JPH04157396A - Natural cooling type container - Google Patents

Natural cooling type container

Info

Publication number
JPH04157396A
JPH04157396A JP2279042A JP27904290A JPH04157396A JP H04157396 A JPH04157396 A JP H04157396A JP 2279042 A JP2279042 A JP 2279042A JP 27904290 A JP27904290 A JP 27904290A JP H04157396 A JPH04157396 A JP H04157396A
Authority
JP
Japan
Prior art keywords
water
dry well
pool
level
pressure suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2279042A
Other languages
Japanese (ja)
Inventor
Shozo Yamanari
山成 省三
Takeshi Shinno
新野 毅
Tetsuo Horiuchi
堀内 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2279042A priority Critical patent/JPH04157396A/en
Priority to US07/775,850 priority patent/US5295169A/en
Publication of JPH04157396A publication Critical patent/JPH04157396A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To attain efficient thermal transfer from a drywell to a pressure suppression pool by providing a drywell opening of a vent pipe at a height whereat a water level in the drywell becomes equal to the water level in the pressure suppression pool on the occasion of an accident. CONSTITUTION:On the occasion of an accident wherein cooling water is lost, water of an accumulated water tank 17 flows into a reactor pressure vessel 2. When a water level in the vessel 2 becomes the same with a submergence level in a drywell 3, the water flows out from an opening on the drywell 3 side into a pressure suppression pool 6, and submergence cooling of a core 1 is attained first of all. On the occasion, a time for submergence is shortened and the necessary quantity of water is reduced by a structure 25 provided at the submergence level or below, and therefore the capacity of the tank 17 can also be reduced. Besides, an outflow into the pool 6 begins with the water of the highest temperature in the upper part of the drywell 3, and when the water level in the pool 6 reaches the submergence level, heat-transfer areas of the pool 6 and an outer peripheral pool 10 of a container and also the water temperature of the pool 6 become the maximum. Therefore a temperature difference between the two pools 6 and 10 becomes large, the amount of heat transmission can be made large and thus thermal transfer can be attained efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自然冷却型格納容器のドライウェルがら圧力抑
制プールへのベント管構造、および注水タンクの容量に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vent pipe structure from a dry well to a pressure suppression pool of a naturally cooled containment vessel, and the capacity of a water injection tank.

〔従来の技術〕[Conventional technology]

従来例Aとして、特開昭63−191096号公報に記
載(第2図参照)のように、例えば主蒸気配管13が破
断し、原子炉圧力容器2内の水がドライウェル3にブロ
ーダウンされた場合、炉心1の冠水のために原子炉圧力
容器2に水が注入され、この水がさらに破断口からあふ
れドライウェル3に放出されるので、これらのブローダ
ウン水とあふれた水によってベント管18のドライウェ
ル3開口部(圧力抑制室7空間部より上方に開口)まで
ドライウェル3内水位が上昇してからベント管8を通し
で、これらの熱水が圧力抑制プール6に流入することに
なる。
As a conventional example A, as described in JP-A-63-191096 (see Fig. 2), for example, the main steam pipe 13 is ruptured and the water in the reactor pressure vessel 2 is blown down into the dry well 3. In this case, water is injected into the reactor pressure vessel 2 to flood the reactor core 1, and this water further overflows from the rupture port and is discharged into the dry well 3. This blowdown water and overflowing water cause the vent pipe to leak. After the water level in the dry well 3 rises to the 18 dry well 3 openings (opening above the pressure suppression chamber 7 space), these hot water flows into the pressure suppression pool 6 through the vent pipe 8. become.

この場合、ベント管8のドライウェル3開口部の位置が
高いため、ドライウェル3内にたまる水量が多く、圧力
抑制プール6水位の上昇も少ないので、格納容器外周プ
ールlOとの接触面積も一定の大きさに制限されるばか
りでなく、熱い水がドライウェル3内に多くたまるため
、それだけ圧力抑制プール6水の温度上昇も鈍く、格納
容器外周プール10との温度差も小さいので、圧力抑制
プール6から格納容器外周プール10への熱伝達も少な
くなる。すなわち格納容器冷却能力も低く押えられてし
まうことになる。
In this case, since the opening of the dry well 3 of the vent pipe 8 is located high, the amount of water accumulated in the dry well 3 is large, and the rise in the water level of the pressure suppression pool 6 is small, so the contact area with the containment vessel outer peripheral pool IO is also constant. Not only is the size of the pressure suppression pool 6 limited, but also because a large amount of hot water accumulates in the dry well 3, the temperature rise of the pressure suppression pool 6 water is slow, and the temperature difference with the containment vessel outer peripheral pool 10 is small. Heat transfer from the pool 6 to the containment vessel outer peripheral pool 10 is also reduced. In other words, the cooling capacity of the containment vessel will also be kept low.

ベント管8のドライウェル開口部を下げればドライウェ
ル3内にたまる水量も減り、圧力抑制プール6水量も増
え、格納容器外周プール10への伝熱量も増えるが、下
げる程度によっては、ベント管8のドライウェル開口部
が水浸してしまうことがあり、この場合、ドライウェル
3内にたまった熱水によりドライウェル3内圧力が上昇
しても、ドライウェル3内水位はなかなか押し下げられ
ず(パスカルの原理)、ドライウェル3内圧力が過度に
上昇して格納容器の安全性が低下することになる。
If the dry well opening of the vent pipe 8 is lowered, the amount of water accumulated in the dry well 3 will be reduced, the amount of water in the pressure suppression pool 6 will also be increased, and the amount of heat transferred to the containment vessel outer peripheral pool 10 will also be increased. In this case, even if the pressure inside the dry well 3 increases due to the hot water accumulated inside the dry well 3, the water level inside the dry well 3 cannot be pushed down easily (Pascal's (principle), the pressure inside the dry well 3 would rise excessively, reducing the safety of the containment vessel.

