flange 56, thereby making it possible to cut off communication between the hot plenum 14 and the cold plenum 16.

本体25、仕切板52、シール部54、フラン
ジ56、ゲートバルブ58により形成されるガス
注入室60には、ガスノズル62からガスを注入
して液面の高さを調節可能である。
Gas is injected from a gas nozzle 62 into a gas injection chamber 60 formed by the main body 25, the partition plate 52, the seal portion 54, the flange 56, and the gate valve 58 to adjust the height of the liquid level.

第5図はガス圧により流路を遮断するガス圧方
式の熱交換器である。図において、下管板44の
下方には、下降管36の下端に通じた略半球状の
室64が形成されている。室64と上管板42上
方の合流部66との間には、多数の伝熱管68が
設けられ、下降管36から入つてきた二次系ナト
リウムを上昇管38に導く。また、上管板42と
下管板44との間は、上部開口70と下部開口7
2とが形成された流路となつており、ホツトプレ
ナム14中の一次系ナトリウム22が伝熱管68
に接しつつコールドプレナム16に流下する。す
なわち、第4図のゲートバルブ方式の熱交換器と
第5図のガス圧方式の熱交換器では、伝熱管内を
流れるナトリウムが一次系のナトリウムか二次系
のナトリウムかの違いはあるが、熱交換部の機能
には差がない。
FIG. 5 shows a gas pressure type heat exchanger that shuts off the flow path using gas pressure. In the figure, a substantially hemispherical chamber 64 communicating with the lower end of the downcomer pipe 36 is formed below the lower tube plate 44 . A large number of heat transfer tubes 68 are provided between the chamber 64 and the confluence section 66 above the upper tube plate 42 to guide the secondary sodium coming in from the downcomer pipe 36 to the riser pipe 38 . Further, between the upper tube plate 42 and the lower tube plate 44, an upper opening 70 and a lower opening 7 are provided.
The primary sodium 22 in the hot plenum 14 flows through the heat transfer tube 68.
It flows down into the cold plenum 16 while contacting the cold plenum 16. In other words, between the gate valve type heat exchanger shown in Figure 4 and the gas pressure type heat exchanger shown in Figure 5, there is a difference in whether the sodium flowing in the heat transfer tubes is primary sodium or secondary sodium. , there is no difference in the function of the heat exchange part.

仕切板52には、第4図の型式と異なり、フラ
ンジがなく、本体25の上部周囲には、ゲートバ
ルブに代えて隔壁72が設けられている。隔壁7
2の下端はホツトプレナム14中の一次系ナトリ
ウム22中まで達し、本体25と共に下方に開口
したガス注入室74を形成している。なお、符号
76は、ガス注入室74に不活性ガスを圧入した
場合のナトリウム自由液面である。
Unlike the type shown in FIG. 4, the partition plate 52 does not have a flange, and a partition wall 72 is provided around the upper part of the main body 25 in place of the gate valve. Bulkhead 7
The lower end of 2 reaches into the primary sodium 22 in the hot plenum 14, and together with the main body 25, forms a gas injection chamber 74 that opens downward. Note that the reference numeral 76 is the sodium free liquid level when inert gas is pressurized into the gas injection chamber 74.

タンク型原子炉には、上記熱交換器が複数設け
られており、そのうちの1台についてメインテナ
ンスが必要となつた場合、次のようにして熱交換
器の管束引き抜きや隔離がなされる。
A tank-type nuclear reactor is provided with a plurality of heat exchangers, and when maintenance is required for one of the heat exchangers, the tube bundle of the heat exchanger is pulled out and isolated as follows.

第4図のゲートバルブ方式では、ゲートバルブ
58を降下させ、フランジ56に当接させてホツ
トプレナム14とコールドプレナム16との連通
を遮断し、ガスノズル62からガス注入室60に
不活性ガスを注入することにより、伝熱管46に
一次系ナトリウム22が流れないようにしてから
必要な作業を行う。
In the gate valve method shown in FIG. 4, the gate valve 58 is lowered and brought into contact with the flange 56 to cut off communication between the hot plenum 14 and the cold plenum 16, and inert gas is injected into the gas injection chamber 60 from the gas nozzle 62. This prevents the primary sodium 22 from flowing into the heat transfer tube 46 before performing the necessary work.

