JPH046492A - Tank-type fast breeder reactor - Google Patents

Tank-type fast breeder reactor

Info

Publication number
JPH046492A
JPH046492A JP2107449A JP10744990A JPH046492A JP H046492 A JPH046492 A JP H046492A JP 2107449 A JP2107449 A JP 2107449A JP 10744990 A JP10744990 A JP 10744990A JP H046492 A JPH046492 A JP H046492A
Authority
JP
Japan
Prior art keywords
coolant
temperature
reactor
flows
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107449A
Other languages
Japanese (ja)
Inventor
Kohei Taruya
耕平 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2107449A priority Critical patent/JPH046492A/en
Publication of JPH046492A publication Critical patent/JPH046492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce the quantity of material of a thin-wall structure of a reactor wall cooling system and to improve the seismic resistance thereof by a method wherein a bypass flow for cooling the inner wall surface of a reactor vessel is led by a piping for bypassing. CONSTITUTION:A primary coolant flowing out of a primary circulation pump 16 flows into a high-pressure plenum 25 through a communication pipe 20 and most of it flows into a reactor core 2 from the high-pressure plenum 25. The coolant heated to a high temperature in the reactor core 2 flows out into a high-temperature coolant accommodating vessel 5 and flows into an intermediate heat exchanger 17 from the window thereof, and it is subjected to heat exchange with a secondary coolant in the intermediate heat exchanger 17, so as to be cooled down. Then, it flows out into a low-temperature coolant area 21 from the outlet of the intermediate heat exchanger 17 and flows into the primary circulation pump 16. Meanwhile, part of the primary coolant of low temperature flowing in the high-pressure plenum 25 flows into a gap 22 between a low-temperature coolant channel forming wall 30 and a reactor vessel 1 through a piping 28 for bypassing, and it flows out of the gap 22 and flows into a coolant stay space 14. By the primary coolant of low temperature flowing through the piping 28 for bypassing, the inner wall surface of the reactor vessel 1 is kept in a state of low temperature and generation of a thermal stress by the high-temperature coolant is mitigated.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は炉容器の健全性を確保するための冷却構造を備
えたタンク型高速増殖炉に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a tank-type fast breeder reactor equipped with a cooling structure for ensuring the integrity of the reactor vessel.

(従来の技術) 一般に高速増殖炉は炉容器内に炉心及び−次冷却材(通
常、液体ナトリウム)か収容されており、この−次冷却
材は炉心を通して循環させて、炉心における核燃料の核
反応により加熱される。この加熱された一次冷却材を中
間熱交換器へ導いて2次冷却材(これも通常、液体ナト
リウム)と熱交換し、さらにその2次冷却材を蒸気発生
器へ導いて水と熱交換し、ここで得られた過熱蒸気を発
電機駆動用のタービンへ送りこむように構成されている
(Prior art) In general, a fast breeder reactor has a reactor core and a secondary coolant (usually liquid sodium) housed in a reactor vessel, and this secondary coolant is circulated through the reactor core to react with nuclear fuel in the reactor core. heated by. This heated primary coolant is led to an intermediate heat exchanger to exchange heat with a secondary coolant (also typically liquid sodium), which is then led to a steam generator to exchange heat with water. The superheated steam obtained here is sent to a turbine for driving a generator.

ところで、この種の高速増殖炉にあっては炉容器が高温
に耐えるように配慮した設計を行う必要がある。また、
炉心を通過した高温の一次冷却材の温度を低下させない
ようにしてその−次冷却材を中間熱交換器へ導く必要も
ある。
By the way, in this type of fast breeder reactor, it is necessary to design the reactor vessel in such a way that it can withstand high temperatures. Also,
It is also necessary to guide the high temperature primary coolant that has passed through the core to the intermediate heat exchanger without reducing its temperature.

そこで、近年では第2図に示すような構成の高速増殖炉
が開発されている。
Therefore, in recent years, a fast breeder reactor having a configuration as shown in FIG. 2 has been developed.