従って、ベント管8のドライウェル3開口部を適切にど
こまで下げられるか、その位置を特定する必要がある。
Therefore, it is necessary to specify the position to which the opening of the dry well 3 of the vent pipe 8 can be appropriately lowered.

従来例Bとして特開昭58−2691号公報に記載(第
3図参照)のものは、ドライウェル3が上部ドライウェ
ルと下部ドライウェル(CRD室)に分かれている格納
容器において、上部ドライウェルからのベント管8の他
に下部ドライウェルからのベント管26を設けたもので
、このベント管26のドライウェル側開口部位!(高さ
)を通常時の圧力抑制プール6水面より高くすることに
より、圧力抑制プール6水のドライウェル3への逆流を
防止するというものであり、今回の本発明とは構造・考
え方とも違うものである。
Conventional example B described in Japanese Patent Application Laid-Open No. 58-2691 (see Fig. 3) is a containment vessel in which the dry well 3 is divided into an upper dry well and a lower dry well (CRD chamber). In addition to the vent pipe 8 from above, a vent pipe 26 from the lower dry well is provided, and the opening part of this vent pipe 26 on the dry well side! (Height) is made higher than the normal water surface of the pressure suppression pool 6 to prevent water from the pressure suppression pool 6 from flowing back into the dry well 3, which is different in structure and concept from the present invention. It is something.

しかし、この従来例Bの構造を本発明の自然冷却型格納
容器のベント管に適用した場合の性能を参考までに本発
明と比較してみる。
However, the performance when the structure of Conventional Example B is applied to the vent pipe of the naturally cooling type containment vessel of the present invention will be compared with the present invention for reference.

第4図に示すように、ベント管のドライウェル側開口部
の高さが違う2種類のベント管8,26が設定される。
As shown in FIG. 4, two types of vent pipes 8 and 26 are set up with different heights of the dry well side openings of the vent pipes.

低い方のベント管26のドライウェル3側開口部は、ド
ライウェル3と圧力抑制室7の設計圧力差が一般に1 
psidであり、静水頭に換算すると約0.7 mであ
ることから、ここでは通常時の圧力抑制プール6水面よ
り約0.7 m上方に位置すると考える。破断口22か
ら炉心冷却材がドライウェル3内にブローダウンされる
と、ドライウェル3内水位が上昇し、低い開口部のベン
ト管26高さまで到達すると、圧力抑制プール6水中に
ブローダウン水が流れ、圧力抑制ブール6水位が低いベ
ント管26開口部高さに到達するまでドライウェル3内
水位は上昇しない、圧力抑制プール6水位が、前記の低
いベント管26開口部高さまで上昇すると、以降はドラ
イウェル3内水位と圧力抑制プール6水位はほぼ同じ水
位で上昇していく。
The opening on the dry well 3 side of the lower vent pipe 26 has a design pressure difference of 1 in general between the dry well 3 and the pressure suppression chamber 7.
psid, which is about 0.7 m when converted to static water head, so it is considered here that it is located about 0.7 m above the water surface of the pressure suppression pool 6 in normal conditions. When the core coolant is blown down into the dry well 3 from the fracture opening 22, the water level in the dry well 3 rises, and when it reaches the height of the vent pipe 26 at the low opening, blowdown water flows into the water in the pressure suppression pool 6. The water level in the dry well 3 will not rise until the water level in the pressure suppression pool 6 reaches the low vent pipe 26 opening height. The water level in dry well 3 and the water level in pressure suppression pool 6 rise at almost the same level.

最終的には、炉心注入水が炉心冠水水位を満足した所で
停止されるので、高いベント管8の開口部はドライウェ
ル3空間部に開口していることから前記(例A)のよう
なドライウェル3内の過度な圧力上昇は発生しない。
Eventually, the water injected into the reactor core will be stopped at the point where it satisfies the core submergence water level, so the opening of the high vent pipe 8 opens into the dry well 3 space, so it is necessary to An excessive pressure increase within the dry well 3 does not occur.

しかしながら、ドライウェル3内水位が低い開口部のベ
ント管26人口に到達してからは、圧力抑制プール6に
ブローダウン水が流出し、結果としてドライウェル3内
水位と圧力抑制プール6水位がいっしょに水位上昇する
ため、ドライウェル3内水位が最終的なドライウェル3
冠水水位に達するまでの時間が大幅に遅れることになる
。また、ドライウェル3冠水後も、ドライウェル3内水
の一番上の最も熱い水が圧力抑制プール6に移行するこ
とにはならないことから、ドライウェル3から圧力抑制
プール6への熱移行の能力が低下する。
However, after the water level inside the dry well 3 reaches the vent pipe 26 population at the low opening, the blowdown water flows out into the pressure suppression pool 6, and as a result, the water level inside the dry well 3 and the water level of the pressure suppression pool 6 become the same. As the water level rises to
The time required for the water to reach the flood level will be significantly delayed. In addition, even after the dry well 3 is flooded, the hottest water at the top of the water in the dry well 3 does not transfer to the pressure suppression pool 6, so heat transfer from the dry well 3 to the pressure suppression pool 6 is Capacity decreases.

従って、この従来例Bの場合でも、低い方のベント管2
6開口部高さを、今回の本発明による適切な高さにしな
ければ、本発明のような自然冷却型格納容器の性能は出
ない。
Therefore, even in the case of this conventional example B, the lower vent pipe 2
Unless the height of the 6 openings is set to an appropriate height according to the present invention, the performance of the naturally cooled containment vessel according to the present invention will not be achieved.