一方、第5図のガス圧方式では、ガスノズル6
2から不活性ガスを圧入し、ガス注入室74内の
一次系ナトリウム22の自由液面を上部開口70
より下方に押し下げ、一次系ナトリウム22の流
れを遮断して行う。
On the other hand, in the gas pressure method shown in Fig. 5, the gas nozzle 6
2, the free liquid level of the primary sodium 22 in the gas injection chamber 74 is raised to the upper opening 70.
This is done by pushing it further down and blocking the flow of the primary sodium 22.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、ゲートバルブ方式においては、機器
の大型化に伴いゲートバルブ58とフランジ56
との間のシール性が悪くなり、信頼性に欠ける。
また、仕切板52が炉心12の出力上昇に伴う温
度上昇で半径方向に膨張するのに対し、本体25
は比較的低温のルーフスラブに取り付けられてい
るため、低温に保持され膨張量が比較的少ない。
従つて、仕切板52と本体25との膨張の差のた
め、シール部54におけるシール性が悪くなり、
一次系ナトリウム22の流れを十分に遮断できな
いおそれがある。
However, in the gate valve method, as the equipment becomes larger, the gate valve 58 and flange 56 are
The seal between the
In addition, while the partition plate 52 expands in the radial direction due to the temperature rise accompanying the increase in the output of the reactor core 12, the main body 25 expands in the radial direction.
Because it is attached to a relatively cold roof slab, it is maintained at a low temperature and has a relatively small amount of expansion.
Therefore, due to the difference in expansion between the partition plate 52 and the main body 25, the sealing performance at the seal portion 54 deteriorates.
There is a possibility that the flow of primary sodium 22 cannot be sufficiently blocked.

一方のガス圧方式においては、ガス注入室74
に不活性ガスを圧入していることから、ガス配管
系のガス漏れにより一次系ナトリウムの自由液面
が回復し、本体25内を一次系ナトリウム22が
流れるおそれがある。また、炉心12の出力が変
わるときに、自由液面28が変動し、それに伴い
自由液面76も変動して、注入した不活性ガスが
隔壁72の下端をこえ、ナトリウム22中に巻き
込まれるおそれがある。さらに、上管板42の上
部近傍のナトリウム自由液面に当る部分75に
は、炉心12の出力上昇時等の熱過渡時に、一次
系ナトリウムと二次系ナトリウムとの温度差に基
づく熱応力が生じる。
In one gas pressure method, the gas injection chamber 74
Since the inert gas is pressurized into the main body 25, there is a risk that the free liquid level of the primary sodium will recover due to gas leakage in the gas piping system, and the primary sodium 22 will flow inside the main body 25. Furthermore, when the output of the core 12 changes, the free liquid level 28 changes, and the free liquid level 76 also changes accordingly, and there is a risk that the inert gas that has been injected will exceed the lower end of the partition wall 72 and be drawn into the sodium 22. There is. Furthermore, the portion 75 near the top of the upper tube plate 42 that corresponds to the sodium free liquid level is subject to thermal stress due to the temperature difference between the primary sodium system and the secondary system sodium during thermal transients such as when the power of the reactor core 12 increases. arise.