第2図はタンク型高速増殖炉の概略構成を示すものであ
る。図中符号1は炉心2及び−次冷却材3を収容した炉
容器であり、この炉容器1の上部開口ルーフスラブ4に
よって遮蔽されている。炉容器1の内部には高温冷却材
収容容器5が炉心2を支持する炉心支持構体6に支持さ
れて配置されている。この収容容器5は上半部5Aと炉
容器1の内周面との間に隙間7を存在させ、下半部5B
を小径としてその最下端を炉心支持構体6に取着し、上
半部5Aと下半部5Bとの間には中心方向へ向かって下
り勾配となる円錐部5Cを有するように構成されている
FIG. 2 shows a schematic configuration of a tank-type fast breeder reactor. In the figure, reference numeral 1 denotes a reactor vessel that accommodates a reactor core 2 and secondary coolant 3, and is shielded by an upper open roof slab 4 of this reactor vessel 1. A high-temperature coolant storage container 5 is disposed inside the reactor vessel 1 and supported by a core support structure 6 that supports the reactor core 2 . This storage container 5 has a gap 7 between the upper half 5A and the inner circumferential surface of the furnace container 1, and the lower half 5B
has a small diameter and its lowermost end is attached to the core support structure 6, and a conical part 5C slopes downward toward the center between the upper half 5A and the lower half 5B. .

炉容器1の内側には炉容器lの内面に沿って流路形成板
8との間に低温冷却材流路9が形成されている。流路形
成板8は炉心2の直下位置に流通口10を有し、かつ周
壁土部を二重壁(内周壁11A、外周壁11B)として
その二重壁で構成される円環領域(ダウンカマ)12を
低温冷却材収容空間I5へ開口させている。
Inside the furnace vessel 1, a low-temperature coolant flow path 9 is formed between the flow path forming plate 8 and the inner surface of the furnace vessel l. The flow path forming plate 8 has a flow port 10 located directly below the core 2, and has a circumferential wall soil portion as a double wall (inner circumferential wall 11A, outer circumferential wall 11B). ) 12 is opened to the low temperature coolant storage space I5.

流路形成板8の二重壁部下端と炉心支持構体6との間に
は炉心2を中心とする環状の隔壁13か取着されている
。この隔壁13は高温冷却材収容容器5の外側に位置し
て高温冷却材収容容器50円錐部5Cとの間に環状の冷
却材滞留空間14を形成するとともに、炉容器1との間
には炉心4の下端部に連通ずる低温冷却材収容空間15
を形成するものである。
An annular partition wall 13 centered around the core 2 is attached between the lower end of the double wall of the flow path forming plate 8 and the core support structure 6. This partition wall 13 is located on the outside of the high-temperature coolant container 5 and forms an annular coolant retention space 14 between it and the conical portion 5C of the high-temperature coolant container 50. Low-temperature coolant storage space 15 communicating with the lower end of 4
It forms the

ルーフスラブ4には一次冷却材3環ポンプ16及び中間
熱交換器17が支持されている。これらの循環ポンプ1
6及び熱交換器17は炉心2を中心とする円周上に交互
に配置されている。
A primary coolant three-ring pump 16 and an intermediate heat exchanger 17 are supported on the roof slab 4 . These circulation pumps 1
6 and the heat exchangers 17 are arranged alternately on the circumference around the core 2.

一次冷却材循環ポンプI6は冷却材滞留空間14に連通
して円錐部5C上に設けられた筒体1Bの内部を通し、
さらに隔壁13を貫通して低温冷却材収容空間15内に
導入されている。そして、吸入側を冷却材滞留空間14
に連通させ、かつ吐出側を低温冷却材収容空間15に連
通させて、冷却材滞留空間14内の一次冷却材3を低温
冷却材収容空間15へ送り込むように構成されている。
The primary coolant circulation pump I6 communicates with the coolant retention space 14 and passes through the inside of the cylindrical body 1B provided on the conical portion 5C.
Furthermore, it penetrates through the partition wall 13 and is introduced into the low-temperature coolant storage space 15 . The suction side is a coolant retention space 14.
The primary coolant 3 in the coolant retention space 14 is sent into the low temperature coolant storage space 15 by communicating with the low temperature coolant storage space 15 on the discharge side.