従来例Cとして特開平1−28479号公報に記載のも
のは、ベント管の途中のドライウェル側に開口部27と
逆止弁28を設けたものであるが、基本的には前記従来
例Bと同じことが言える。ただし、ドライウェル3内水
位と圧力抑制プール6水位がベント管8途中の開口部2
7を上廻ってからは、すなわち水浸してからは前記従来
例Aと同じ事象になるので、ドライウェル内圧力の過大
な上昇が考えられる。
The conventional example C described in Japanese Patent Application Laid-Open No. 1-28479 has an opening 27 and a check valve 28 on the dry well side in the middle of the vent pipe, but is basically the same as the conventional example B. The same can be said. However, the water level inside the dry well 3 and the water level in the pressure suppression pool 6 are at the opening 2 in the middle of the vent pipe 8.
After exceeding 7, that is, after being immersed in water, the same phenomenon as in the conventional example A occurs, so it is possible that the pressure inside the dry well increases excessively.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように、従来技術(例A)ではドライウェル内水
位はブローダウン水により早く冠水水位に到達するが、
圧力抑制プール水位上昇は少なく。
As described above, in the conventional technology (Example A), the water level in the dry well reaches the flooding level quickly due to the blowdown water, but
Pressure suppression pool water level rise is small.

中・長期にわたる格納容器からの自然放勢の点からは圧
力抑制プールから格納容器外周プールへの大きな熱伝達
が得られない。
From the point of view of natural release from the containment vessel over a medium to long term, a large amount of heat transfer from the pressure suppression pool to the outer circumferential pool of the containment vessel cannot be achieved.

また、従来技術(例B)、(例C)では事故後直ちにド
ライウェル内水位を炉心冷却の点から冠水レベルに到達
させなければならないのであるが、遅れてしまう欠点が
ある。
Further, in the conventional techniques (Example B) and (Example C), the water level in the dry well must reach the flooding level immediately after the accident for the purpose of cooling the core, but there is a drawback that there is a delay.

本発明は、事故後直ちにドライウェル内水位を冠水レベ
ルに到達させて炉心冷却が行なえるようにし、かつ、中
・長期的に必要とする格納容器からの放熱を効率よく行
なうため、圧力抑制プール水位を最大限上昇させて圧力
抑制プールに接している格納容器外周プールへの伝熱面
積を多くかせぐことができるベント管構造を提供するこ
とを目的とする。
The present invention provides a pressure suppression pool to allow the water level in the dry well to reach the flooding level immediately after an accident to cool the reactor core, and to efficiently dissipate heat from the containment vessel, which is required in the medium to long term. It is an object of the present invention to provide a vent pipe structure that can increase the water level to the maximum extent and increase the heat transfer area to the outer peripheral pool of the containment vessel in contact with the pressure suppression pool.

また、本発明の別の目的は、ドライウェル内水の上方の
温度の高い水を選択的に圧力抑制プールに移行させ、圧
力抑制プール水と格納容器外周プール水との温度差を大
きくして格納容器からの放熱効果を上げることにある。
Another object of the present invention is to selectively transfer the high-temperature water above the water inside the dry well to the pressure suppression pool, thereby increasing the temperature difference between the pressure suppression pool water and the containment vessel outer peripheral pool water. The aim is to improve the heat dissipation effect from the containment vessel.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、炉心冷却に使用される蓄圧
水タンクの容量Wを〔ドライウェル内冠水量W、)+ 
[圧力抑制プール水位がドライウェル内冠水レベルと同
じとするに要する水量(圧力抑制プール増水量)W2〕
とした。
In order to achieve the above objective, the capacity W of the pressure accumulation water tank used for core cooling is set to [amount of water submerged in the dry well W,) +
[Amount of water required to make the pressure suppression pool water level the same as the flooding level in the dry well (pressure suppression pool water increase amount) W2]
And so.

また、〔ベント管のドライウェル側開口部高さ〕=〔ド
ライウェル冠水レベル〕=〔通常時の圧力抑制プール水
位+(圧力抑制プール増水量Wz/圧力抑制プール表面
積)〕となる様にベント管のドライウェル側開口部高さ
を設定した構造とした。
In addition, the vent should be set so that [height of the opening of the vent pipe on the dry well side] = [dry well flooding level] = [normal pressure suppression pool water level + (pressure suppression pool water increase amount Wz/pressure suppression pool surface area)] The structure was such that the height of the opening on the dry well side of the tube was set.

さらに、ドライウェル内の冠水レベル以下のスペースに
ドライウェル冠水量Wxを減らすためにコンクリート等
の構造物を設けた。
Furthermore, a structure made of concrete or the like was installed in a space below the flooding level in the drywell to reduce the amount of flooding Wx in the drywell.

〔作用〕 原子炉圧力容器内の原子炉冷却材(水)が万一の配管な
どの破断により喪失するような事故が発生した場合、蓄
圧タンク内の水が原子炉圧力容器に流入し、破断口から
ドライウェル内に流出することによりドライウェル内水
位が上昇する。このドライウェル内水位が破断口に到達
する時点までには原子炉圧力容器内圧力は充分に減圧し
ていることから、ドライウェル内水位が破断口を超えた
時から原子炉圧力容器内の水位もドライウェル内水位と
同じ様に上昇し、ドライウェルの冠水レベルと同じレベ
ルに到達する。従って、ドライウェルの冠水レベルは原
子炉圧力容器の構造にもよるが、原子炉圧力容器内の炉
心高さよりも充分上方に設定され、冠水後の炉心崩壊熱
による原子炉圧力容器内冷却水の蒸発にも充分対処でき
るようにしている0M子炉圧力容器の破断口レベルがド
ライウェルの冠水レベルよりも高い場合には高い分だけ
原子炉圧力容器内にとどまる水量が多くなり、最終的に
は圧力抑制プールに移行する水量がその9少なくなるが
、大勢に影響はない。
[Operation] If an accident occurs in which the reactor coolant (water) in the reactor pressure vessel is lost due to a rupture in piping, water in the pressure accumulator tank will flow into the reactor pressure vessel and cause the rupture. The water level in the dry well rises by flowing out from the mouth into the dry well. By the time the water level inside the dry well reaches the rupture port, the pressure inside the reactor pressure vessel has been sufficiently reduced. The water level also rises in the same way as the water level in the dry well, reaching the same level as the flooded level in the dry well. Therefore, although the flooding level of the dry well depends on the structure of the reactor pressure vessel, it is set sufficiently above the height of the reactor core inside the reactor pressure vessel, and the level of water in the dry well is set sufficiently above the height of the reactor core inside the reactor pressure vessel. If the rupture level of the 0M slave reactor pressure vessel, which is designed to adequately cope with evaporation, is higher than the flooding level of the dry well, the amount of water remaining in the reactor pressure vessel will increase accordingly, and eventually The amount of water transferred to the pressure suppression pool will be reduced by 9, but this will not affect the majority of people.