本発明の目的は、熱交換器のメンテナンス等が
必要なときに一次系ナトリウムの流れを完全に遮
断できる熱交換器の流路構造を提供することであ
る。
An object of the present invention is to provide a flow path structure for a heat exchanger that can completely block the flow of primary sodium when maintenance of the heat exchanger is required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、ホツト
プレナムとその下部に位置するコールドプレナム
とを連通しホツトプレナム内の高温一次冷却材を
コールドプレナムに流す流路を有し、流路と熱的
に接しながら逆方向に流れる二次冷却材に高温一
次冷却材の熱を吸収させ熱交換を行う熱交換器の
基本構造に対し、熱交換器の上端部周囲に気密に
固定され下部がホツトプレナム内の高温一次冷却
材中に開口し減圧室を形成する隔壁を設け、ホツ
トプレナムとコールドプレナムとをシールしつつ
両プレナムの仕切構造から熱交換器周囲に沿つて
減圧室まで立ち上がり上端がホツトプレナム内の
高温一次冷却材の自由液面よりも高く設定された
仕切板を形成し、減圧室内を減圧し高温一次冷却
材に仕切板を乗り越えさせて熱交換器に流入させ
る一方、減圧を解くと高温一次冷却材の液面を仕
切板上端よりも下げ流入を停止させる減圧手段を
備えた熱交換器の流路構造を提案するものであ
る。
In order to achieve the above object, the present invention has a flow path that communicates a hot plenum with a cold plenum located below the hot plenum and allows a high temperature primary coolant in the hot plenum to flow into the cold plenum, and is in thermal contact with the flow path. The basic structure of a heat exchanger is that the secondary coolant flowing in the opposite direction absorbs the heat of the high-temperature primary coolant and performs heat exchange. A partition wall that opens into the primary coolant and forms a decompression chamber is installed, sealing the hot plenum and cold plenum, and rising from the partition structure of both plenums to the decompression chamber along the circumference of the heat exchanger, with the upper end serving as the high-temperature primary cooling inside the hot plenum. A partition plate is set higher than the free liquid level of the material, and the pressure inside the vacuum chamber is reduced to allow the high temperature primary coolant to overcome the partition plate and flow into the heat exchanger. This paper proposes a flow path structure for a heat exchanger that is equipped with a pressure reducing means that lowers the liquid level below the upper end of the partition plate and stops the inflow.

〔作用〕[Effect]

本発明においては、一次冷却材の自由液面より
も下まで差し込んだ隔壁と熱交換器本体の外壁に
より形成される減圧室に、前記自由液面よりも高
い上端を有する仕切板を配置し、一次冷却材を流
入させたいときは減圧室を減圧してサイフオン作
用により前記仕切板を越えさせる一方、一次冷却
材の流入を遮断したいときは、減圧を解除し前記
サイフオン作用を中止するだけでよいので、一次
冷却材の流れを完全に遮断できる熱交換器の流路
構造が得られる。
In the present invention, a partition plate having an upper end higher than the free liquid level is disposed in a reduced pressure chamber formed by the partition wall inserted below the free liquid level of the primary coolant and the outer wall of the heat exchanger body, If you want to let the primary coolant flow in, you can reduce the pressure in the vacuum chamber and use the siphon effect to cross the partition plate, while if you want to block the inflow of the primary coolant, you just need to release the pressure reduction and stop the siphon effect. Therefore, a flow path structure of the heat exchanger that can completely block the flow of the primary coolant can be obtained.

従つて、一次冷却材流路遮断機構に不具合が生
じたときには、従来例では、一次冷却材が流れて
しまつたが、本発明では、再び減圧しない限り、
一次冷却材が流れてしまう心配がないので、メン
テナンス等のその後に続く作業の安全性が高い。
Therefore, when a malfunction occurs in the primary coolant flow path blocking mechanism, in the conventional example, the primary coolant flows, but in the present invention, unless the pressure is reduced again, the primary coolant flows.
Since there is no need to worry about the primary coolant flowing out, subsequent work such as maintenance is highly safe.

〔実施例〕〔Example〕

次に、本発明による熱交換器の流路構造の好ま
しい実施例を第1図と第2図により説明する。な
お、従来技術において説明した部分に対応する部
分については、同一の符号を付して、その説明を
省略する。
Next, a preferred embodiment of the flow path structure of a heat exchanger according to the present invention will be described with reference to FIGS. 1 and 2. Note that parts corresponding to those described in the prior art are given the same reference numerals, and the description thereof will be omitted.