中間熱交換器17は一次冷却材流入側を高温冷却材収容
容器5内に位置させるとともに一次冷却材流出側を低温
冷却材収容空間15に連通させて、高温冷却材収容容器
5内の一次冷却材3を低温冷却材収容空間15へ流通さ
せるように構成されている。
The intermediate heat exchanger 17 has a primary coolant inflow side located in the high temperature coolant storage container 5 and a primary coolant outflow side communicated with the low temperature coolant storage space 15 to provide primary cooling in the high temperature coolant storage container 5. It is configured to allow the material 3 to flow into the low temperature coolant storage space 15.

次に、以上の如く構成されたタンク型高速増殖炉の作用
を説明する。
Next, the operation of the tank-type fast breeder reactor configured as described above will be explained.

一次冷却材循環ボンプ16により低温冷却材収容空間1
5内の一次冷却材3が加圧されると、その−次冷却材3
は炉心2を矢印aの如く通過し、炉心2におけるウラン
燃料の核反応によって生じる熱により加熱されて高温冷
却材収容容器5内に至り、中間熱交換器17内に矢印す
の如く流入する。ここで、−次冷却材3は二次冷却材へ
の熱伝達を行い、自らは冷却されて矢印Cの如く低温冷
却材収容空間15に流出され、再び炉心2を通して高温
冷却材収容容器5内への循環を繰り返す。
Low-temperature coolant storage space 1 by primary coolant circulation pump 16
When the primary coolant 3 in 5 is pressurized, the secondary coolant 3
passes through the reactor core 2 as shown by the arrow a, is heated by the heat generated by the nuclear reaction of the uranium fuel in the reactor core 2, reaches the high temperature coolant container 5, and flows into the intermediate heat exchanger 17 as shown by the arrow. Here, the secondary coolant 3 transfers heat to the secondary coolant, is cooled and flows out into the low temperature coolant storage space 15 as shown by arrow C, and passes through the core 2 again into the high temperature coolant storage vessel 5. Repeat the cycle.

一方、−次冷却材循環ポンプ16により加圧された低温
冷却材収容空間15内の一次冷却材3は低温冷却材流路
9を矢印dの如く上昇し、二重壁部の外周壁11Bを矢
印eの如く乗越えて内・外周壁11A、  118間に
流入し、さらに低温冷却材収容空間15に流出する。
On the other hand, the primary coolant 3 in the low-temperature coolant storage space 15 pressurized by the secondary coolant circulation pump 16 moves up the low-temperature coolant flow path 9 as shown by arrow d, and crosses the outer circumferential wall 11B of the double wall portion. As shown by arrow e, the coolant flows over the inner and outer peripheral walls 11A and 118, and further flows out into the low-temperature coolant storage space 15.

ところで、以上の如く構成されたタンク型高速増殖炉に
おいて、炉心2を通過して加熱された高温−次冷却材は
高温冷却材収容容器5内に収容され、炉容器1には炉心
2を通過する前の低温−次冷却材が接触するようになる
ので、炉容器1は比較的低温に保たれることになる。従
って、炉容器1の設計を容易にすることができる。また
、高温冷却材収容容器5の外側には隔壁13を設けて冷
却材滞留空間I4を形成しているので、この空間1イに
存在する一次冷却材が高温冷却座で収容容器5内の高温
−次冷却材と低温冷却材収容空間15の低温−次冷却材
との間の遮熱材として機能し、高温冷却材収容容器5内
の冷却材3の温度低下を防止している。
By the way, in the tank-type fast breeder reactor configured as described above, the high-temperature secondary coolant that has passed through the reactor core 2 and is heated is accommodated in the high-temperature coolant storage container 5, The reactor vessel 1 will be kept at a relatively low temperature since the previous coolant will be in contact with it. Therefore, the design of the furnace vessel 1 can be facilitated. In addition, a partition wall 13 is provided on the outside of the high-temperature coolant storage container 5 to form a coolant retention space I4, so that the primary coolant existing in this space 1a reaches a high temperature inside the storage container 5 at a high temperature. It functions as a heat shield between the secondary coolant and the low-temperature secondary coolant in the low-temperature coolant storage space 15, and prevents the temperature of the coolant 3 in the high-temperature coolant storage container 5 from decreasing.