ドライウェル内水位が冠水レベルに到達してから、ベン
ト管のドライウェル側開口部から圧力抑制プールに、破
断口からの水が流出するので、炉心の冠水冷却が直売に
達成されることになる。この時、ドライウェル内の冠水
レベル以下に設置されたコンクリート等の構造物によっ
て冠水時間はさらに短縮され、冠水に要する水量も少な
くてすむことから、炉心に注水する蓄圧水タンク等の容
量も少なくてすむ。
After the water level in the dry well reaches the submergence level, the water from the fracture will flow out from the opening on the dry well side of the vent pipe into the pressure suppression pool, allowing submergence cooling of the reactor core to be achieved directly. . At this time, the flooding time is further shortened by concrete and other structures installed below the flooding level in the drywell, and the amount of water required for flooding is also small, so the capacity of the pressure water tank, etc. that injects water into the reactor core is also reduced. I'll try it.

次いで、ドライウェル内水で最も温度の高い上部の熱水
からベント管を通って圧力抑制プールに流出し、圧力抑
制プール水位と水温の上昇が始まり、ベント管のドライ
ウェル側開口部と同じレベル附近まで圧力抑制プール水
位が到達すると、蓄圧水タンクの水が無くなることから
、原子炉圧力容器への水の流入が止まり、圧力抑制プー
ルへの流入もなくなる。
Next, the hot water at the top, which has the highest temperature in the dry well, flows through the vent pipe into the pressure suppression pool, and the pressure suppression pool water level and water temperature begin to rise until they reach the same level as the dry well side opening of the vent pipe. When the water level of the pressure suppression pool reaches the vicinity, the water in the pressure storage tank runs out, so water stops flowing into the reactor pressure vessel and also stops flowing into the pressure suppression pool.

これにより、圧力抑制プールの水位はドライウェルの冠
水レベルにまで到達することができ、圧力抑制プールと
格納容器外周プールとの伝熱面積は最大限にまで拡大で
きる。また、圧力抑制プール水温度も最大限に高くなる
ことから、圧力抑制プールと格納容器外周プールとの温
度差が大きくなることから熱伝達量も大きくすることが
できる。
As a result, the water level of the pressure suppression pool can reach the submergence level of the dry well, and the heat transfer area between the pressure suppression pool and the outer peripheral pool of the containment vessel can be expanded to the maximum extent. Moreover, since the pressure suppression pool water temperature is also maximized, the temperature difference between the pressure suppression pool and the containment vessel outer peripheral pool becomes large, so that the amount of heat transfer can also be increased.

また、格納容器からの放熱は事故後直ちにではなく、数
十分後、あるいは数時間後から効果が出ればよいので、
先にドライウェル内冠水(すなわち炉心冠水冷却)して
から圧力抑制プールへの水の移行という本発明の順序が
最も好ましい。
In addition, heat dissipation from the containment vessel does not need to be effective immediately after an accident, but only after several tens of minutes or hours.
The present invention's sequence of first flooding the drywell (ie, core flooding cooling) and then transferring water to the suppression pool is most preferred.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は自然冷却型格納容器で、原子炉の炉心1を内部
に持つ原子炉圧力容器2がドライウェル3にあり、ドラ
イウェル3は原子炉圧力容器2の下方にあるCRD室4
とガンマしゃへい体5の内側スペースを介して連通して
いる。ドライウェル3の外側に圧力抑制プール6を有す
る圧力抑制室7があり、ドライウェル3と圧力抑制プー
ル6はベント管8で連通している。ベント管8のドライ
ウェル3側開口部高さは、炉心1の上方に設定される冠
水冷却レベルに設置されており、圧力抑制プール6側放
出口は蒸気凝縮実験にもとづく適切な水深が確保されて
いる。
Figure 1 shows a naturally cooled containment vessel, in which a reactor pressure vessel 2 containing a reactor core 1 is located in a dry well 3, and a CRD chamber 4 located below the reactor pressure vessel 2.
and communicates with each other via the inner space of the gamma shield body 5. A pressure suppression chamber 7 having a pressure suppression pool 6 is located outside the dry well 3 , and the dry well 3 and the pressure suppression pool 6 are communicated through a vent pipe 8 . The opening height of the vent pipe 8 on the dry well 3 side is set at the submergence cooling level set above the reactor core 1, and the outlet on the pressure suppression pool 6 side is set at an appropriate water depth based on steam condensation experiments. ing.

圧力抑制プール6および圧力抑制室7の外壁は鋼制格納
容器9となっており、その外側に格納容器外周プール1
0が配置されている。この格納容器外周プールの水深は
、圧力抑制プール6からの熱伝達の効率を上げるため、
事故後の圧力抑制プール6水深を充分カバーするように
設定されている。そして、事故後、格納容器外周プール
10の温度が上昇し、発生する水蒸気を外に放出するた
めに放出管11と弁12が設置されている。
The outer walls of the pressure suppression pool 6 and the pressure suppression chamber 7 are a steel containment vessel 9, and a containment vessel outer peripheral pool 1 is provided on the outside of the steel containment vessel 9.
0 is placed. The water depth of this containment vessel peripheral pool is set to increase the efficiency of heat transfer from the pressure suppression pool 6.
It is set to sufficiently cover the water depth of the pressure suppression pool 6 after the accident. After an accident, the temperature of the outer circumferential pool 10 of the containment vessel rises, and a discharge pipe 11 and a valve 12 are installed to release the generated water vapor to the outside.