第1図は、本発明による熱交換器の流路構造の
一実施例を示す図である。図において熱交換器8
0は、伝熱管68に二次系ナトリウムが流れる構
造の熱交換器であり、従来の第5図例と対応する
型式となつている。この熱交換器80において、
ホツトプレナム14とコールドプレナム16とを
区分している仕切板82の上端は、ホツトプレナ
ム14内の一次系ナトリウム22の自由液面28
より高くしてある。熱交換器80の本体84の上
部周側面には、断面逆L字形の隔壁86がその先
端88を下方に向けて本体84の円周に沿い形成
されている。隔壁86は、先端88が仕切板82
より外方に位置し、一次系ナトリウム22内に浸
漬され、本体84とともに、ナトリウム22中に
開口した減圧室90を形成している。減圧室90
の上端部には、開口92が設けられ、この開口9
2に図示しない真空ポンプに接続された減圧管9
4が接続されている。
FIG. 1 is a diagram showing an embodiment of the flow path structure of a heat exchanger according to the present invention. In the figure, heat exchanger 8
0 is a heat exchanger having a structure in which secondary sodium flows through heat transfer tubes 68, and is of a type corresponding to the conventional example shown in FIG. In this heat exchanger 80,
The upper end of the partition plate 82 that separates the hot plenum 14 and the cold plenum 16 is located at the free liquid level 28 of the primary sodium 22 in the hot plenum 14.
It's higher. A partition wall 86 having an inverted L-shaped cross section is formed along the circumference of the main body 84 with its tip 88 facing downward on the upper peripheral side surface of the main body 84 of the heat exchanger 80 . The partition wall 86 has a tip 88 that is connected to the partition plate 82.
It is located further outward, is immersed in the primary sodium system 22, and forms, together with the main body 84, a decompression chamber 90 that opens into the sodium 22. Decompression chamber 90
An opening 92 is provided at the upper end of the opening 9.
2, a pressure reducing pipe 9 connected to a vacuum pump (not shown)
4 is connected.

上記構成の本実施例の作用は、次の通りであ
る。一次系ナトリウム22と伝熱管68中を流れ
る二次系ナトリウムとの間で熱交換を行うとき
は、まず、図示しない真空ポンプを駆動し減圧室
90内を負圧にする。そして、ホツトプレナム1
4中の一次系ナトリウム22を負圧力により減圧
室90から減圧管94内に吸い上げ、この吸い上
げたナトリウム22を図示しない弁を閉じて減圧
管94内で固化させ、いわゆるナトリウムフリー
ズを行う。従つて、減圧室90内は、真空ポンプ
の駆動を停止させても負圧状態に保たれ、ホツト
プレナム14内のナトリウムが減圧室90に入
り、自由液面28より高い位置にある仕切板82
の上端を越え、いわゆるサイフオン作用により上
部開口70に流れ込む。そして、ナトリウム22
は伝熱管70と接触して二次系ナトリウムと熱交
換し、本体84内の流路を冷却されつつ流下し
て、下部開口72からコールドプレナム16内に
入る。一方、下降管36により本体84内に導か
れ二次系ナトリウムは、下部の室64で反転して
伝熱管68に入り、伝熱管68内で熱せられつつ
上昇し、合流部66と上昇管38とを経て二次系
配管26に入り、図示しない蒸気発生器に送られ
る。
The operation of this embodiment having the above configuration is as follows. When heat exchange is performed between the primary sodium 22 and the secondary sodium flowing through the heat transfer tube 68, first, a vacuum pump (not shown) is driven to create a negative pressure in the decompression chamber 90. And hot plenum 1
The primary sodium 22 in 4 is sucked up from the pressure reduction chamber 90 into the pressure reduction pipe 94 by negative pressure, and the sucked up sodium 22 is solidified in the pressure reduction pipe 94 by closing a valve (not shown), thereby performing a so-called sodium freeze. Therefore, the interior of the decompression chamber 90 is maintained at a negative pressure state even when the vacuum pump is stopped, and the sodium in the hot plenum 14 enters the decompression chamber 90 and reaches the partition plate 82 located at a position higher than the free liquid level 28.
and flows into the upper opening 70 by a so-called siphon effect. And sodium 22
comes into contact with the heat transfer tube 70 to exchange heat with the secondary sodium, flows down the flow path in the main body 84 while being cooled, and enters the cold plenum 16 through the lower opening 72. On the other hand, the secondary sodium introduced into the main body 84 by the downcomer pipe 36 is reversed in the lower chamber 64 and enters the heat exchanger tube 68, and rises while being heated within the heat exchanger tube 68, and reaches the confluence part 66 and the riser pipe 38. It enters the secondary system piping 26 through the , and is sent to a steam generator (not shown).