(発明が解決しようとする課題) 前述したように炉壁冷却流路を形成する構造は流路形成
板8、内周壁11A1外周壁11B1バッフル板19、
高温冷却材収容容器5Aなどの多くの薄肉構造物で構成
されている。そのため、炉容器の液面近傍部の熱応力低
減対策としての炉壁の冷却方式は物量が増加するととも
に耐震設計を複雑化する課題がある。
(Problems to be Solved by the Invention) As described above, the structure for forming the furnace wall cooling flow path includes the flow path forming plate 8, the inner peripheral wall 11A1 the outer peripheral wall 11B1, the baffle plate 19,
It is composed of many thin-walled structures such as the high-temperature coolant storage container 5A. Therefore, the method of cooling the furnace wall as a measure to reduce thermal stress in the vicinity of the liquid surface of the furnace vessel has the problem of increasing the amount of material and complicating the seismic design.

本発明は上記課題を解決するためになされたもので、炉
壁冷却方式の薄肉構造物の物量削減と耐震性の向上を図
ったタンク型高速増殖炉を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a tank-type fast breeder reactor in which the amount of thin-walled structures of the reactor wall cooling type is reduced and earthquake resistance is improved.

[発明の構成] (課題を解決するための手段) 本発明は炉心および一次冷却材を収容しかつ上部開口が
ルースラブで閉塞された炉容器と、この炉容器の内面と
の間に隙間を存して該炉容器内に配置され前記炉心を通
過した高温冷却材を収容しかつ前記ルーフスラブから吊
り下げられた高温冷却材収容容器と、この高温冷却材収
容容器の外側に配置され該高温冷却材収容容器との間に
冷却材滞留空間を形成するとともに前記炉容器の内側に
配置される低温冷却材流路形成壁と、この低温冷却材流
路形成壁と前記炉容器の内壁面との隙間と前記炉心を支
持する炉心支持構体の高圧プレナムとを接続する複数の
バイパス用配管と、このバイパス用配管に沿って設けら
れ前記高圧プレナムと炉容器の内壁との間を区画する隔
壁から支持する配管サポートを具備したことを特徴とす
る。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for creating a gap between a reactor vessel that houses a reactor core and a primary coolant and whose upper opening is closed with a loose slab, and the inner surface of this reactor vessel. a high-temperature coolant storage container disposed within the reactor vessel to accommodate the high-temperature coolant that has passed through the reactor core and suspended from the roof slab; a low-temperature coolant flow path forming wall that forms a coolant retention space between the furnace container and the furnace container, and a wall that forms a low-temperature coolant flow path and an inner wall surface of the furnace A plurality of bypass pipes connecting the gap and a high-pressure plenum of a core support structure that supports the reactor core, and support from a partition wall provided along the bypass pipes and partitioning between the high-pressure plenum and the inner wall of the reactor vessel. It is characterized by being equipped with a piping support.

(作 用) 一次冷却材の大部分は一次循環ポンプから連通管を通っ
て、高圧プレナム内に流入し、高圧プレナムから炉心へ
流入する。炉心で加熱されて中間熱交換器へ流入し二次
冷却材と熱交換する。
(Function) Most of the primary coolant flows from the primary circulation pump through the communication pipe into the high-pressure plenum, and from the high-pressure plenum into the reactor core. It is heated in the core and flows into the intermediate heat exchanger where it exchanges heat with the secondary coolant.

一方、高圧プレナムから流出する一部分の一次冷却材は
バイパス配管を流れ、炉容器と低温冷却材流路形成壁と
の間の隙間に流れ込んで炉容器の内壁面を冷却して低温
状態を保持する。この低温冷却材によって炉容器の熱応
力を緩和する。また、バイパス配管を使用することによ
って従来の流路形成板などを大幅に減少させることがで
きる。
On the other hand, a portion of the primary coolant flowing out from the high-pressure plenum flows through the bypass pipe and into the gap between the furnace vessel and the wall forming the low-temperature coolant flow path, cooling the inner wall surface of the reactor vessel and maintaining a low temperature state. . This low-temperature coolant relieves thermal stress in the furnace vessel. Furthermore, by using bypass piping, the number of conventional flow path forming plates and the like can be significantly reduced.