原子炉圧力容器2内で発生した蒸気は主蒸気配管13を
通ってタービン(記載せず)に送られ、最終的には水と
なって給水配管14から原子炉圧力容器2内に戻される
。万一の事故などの時は主蒸気隔離弁(MSIV)15
が閉じ、給水配管14には逆止弁16が設置されていて
、原子炉圧力容器2から水・蒸気などの冷却材の流出を
止めるようになっている。しかし、これらのMSIV1
5や逆止弁16よりも原子炉圧力容器2側での配管など
の破断を想定すると原子炉圧力容器2内の原子炉冷却材
がドライウェル3内に放出され、炉心lが露出して重大
な事故(冷却材喪失事故)に進展することになるため、
蓄圧水タンク17から弁18を有する注入配管19によ
り、原子炉圧力容器2内に水を注入できるようになって
いる。
Steam generated within the reactor pressure vessel 2 is sent to a turbine (not shown) through the main steam pipe 13, and is finally turned into water and returned to the reactor pressure vessel 2 through the water supply pipe 14. In the event of an accident, main steam isolation valve (MSIV) 15
is closed, and a check valve 16 is installed in the water supply pipe 14 to stop coolant such as water and steam from flowing out from the reactor pressure vessel 2. However, these MSIV1
5 or check valve 16, the reactor coolant in the reactor pressure vessel 2 will be released into the dry well 3, exposing the reactor core 1 and causing serious damage. This may lead to a serious accident (coolant loss accident).
Water can be injected into the reactor pressure vessel 2 from the pressure water tank 17 through an injection pipe 19 having a valve 18 .

この蓄圧水タンク17は、最初から加圧されているタイ
プや、注入時のみ別記管で原子炉圧力容器2気相部と蓄
圧水タンク17を結び、圧力差をなくして落差だけで原
子炉圧力容量に注入するタイプ、さらに原子炉圧力容器
2の内圧を逃し安全弁(記載せず)などで減圧してから
注入するタイプなどがあるが、いずれにしても弁操作の
みで、ポンプ等の駆動源は不要な構成としているため、
ここでは単純に蓄圧水タンク17と弁18と注入配管1
9のみ記載している。また、ポンプで注入する方式でも
、注入量が特定できれば基本的には何も変わらないので
同様に扱うことができる。
This pressure water tank 17 is of the type that is pressurized from the beginning, or that connects the gas phase part of the reactor pressure vessel 2 and the pressure water tank 17 with a separate pipe only during injection, eliminating the pressure difference and increasing the reactor pressure only by the head. There are types that are injected into the reactor pressure vessel 2, and types that are injected after releasing the internal pressure of the reactor pressure vessel 2 and reducing the pressure with a safety valve (not shown). is an unnecessary configuration, so
Here, the pressure water tank 17, valve 18, and injection pipe 1 are simply explained.
Only 9 is listed. In addition, even if the injection is performed using a pump, there is basically no difference if the injection amount can be specified, so it can be handled in the same way.

また、圧力抑制室7とドライウェル3は逆止弁20を介
して連通管21により圧力抑制室7からドライウェル3
の方向のみ連通している。
Further, the pressure suppression chamber 7 and the dry well 3 are connected to the dry well 3 by a communication pipe 21 via a check valve 20.
It communicates only in the direction of.

さらに、事故後長期にわたり原子炉圧力容器2内水位お
よびドライウェル3内水位を冠水レベルに維持するため
に、連通管25と弁23、弁24を設けている。
Furthermore, in order to maintain the water level in the reactor pressure vessel 2 and the water level in the dry well 3 at the flooding level for a long period of time after the accident, a communicating pipe 25 and valves 23 and 24 are provided.

本実施例ではドライウェル3の外壁にそって、ベント管
8のドライウェル3側開口部より下方に据付・定検など
の作業性を損なわない程度に空スベースをうめる形でコ
ンクリート等の構造物25を設置している。これにより
、事故後のドライウェル2内水位が早く冠水レベルに達
するとともに、蓄圧水タンク17容量を低減できる。
In this embodiment, a structure made of concrete or the like is installed along the outer wall of the dry well 3 by filling an empty base below the opening of the vent pipe 8 on the dry well 3 side to the extent that it does not impair workability such as installation and periodic inspection. 25 are installed. As a result, the water level in the dry well 2 after an accident quickly reaches the flooding level, and the capacity of the pressure water tank 17 can be reduced.

万一、給水配管工4が破断したとすると、原子炉圧力容
器2内の冷却材(水と蒸気)が破断口22よりドライウ
ェル3内に放出される。放出された高温の冷却材のうち
水はドライウェル3下部のCRD室4に流れ、この水位
が上昇してくる。
If the water supply plumber 4 were to break, the coolant (water and steam) in the reactor pressure vessel 2 would be released into the dry well 3 through the break port 22. Water among the released high-temperature coolant flows into the CRD chamber 4 at the bottom of the dry well 3, and the water level rises.

放出された蒸気はドライウェル3内の圧力を上昇させる
ので、ベント管8内の水面が押し下げられ。
Since the released steam increases the pressure within the dry well 3, the water level within the vent pipe 8 is pushed down.