さて、この熱交換器80のメンテナンスが必要
となり、一次系ナトリウム22の流れを遮断した
いときには、減圧管94内の固化したナトリウム
を適当な方法により融解させる。
Now, when maintenance of the heat exchanger 80 is required and it is desired to shut off the flow of the primary sodium 22, the solidified sodium in the pressure reducing pipe 94 is melted by an appropriate method.

減圧室94内のナトリウムは融解され、図示し
ない弁を開くと減圧室90内に流下し、減圧室内
がホツトプレナム14内の圧力に戻る。そのた
め、減圧室90内の自由液面は、ホツトプレナム
14内の自由液面28と同等の位置まで低下し、
仕切板82により上部開口70への流入が妨げら
れ、一次系ナトリウム22の流れが遮断される。
The sodium in the decompression chamber 94 is melted and flows down into the decompression chamber 90 when a valve (not shown) is opened, and the pressure in the decompression chamber returns to the pressure in the hot plenum 14 . Therefore, the free liquid level in the decompression chamber 90 drops to a position equivalent to the free liquid level 28 in the hot plenum 14,
The partition plate 82 prevents the flow of the primary sodium 22 into the upper opening 70, thereby blocking the flow of the primary sodium 22.

このように、タンク型原子炉内に設けられた複
数の熱交換器のうち1台のメンテナンスを必要と
するときは、その熱交換器の減圧管中のナトリウ
ムを融解して減圧室90内のサイフオン作用を断
ち、一次系ナトリウム22の流れを遮断すると、
メンテナンスが容易にできる。
In this way, when maintenance is required for one of the plurality of heat exchangers installed in a tank-type nuclear reactor, the sodium in the pressure reducing tube of that heat exchanger is melted and the pressure inside the pressure reducing chamber 90 is reduced. When the siphon action is cut off and the flow of primary sodium 22 is blocked,
Maintenance is easy.

さらに、原子炉の出力上昇時等の熱過渡時に、
従来上管板42の近傍の部分73に生じていた熱
応力は、この部分73を一次系ナトリウム22が
濡らすため、低減できる。
Furthermore, during thermal transients such as when the output of a nuclear reactor increases,
Thermal stress that conventionally occurred in a portion 73 near the upper tube plate 42 can be reduced because this portion 73 is wetted by the primary sodium 22.

第2図は、本発明による他の実施例の流路構造
を示す図であり、従来の第4図例に対応する。本
実施例においては、一次系ナトリウム22が伝熱
管46内を流れ、二次系ナトリウムが伝熱管46
の周囲を流れるようになつている。この場合も、
第1図実施例と同様に、減圧室90内を負圧に保
てば一次系ナトリウムを熱交換器80に流入させ
ることができ、減圧を中止すると二次系ナトリウ
ムの流れを遮断可能である。
FIG. 2 is a diagram showing the flow path structure of another embodiment according to the present invention, and corresponds to the conventional example in FIG. 4. In this embodiment, the primary sodium 22 flows through the heat exchanger tube 46, and the secondary sodium flows through the heat exchanger tube 46.
It flows around the area. In this case too,
As in the embodiment shown in FIG. 1, if the inside of the decompression chamber 90 is maintained at a negative pressure, the primary sodium system can flow into the heat exchanger 80, and if the depressurization is stopped, the flow of the secondary system sodium can be cut off. .