さらに高温冷却材収容容器をルーフスラブから支持する
ことによって高温冷却材の耐震時の振動重量を該収容容
器が負担するため炉容器の耐震性が向上する。
Furthermore, by supporting the high-temperature coolant storage container from the roof slab, the storage container bears the vibrational weight of the high-temperature coolant during earthquake resistance, thereby improving the earthquake resistance of the reactor vessel.

またさらに、高温冷却材収容容器の外側にガス溜27を
設けることによって、該収容容器の内外部の断熱性能を
向上させる。
Furthermore, by providing the gas reservoir 27 outside the high-temperature coolant storage container, the insulation performance of the inside and outside of the storage container is improved.

(実施例) 第1図を参照しながら本発明に係るタンク型高速増殖炉
の一実施例を説明する。なお、第1図中第2図と同一部
分には同一符号を付して説明する。
(Example) An example of a tank-type fast breeder reactor according to the present invention will be described with reference to FIG. Note that the same parts in FIG. 1 as in FIG. 2 will be described with the same reference numerals.

第1図において、炉容器1内には炉心2か炉心支持構体
6で支持され、−次冷却材3が収容されている。炉容器
1の上部開口はルーフスラブ4て閉塞されている。炉心
2の下部には高圧プレナム25が設けられており、この
高圧プレナム25内には連通管20によって一次循環ポ
ンプ16からの冷却材が流入する。−次循環ボンプ16
および中間熱交換器17がルーフスラブ4を貫通して炉
容器1内の炉心2の周囲に設けられている。高圧プレナ
ム25と炉容器1の下部内側面との間には隔壁13が設
けられ、この隔壁13によって炉心2の上部と下部との
間か区画される。隔壁13の下部は低温冷却材領域21
て、上部は一次冷却材滞留空間14を形成する。
In FIG. 1, a reactor core 2 is supported by a core support structure 6, and a secondary coolant 3 is accommodated in a reactor vessel 1. The upper opening of the furnace vessel 1 is closed by a roof slab 4. A high pressure plenum 25 is provided in the lower part of the reactor core 2, into which coolant from the primary circulation pump 16 flows through a communication pipe 20. -Next circulation pump 16
An intermediate heat exchanger 17 is provided around the core 2 in the furnace vessel 1 by penetrating the roof slab 4. A partition wall 13 is provided between the high-pressure plenum 25 and the lower inner surface of the reactor vessel 1, and the partition wall 13 defines an upper portion and a lower portion of the reactor core 2. The lower part of the partition wall 13 is a low temperature coolant area 21
The upper part forms a primary coolant retention space 14 .

炉心2の上方には高温冷却材収容容器5か設けられ、こ
の容器5はルーフスラブ4に吊り下げられている。この
容器5の上部外側面にはガス留め27が設けられている
。炉容器1と高温冷却材収容容器5との間には隙間22
をもたせて低温冷却材流路形成壁30が設けられており
、この壁30と炉容器1との隙間の下部には複数本のバ
イパス用配管28が接続され、これらの配管28は隔壁
13から配管サポート29で支持されている。なお、バ
イパス用配管28の下端は高圧プレナム25に連通して
接続されている。
A high-temperature coolant storage container 5 is provided above the core 2, and this container 5 is suspended from the roof slab 4. A gas stopper 27 is provided on the outer surface of the upper part of the container 5. There is a gap 22 between the furnace vessel 1 and the high temperature coolant storage vessel 5.
A low-temperature coolant flow path forming wall 30 is provided so as to have a wall 30, and a plurality of bypass pipes 28 are connected to the lower part of the gap between this wall 30 and the furnace vessel 1, and these pipes 28 are connected from the partition wall 13 to It is supported by a piping support 29. Note that the lower end of the bypass pipe 28 is connected to the high pressure plenum 25 in communication.