ドライウェル3内の雰囲気が圧力抑制プール6水中に通
って圧力抑制室7に移行する。この間に雰囲気中の蒸気
は圧力抑制プール6水によって凝縮して水となるので、
ドライウェル3内の空気だけが圧力抑制室7に移行し、
この分の圧力が上昇する。ドライウェル3内の圧力上昇
、あるいは原子炉圧力容器2内の水位低下により、自動
的に原子炉が停止し、MSIV15を閉じて蒸気供給を
停止し、給水配管14からの給水も停止する。そして弁
18が開き、蓄圧水タンク17から水が原子炉圧力容器
2に注入され、原子炉圧力容器2内の異常は水位低下を
回避し、炉心オーバーヒートによる炉心破損を防止する
The atmosphere within the dry well 3 passes into the pressure suppression pool 6 water and transfers to the pressure suppression chamber 7. During this time, the steam in the atmosphere is condensed into water by the water in the pressure suppression pool 6, so
Only the air in the dry well 3 moves to the pressure suppression chamber 7,
The pressure increases by this amount. Due to an increase in the pressure in the dry well 3 or a decrease in the water level in the reactor pressure vessel 2, the reactor is automatically stopped, the MSIV 15 is closed, the steam supply is stopped, and the water supply from the water supply pipe 14 is also stopped. Then, the valve 18 is opened, and water is injected from the pressure water tank 17 into the reactor pressure vessel 2, and in the event of an abnormality in the reactor pressure vessel 2, a drop in water level is avoided, and core damage due to core overheating is prevented.

原子炉圧力容器2に注入された水は炉心1からの崩壊熱
により温度が上昇し、熱水となって破断口22からドラ
イウェル2に流出し続けるので、ドライウェル2下方の
CRD室4の水位が上昇し、さらにはドライウェル2内
に至ってベント管8のドライウェル2側開口部高さまで
上昇する。さらに破断口22からの熱水の流出が続くの
で、ドライウェル2内からベント管8を通って圧力抑制
プール6水中に熱水が流入し、圧力抑制プール6の水位
と水温が上昇する。この圧力抑制ブール6水位がベント
管8のドライウェル2側開ロ部レベル附近まで上昇する
と、蓄圧水タンク17が空になり、破断口22からの流
出も止まるので、圧力抑制プール6水位上昇も止まる。
The temperature of the water injected into the reactor pressure vessel 2 rises due to the decay heat from the reactor core 1 and continues to flow into the dry well 2 from the fracture opening 22 as hot water. The water level rises and further reaches the inside of the dry well 2 and rises to the height of the opening of the vent pipe 8 on the dry well 2 side. Furthermore, since the hot water continues to flow out from the fracture opening 22, the hot water flows from the inside of the dry well 2 through the vent pipe 8 into the water of the pressure suppression pool 6, and the water level and water temperature of the pressure suppression pool 6 rise. When the water level of this pressure suppression pool 6 rises to the level of the dry well 2 side opening of the vent pipe 8, the accumulated water tank 17 becomes empty and the outflow from the break port 22 stops, so the water level of the pressure suppression pool 6 also rises. Stop.

なお、圧力抑制プール水位上昇により圧力抑制室7内の
圧力も上昇するが、逆止弁20が圧力抑制室7とドライ
ウェル3の差圧により作動して、圧力抑制室7からドラ
イウェル3に空気を戻し、圧力バランスを保つので、圧
力抑制プール6水位上昇が妨げられることはない。
Note that as the water level of the pressure suppression pool rises, the pressure in the pressure suppression chamber 7 also rises, but the check valve 20 operates due to the differential pressure between the pressure suppression chamber 7 and the dry well 3, and the pressure in the pressure suppression chamber 7 flows into the dry well 3. Since the air is returned and the pressure balance is maintained, the rise in the water level of the pressure suppression pool 6 is not hindered.

圧力抑制プール6の水温上昇に伴ない、鋼製格納容器9
を通して格納容器外周プール1oに熱が伝達され、格納
容器外周プール10の水温上昇により蒸発した水蒸気が
、弁12開により放出管11から外に放出される。
As the water temperature in the pressure suppression pool 6 increases, the steel containment vessel 9
Heat is transferred to the containment vessel outer peripheral pool 1o through the containment vessel outer peripheral pool 1o, and water vapor evaporated due to the rise in water temperature of the containment vessel outer peripheral pool 10 is released from the discharge pipe 11 by opening the valve 12.

蓄圧水タンク17からの注水が無くなった状態では、第
1図に示すように原子炉圧力容器2内水位とドライウェ
ル3内水位と圧力抑制プール6水位は同じレベルとなる
When water is no longer injected from the pressure storage tank 17, the water level in the reactor pressure vessel 2, the water level in the dry well 3, and the pressure suppression pool 6 are at the same level, as shown in FIG.

その後、炉心1からの崩壊熱発生は弱まるが、引き続き
その熱により原子炉圧力容器2内の水は加熱され蒸発し
ていく、従って、原子炉圧力容器2内の圧力は発生蒸気
により上昇するので1発生蒸気は逃し安全弁(記載なし
)により圧力抑制プール6水中に放出されるか、あるい
は破断口から熱水や蒸気としてドライウェル3内に放出
され、ドライウェル3内の圧力が上昇することにより、
ベント管8内の水が押し下げられ、圧力抑制ブール6に
放出されて凝縮することになる。そしてこの熱は引き続
き格納容器外周プール1oに移行して放熱される。
After that, the decay heat generation from the reactor core 1 weakens, but the water in the reactor pressure vessel 2 continues to be heated and evaporated by the heat. Therefore, the pressure in the reactor pressure vessel 2 increases due to the generated steam. 1 The generated steam is released into the water of the pressure suppression pool 6 by a relief safety valve (not shown), or is released into the dry well 3 as hot water or steam from the fracture, and the pressure inside the dry well 3 increases. ,
The water in the vent pipe 8 will be forced down and discharged into the pressure suppression boule 6 where it will condense. Then, this heat continues to transfer to the containment vessel outer peripheral pool 1o and is radiated.

一方、原子炉圧力容器2内の水は蒸発により減少してい
くが、水位の低下を検傾して弁23を開ければ、水頭差
により圧力抑制プール6水が原子炉圧力容器2内に流入
し、原子炉圧力容器2内の水位は回復する。また、弁2
4も開ければ、原子炉圧力容器2、ドライウェル3、圧
力抑制プール6の各水位は同じ冠水レベルで維持される
On the other hand, the water in the reactor pressure vessel 2 decreases due to evaporation, but if the valve 23 is opened in response to a drop in the water level, water from the pressure suppression pool 6 will flow into the reactor pressure vessel 2 due to the difference in water head. However, the water level in the reactor pressure vessel 2 recovers. Also, valve 2
4 is also opened, the water levels of the reactor pressure vessel 2, dry well 3, and pressure suppression pool 6 are maintained at the same flooding level.