いずれの実施例の場合でも、減圧がなくなると
一次系ナトリウムが流れなくなり、いわゆるフエ
イルセーフ構造となつているので、流路遮断機構
に不具合が生じたときに一次系ナトリウムが流れ
てしまう従来例と比較して、安全性が極めて高
い。なお、前記実施例は、タンク型原子炉に使用
される中間熱交換器について説明したが、本発明
は、補助炉心冷却系中間熱交換器、コールドトラ
ツプ等のホツトプレナムとコールドプレナムとの
間に流路を有する機器についても適用できる。
In any case, the primary sodium stops flowing when the reduced pressure is removed, creating a so-called fail-safe structure, compared to conventional examples in which the primary sodium flows when a failure occurs in the flow path blocking mechanism. Therefore, it is extremely safe. In addition, although the above-mentioned embodiment described an intermediate heat exchanger used in a tank-type nuclear reactor, the present invention provides an intermediate heat exchanger for an auxiliary core cooling system, a cold trap, etc. between a hot plenum and a cold plenum. It can also be applied to devices having flow paths.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、減圧室を減圧した状態で一次
系ナトリウムを熱交換器に流入させる一方、この
減圧を中止すると一次系ナトリウムの流れを完全
に遮断できる熱交換器の流路構造が得られる。
According to the present invention, it is possible to obtain a heat exchanger flow path structure that allows primary sodium to flow into the heat exchanger while reducing the pressure in the decompression chamber, while completely blocking the flow of the primary sodium when this depressurization is stopped. .

特に、流路遮断機構に不具合が生じたときに、
一次系ナトリウムが流れてしまう従来例と異な
り、本発明では、一次系ナトリウムを流すための
減圧状態が万一破れたときには、一次系ナトリウ
ムの流れが停止してしまうフエイルセーフ構造と
なつているので、安全性が極めて高い。
In particular, when a failure occurs in the flow path blocking mechanism,
Unlike the conventional example in which the primary sodium flows, the present invention has a fail-safe structure in which the flow of the primary sodium stops if the reduced pressure state for flowing the primary sodium is broken. Extremely safe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱交換器の流路構造の一
実施例を示す図、第2図は同じく他の実施例を示
す図、第3図はタンク型原子炉の構造の一例を示
す図、第4図は従来のゲートバルブ方式の熱交換
器の流路構造を示す図、第5図は従来のガス圧方
式の熱交換器の流路構造を示す図である。 14……ホツトプレナム、16……コールドプ
レナム、24……熱交換器、26……二次系配
管、36……下降管、38……上昇管、46……
伝熱管、52……仕切板、54……シール部、5
8……ゲートバルブ、60……ガス注入室、62
……ガス注入ノズル、68……伝熱管、72……
隔壁、74……ガス注入室、80……熱交換器、
82……仕切板、86……隔壁、90……減圧
室、94……減圧管。
FIG. 1 is a diagram showing one embodiment of the flow path structure of a heat exchanger according to the present invention, FIG. 2 is a diagram showing another embodiment, and FIG. 3 is a diagram showing an example of the structure of a tank-type nuclear reactor. , FIG. 4 is a diagram showing the flow path structure of a conventional gate valve type heat exchanger, and FIG. 5 is a diagram showing the flow path structure of a conventional gas pressure type heat exchanger. 14...Hot plenum, 16...Cold plenum, 24...Heat exchanger, 26...Secondary system piping, 36...Down pipe, 38...Rising pipe, 46...
Heat exchanger tube, 52... Partition plate, 54... Seal portion, 5
8...Gate valve, 60...Gas injection chamber, 62
... Gas injection nozzle, 68 ... Heat exchanger tube, 72 ...
Partition wall, 74... gas injection chamber, 80... heat exchanger,
82... Partition plate, 86... Partition wall, 90... Decompression chamber, 94... Decompression pipe.

Claims (1)