中間熱交換器17の下端は隔壁13とベローズシール2
6によってシールされている。図中符号23は一次循環
ポンプを包囲する筒体、24は中間熱交換器を包囲する
筒体である。
The lower end of the intermediate heat exchanger 17 is connected to the partition wall 13 and the bellows seal 2
It is sealed by 6. In the figure, reference numeral 23 is a cylinder surrounding the primary circulation pump, and 24 is a cylinder surrounding the intermediate heat exchanger.

ここで、−次循環ポンプ16から流出した−次冷部材は
連通管20を通って高圧プレナム25へ流入し、大部分
の一次冷却材は高圧プレナム25から炉心2内に流入す
る。炉心2て加熱された高温冷却材は高温冷却材収容容
器5内に流出し、中間熱交換器17の窓から流入して中
間熱交換器I7内の二次冷却材と熱交換して冷却され、
中間熱交換器17の出口から低温冷却材領域21へ流出
して一次循環ポンプ16に流入する。そして、再び連通
管20から高圧プレナム25、炉心2へと流入する循環
経路をたどる。
Here, the secondary cooling member flowing out from the secondary circulation pump 16 flows into the high-pressure plenum 25 through the communication pipe 20, and most of the primary coolant flows into the reactor core 2 from the high-pressure plenum 25. The high-temperature coolant heated in the core 2 flows into the high-temperature coolant container 5, flows in through the window of the intermediate heat exchanger 17, and is cooled by exchanging heat with the secondary coolant in the intermediate heat exchanger I7. ,
It flows out from the outlet of the intermediate heat exchanger 17 into the low temperature coolant region 21 and flows into the primary circulation pump 16 . Then, it follows the circulation path from the communication pipe 20 to the high-pressure plenum 25 and the reactor core 2 again.

一方、高圧プレナム25に流入した低温の一次冷却材の
一部はバイパス用配管28を通って冷温冷却材流路形成
壁30と炉容器1との隙間22に流入し隙間22を流出
して冷却材滞留空間14内流入する。バイパス用配管2
8を流れる低温の一次冷却材によって炉容器1の内壁面
が低温状態を維持し、高温冷却材による熱応力の発生を
緩和する。
On the other hand, a part of the low-temperature primary coolant that has flowed into the high-pressure plenum 25 passes through the bypass pipe 28, flows into the gap 22 between the cold coolant flow path forming wall 30 and the furnace vessel 1, flows out of the gap 22, and is cooled. The material flows into the material retention space 14. Bypass piping 2
The inner wall surface of the furnace vessel 1 is maintained at a low temperature by the low-temperature primary coolant flowing through the reactor 8, and the generation of thermal stress caused by the high-temperature coolant is alleviated.

このようにして炉容器1の内壁面を冷却する冷却用のバ
イパス流れをバイパス用配管28で導くことによって炉
容器液面近傍の熱応力を低減することができる。
In this way, by guiding the cooling bypass flow that cools the inner wall surface of the furnace vessel 1 through the bypass piping 28, thermal stress near the liquid surface of the furnace vessel can be reduced.

また、高温冷却材収容容器5の上部外側面にカス留27
を設けることによって冷却材滞留空間I4の上部の断熱
性が向上し、高温冷却材の熱が直接炉容器1の内壁面に
熱伝導するのを防止することかできる。
In addition, a waste retainer 27 is provided on the outer surface of the upper part of the high-temperature coolant storage container 5.
By providing this, the insulation of the upper part of the coolant retention space I4 is improved, and it is possible to prevent the heat of the high-temperature coolant from being directly conducted to the inner wall surface of the furnace vessel 1.