以上の様に、本実施例によれば、万一の事故においてド
ライウェル2内水位を冠水レベルまで早く到達させるこ
とができ、またベント管8のドライウェル3側開口部を
水浸させずに圧力抑制プール6水位を最大限に上げられ
るため、■炉心冠水冷却が早く達成できるとともに、■
ドライウェル2内水の温度の高い上の部分がら圧力抑制
ブール6へ移行すること、また■長期的にはベント管8
内水を容易に押し下げることができることから、圧力抑
制プール6水中での蒸気凝縮によりドライウェル3から
圧力抑制プール6への熱移行を容易にし、さらに■圧力
抑制ブール6から格納容器外周プール10への熱伝達も
伝熱面積を広く確保できて、さらに圧力抑制プール水と
格納容器外周プールとの温度差も大きくなる。
As described above, according to this embodiment, in the event of an accident, the water level in the dry well 2 can quickly reach the flooding level, and the opening on the dry well 3 side of the vent pipe 8 can be prevented from being flooded. Since the water level of pressure suppression pool 6 can be raised to the maximum level, ■ core submersion cooling can be achieved quickly, and ■
The upper part of the dry well 2 where the water temperature is high should be transferred to the pressure suppression boule 6, and in the long term, the vent pipe 8
Since the internal water can be easily pushed down, steam condensation in the water in the pressure suppression pool 6 facilitates heat transfer from the dry well 3 to the pressure suppression pool 6, and furthermore, ■ from the pressure suppression boule 6 to the containment vessel outer peripheral pool 10. It is possible to secure a wide heat transfer area for heat transfer, and the temperature difference between the pressure suppression pool water and the containment vessel outer circumferential pool is also increased.

これらにより、炉心冷却、ならびにドライウェル2から
圧力抑制プール6への熱移行、および圧力抑制プール6
から格納容器外周プール10への熱伝達が効率よく達成
できるので、自然冷却型格納容器の安全性が大きく向上
する効果がある。
These allow core cooling, heat transfer from the dry well 2 to the pressure suppression pool 6, and pressure suppression pool 6.
Since heat transfer from the air to the containment vessel outer peripheral pool 10 can be efficiently achieved, the safety of the naturally cooled containment vessel is greatly improved.

また、ドライウェル2内水位を従来より低くすることが
できるので、ドライウェル2内構造物24の設置も加わ
って、蓄圧水タンク17の容量を低減できる効果がある
Furthermore, since the water level inside the dry well 2 can be lowered than before, the capacity of the pressure water tank 17 can be reduced in addition to the installation of the structure 24 inside the dry well 2.

〔発明の効果〕〔Effect of the invention〕

本発明は1以上説明したように構成されているので以下
に記載されるような効果を奏する。
The present invention is constructed as described in one or more ways and provides the advantages described below.

ドライウェル3から圧力抑制プール6への熱移行が効率
よくでき、さらに圧力抑制プール6から格納容器外周プ
ールへの熱伝達量が大幅に改善されるので、自然冷却型
原子炉格納容器としての性能、安全性が大きく向上する
Heat can be efficiently transferred from the dry well 3 to the pressure suppression pool 6, and the amount of heat transferred from the pressure suppression pool 6 to the outer circumferential pool of the containment vessel is greatly improved, so the performance as a naturally cooled reactor containment vessel is improved. , safety is greatly improved.

また、ドライウェル3内にたまる水量を少なくできるの
で、炉心冠水冷却が早く達成されて、原子炉の健全性が
向上すると伴に、さらに蓄圧水タンク17の容量を低減
できる。
Furthermore, since the amount of water accumulated in the dry well 3 can be reduced, the core can be cooled quickly with water, improving the health of the reactor and further reducing the capacity of the pressure water tank 17.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の自然冷却型格納容器の縦断
面図、第2図は従来技術の公知例(例A)の原子炉格納
設備の縦断面図、第3図は従来技術の公知例(例B)の
原子炉格納容器の縦断面図、第4図は従来技術の公知例
(例B)を発展させて本発明の自然冷却型格納容器に適
用した場合の縦断面図、第5図は従来技術の公知例(例
C)の原子炉格納容器の一部分を示した縦断面図である
。 1・・・炉心、2・・・原子炉圧力容器、3・・・ドラ
イウェル、4・・・CRD室、5・・・ガンマしゃへい
体、6・・・圧力抑制プール、7・・・圧力抑制室、8
・・・ベント管。 9・・・鋼製格納容器−10・・・格納容器外周プール
、11・・・放出管、12・・・弁、13・・・主蒸気
配管。 14・・・給水配管、15・・・主蒸気隔離弁(MSI
V)、16・・・逆止弁、17・・・蓄圧水タンク、1
8・・・弁、19・・・注水配管、20・・・逆止弁、
21・・・連通管、22・・・破断口、23・・・弁、
24・・・弁、25・・・構造物、26・・・下部ドラ
イウェル用ベント管、27・・・開口部、28・・・逆
止弁。
FIG. 1 is a vertical cross-sectional view of a naturally cooled containment vessel according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a reactor containment facility according to a known example of the prior art (Example A), and FIG. 3 is a vertical cross-sectional view of a reactor containment facility according to the prior art. FIG. 4 is a vertical cross-sectional view of a reactor containment vessel according to a known example (Example B), and FIG. , FIG. 5 is a longitudinal sectional view showing a part of a reactor containment vessel of a known example (Example C) of the prior art. 1... Reactor core, 2... Reactor pressure vessel, 3... Dry well, 4... CRD chamber, 5... Gamma shield, 6... Pressure suppression pool, 7... Pressure Suppression room, 8
...Vent pipe. 9...Steel containment vessel-10...Containment vessel outer circumferential pool, 11...Discharge pipe, 12...Valve, 13...Main steam piping. 14...Water supply piping, 15...Main steam isolation valve (MSI)
V), 16... Check valve, 17... Pressure water tank, 1
8...Valve, 19...Water injection pipe, 20...Check valve,
21...Communication pipe, 22...Break port, 23...Valve,
24... Valve, 25... Structure, 26... Vent pipe for lower dry well, 27... Opening, 28... Check valve.