【特許請求の範囲】 1 熱源からの熱を吸収し高温となつた一次冷却
材を収容するホツトプレナムと前記熱源部分に送
り込む前の比較的低温の一次冷却材を収容するコ
ールドプレナムとを分ける仕切構造を貫いて配置
され、前記ホツトプレナムとその下部に位置する
前記コールドプレナムとを連通しホツトプレナム
内の高温一次冷却材をコールドプレナムに流す流
路を有し、前記流路と熱的に接しながら逆方向に
流れる二次冷却材に前記高温一次冷却材の熱を吸
収させ熱交換を行う熱交換器の流路構造におい
て、 前記熱交換器の上端部周囲に気密に固定され下
部が前記ホツトプレナム内の前記高温一次冷却材
中に開口し減圧室を形成する隔壁と、 前記ホツトプレナムとコールドプレナムとをシ
ールしつつ前記仕切構造から前記熱交換器周囲に
沿つて前記減圧室まで立ち上がり上端が前記ホツ
トプレナム内の前記高温一次冷却材の自由液面よ
りも高く設定された仕切板と、 前記減圧室内を減圧し前記高温一次冷却材に前
記仕切板を乗り越えさせて前記熱交換器に流入さ
せる一方、減圧を解くと前記高温一次冷却材の液
面を前記仕切板上端よりも下げ流入を停止させる
減圧手段と を備えたことを特徴とする熱交換器の流路構造。
[Scope of Claims] 1. A partition structure that separates a hot plenum that accommodates a primary coolant that has become high temperature after absorbing heat from a heat source, and a cold plenum that accommodates a relatively low-temperature primary coolant before being sent to the heat source section. The hot plenum is disposed through the hot plenum and the cold plenum located below the hot plenum is connected to the cold plenum, and the hot plenum is connected to the cold plenum. In the flow path structure of the heat exchanger for performing heat exchange by absorbing the heat of the high temperature primary coolant into the secondary coolant flowing through the heat exchanger, a partition wall opening into the high-temperature primary coolant and forming a decompression chamber; and a partition wall that extends from the partition structure along the circumference of the heat exchanger to the decompression chamber while sealing the hot plenum and the cold plenum, and has an upper end connected to the decompression chamber in the hot plenum. a partition plate set higher than the free liquid level of the high-temperature primary coolant, and reducing the pressure in the vacuum chamber to cause the high-temperature primary coolant to overcome the partition plate and flow into the heat exchanger; A flow path structure for a heat exchanger, comprising a pressure reducing means for lowering the liquid level of the high-temperature primary coolant below the upper end of the partition plate and stopping the inflow.
JP56179753A 1981-11-11 1981-11-11 Flow passage construction in heat exchanger Granted JPS5883181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56179753A JPS5883181A (en) 1981-11-11 1981-11-11 Flow passage construction in heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56179753A JPS5883181A (en) 1981-11-11 1981-11-11 Flow passage construction in heat exchanger

Publications (2)

Publication Number Publication Date
JPS5883181A JPS5883181A (en) 1983-05-18
JPS6219677B2 true JPS6219677B2 (en) 1987-04-30

Family

ID=16071270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56179753A Granted JPS5883181A (en) 1981-11-11 1981-11-11 Flow passage construction in heat exchanger

Country Status (1)

Country Link
JP (1) JPS5883181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160584U (en) * 1987-04-07 1988-10-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398596A (en) * 1986-10-16 1988-04-30 株式会社東芝 Tank type fast breeder reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160584U (en) * 1987-04-07 1988-10-20

Also Published As

Publication number Publication date
JPS5883181A (en) 1983-05-18

Similar Documents

Publication Publication Date Title
US7526057B2 (en) Decay heat removal system for liquid metal reactor
JP2659632B2 (en) Passive cooling safety system for liquid metal cooled reactor
KR100935089B1 (en) Passive safety-grade decay heat removal system from a sodium freezing issue at the intermediate heat removal sodium loop
US10134493B2 (en) Reactor and operating method for the reactor
JPH04125495A (en) Nuclear reactor facility
US3830695A (en) Nuclear reactor
WO2023241096A1 (en) Integrated safety system for reactor
JPS6219677B2 (en)
JPH0760193B2 (en) Sodium cooled reactor
JPH04157396A (en) Natural cooling type container
KR100385838B1 (en) Nozzle configuration in S/G for Mid-loop operation enhancement
JPH0332037B2 (en)
JPS6273191A (en) Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop
JPH06160561A (en) Fast breeder reactor
JPH0210098A (en) Intermediate heat exchanger
JPH10332882A (en) Cooling device for liquid metal cooled reactor
JPS60158389A (en) Cooling device for furnace wall of reactor
JPS6238397A (en) Primary main cooling system piping device for fast breeder reactor
JPS5934994B2 (en) Emergency core cooling system for high temperature gas reactor
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPS63150695A (en) Fast breeder reactor
JPS63193092A (en) Cooling device for liquid-metal cooling type reactor
JPS6159475B2 (en)
JPH046492A (en) Tank-type fast breeder reactor
JPS60192299A (en) Device for maintaining surface of liquid in nuclear reactor vessel