Claims (1)

【特許請求の範囲】 1、ドライウェルと圧力抑制プールと前記両者を連通す
るベント管と前記圧力抑制プールに接して設置された格
納容器外周プールを有する自然冷却型格納容器において
、事故時の原子炉一次系冷却材と炉心注入水の放出によ
るドライウェル内水位と圧力抑制プール水位が等しくな
る高さにベント管のドライウェル開口部を設けたことを
特徴とする自然冷却型格納容器。 2、請求項1の自然冷却型格納容器において、〔炉心冠
水レベル以上のドライウェル内水量W_1〕+〔圧力抑
制プール水位が前記ドライウェル内水位と同じレベルと
するに要する水量W_2〕を有する注水タンクを設けた
ことを特徴とする自然冷却型格納容器。 3、請求項2の自然冷却型格納容器において、ベント管
のドライウェル側開口部高さhを h=W_2/Apool ここで、hは通常時の圧力抑制プール水面からの高さ。 W_2は圧力抑制プール水量の増分で請求項2のW_2
と同じ。 としたことを特徴とする自然冷却型格納容器。
[Scope of Claims] 1. In a naturally cooled containment vessel having a dry well, a pressure suppression pool, a vent pipe communicating the two, and a containment vessel outer peripheral pool installed in contact with the pressure suppression pool, A naturally cooled containment vessel characterized in that a dry well opening of a vent pipe is provided at a height where the water level in the dry well and the pressure suppression pool water level due to the release of reactor primary system coolant and core injection water are equal. 2. In the naturally cooled containment vessel of claim 1, water injection having [amount of water in the dry well W_1 equal to or higher than the core flooding level] + [amount of water W_2 required for the pressure suppression pool water level to be at the same level as the water level in the dry well] A naturally cooled containment vessel characterized by the provision of a tank. 3. In the natural cooling type containment vessel according to claim 2, the height h of the opening of the vent pipe on the dry well side is h=W_2/Apool, where h is the height from the water surface of the pressure suppression pool in normal times. W_2 is an increment in the amount of water in the pressure suppression pool; W_2 in claim 2
Same as. A naturally cooled containment vessel characterized by:
JP2279042A 1990-10-15 1990-10-19 Natural cooling type container Pending JPH04157396A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2279042A JPH04157396A (en) 1990-10-19 1990-10-19 Natural cooling type container
US07/775,850 US5295169A (en) 1990-10-15 1991-10-15 Reactor containment facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279042A JPH04157396A (en) 1990-10-19 1990-10-19 Natural cooling type container

Publications (1)

Publication Number Publication Date
JPH04157396A true JPH04157396A (en) 1992-05-29

Family

ID=17605590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279042A Pending JPH04157396A (en) 1990-10-15 1990-10-19 Natural cooling type container

Country Status (1)

Country Link
JP (1) JPH04157396A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058496A (en) * 2007-08-08 2009-03-19 Toshiba Corp Hybrid safety system for boiling water reactor
JP2015505373A (en) * 2012-01-18 2015-02-19 デ・セ・エヌ・エス Power generation module
JP2015509192A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Submersible power generation module
JP2015509191A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Underwater power generation module
JP2015509190A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Diving energy generation module
JP2015510582A (en) * 2012-01-18 2015-04-09 デ・セ・エヌ・エス Submersible or underwater power generation module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058496A (en) * 2007-08-08 2009-03-19 Toshiba Corp Hybrid safety system for boiling water reactor
JP2015505373A (en) * 2012-01-18 2015-02-19 デ・セ・エヌ・エス Power generation module
JP2015509192A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Submersible power generation module
JP2015509191A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Underwater power generation module
JP2015509190A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Diving energy generation module
JP2015510582A (en) * 2012-01-18 2015-04-09 デ・セ・エヌ・エス Submersible or underwater power generation module

Similar Documents

Publication Publication Date Title
JP2642763B2 (en) Reactor system
US5272737A (en) Nuclear reactor installation
US5087408A (en) Nuclear power facilities
KR950009881B1 (en) Neclear power facilities
JP4148417B2 (en) Stable passive residual heat removal system for liquid metal furnace
JP3159820B2 (en) Reactor containment equipment
US5353318A (en) Pressure suppression system
JP2983290B2 (en) Heat release equipment for nuclear reactors, especially pressurized water reactors
JP2528977B2 (en) Containment vessel
JPH06265674A (en) Reactor container cooling system and parts used for the cooling system
JPH04157396A (en) Natural cooling type container
JP6359318B2 (en) Static reactor containment cooling system and nuclear power plant
JPH05180974A (en) Reactor, reactor cooling system and reactor power plant and its operational method
JP6771402B2 (en) Nuclear plant
JP5279325B2 (en) Hybrid safety system for boiling water reactors
JP2001228280A (en) Reactor
JP2934341B2 (en) Reactor containment cooling system
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
JP2003240888A (en) Nuclear reactor containment vessel cooling facility
US5642389A (en) Light water reactor in particular a boiling water reactor with a high degree of inherent safety
CA2887741A1 (en) Reactor containment cooling system and nuclear power plant
JPH07117596B2 (en) Natural heat dissipation type containment
JPH05172979A (en) Pressure suppression device for reactor container
JPH05323084A (en) Reactor containment
JP3028842B2 (en) Reactor containment vessel