「発明の効果] 本発明によれば炉容器の熱応力を低減することができる
だけでなく、炉壁冷却方式の薄肉構造物の物量を削減で
き、また耐震性の向上をはかることができる。
"Effects of the Invention" According to the present invention, it is possible not only to reduce the thermal stress of the furnace vessel, but also to reduce the amount of thin-walled structures in the furnace wall cooling system, and to improve earthquake resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るタンク型高速増殖炉の一実施例を
示す縦断面図、第2図は従来の高速増殖炉を示す縦断面
図である。 1・・・炉容器 2・・・炉心 3・・・−次冷部材 4・・・ルーフスラブ 5・・・高温冷却材収容容器 6・・・炉心支持構体 7・・・隙間 8・・・流路形成板 9・・・低温冷却材流路 10・・・流通口 11A・・・内周壁 11B・・・外周壁 12・・・円環領域 3・・・隔壁 4・・・冷却材滞留空間 5・・・低温冷却材収容容器 6・・・−次冷部材循環ボンプ 7・・・中間熱交換器 訃・・筒体 9・・・バッフル板 20・・・連通管 21・・・低温冷却材領域 22・・・隙間 23・・・ポンプの筒体 24・・・熱交換器の筒体 25・・・高圧プレナム 2ε・・・ベローズシール 27・・・ガス溜 28・・・バイパス用配管 29・・・配管サポート 30・−・低温冷却材流路形成壁 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第 図 第 図
FIG. 1 is a longitudinal sectional view showing an embodiment of a tank-type fast breeder reactor according to the present invention, and FIG. 2 is a longitudinal sectional view showing a conventional fast breeder reactor. 1... Reactor vessel 2... Core 3... - Secondary cooling member 4... Roof slab 5... High temperature coolant storage container 6... Core support structure 7... Gap 8... Flow path forming plate 9...low temperature coolant channel 10...flow port 11A...inner wall 11B...outer wall 12...annular region 3...partition wall 4...coolant retention Space 5...Low temperature coolant storage container 6...Next cooling member circulation pump 7...Intermediate heat exchanger body...Cylinder body 9...Baffle plate 20...Communication pipe 21...Low temperature Coolant area 22... Gap 23... Pump cylinder 24... Heat exchanger cylinder 25... High pressure plenum 2ε... Bellows seal 27... Gas reservoir 28... For bypass Piping 29... Piping support 30... Low-temperature coolant flow path forming wall (8733) Agent Patent attorney Yoshiaki Inomata (and others)
1 person) Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 炉心および一次冷却材を収容しかつ上部開口がルーフス
ラブで閉塞された炉容器と、この炉容器の内面との間に
隙間を存して該炉容器内に配置され前記炉心を通過した
高温冷却材を収容しかつ前記ルーフスラブから吊り下げ
られた高温冷却材収容容器と、この高温冷却材収容容器
の外側に配置され該高温冷却材収容容器との間に冷却材
滞留空間を形成するとともに前記炉容器の内側に配置さ
れる低温冷却材流路形成壁と、この低温冷却材流路形成
壁と前記炉容器の内壁面との隙間と前記炉心を支持する
炉心支持構体の高圧プレナムとを連通する複数のバイパ
ス用配管と、このバイパス用配管に沿って設けられ前記
高圧プレナムと炉容器の内壁との間を区画する隔壁から
支持する配管サポートとを具備したことを特徴とするタ
ンク型高速増殖炉。
High-temperature cooling that is disposed within the reactor vessel with a gap between the reactor vessel that accommodates the reactor core and primary coolant and whose upper opening is closed by a roof slab, and the inner surface of the reactor vessel, and that has passed through the reactor core. A coolant retention space is formed between a high-temperature coolant storage container that houses the material and is suspended from the roof slab, and a high-temperature coolant storage container that is disposed outside of the high-temperature coolant storage container, and A low-temperature coolant channel forming wall disposed inside the reactor vessel, a gap between the low-temperature coolant channel forming wall and the inner wall surface of the reactor vessel, and a high-pressure plenum of a core support structure that supports the reactor core are communicated with each other. A tank-type high-speed breeder characterized by comprising a plurality of bypass piping, and a piping support provided along the bypass piping and supported from a partition wall that partitions between the high-pressure plenum and the inner wall of the reactor vessel. Furnace.
JP2107449A 1990-04-25 1990-04-25 Tank-type fast breeder reactor Pending JPH046492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107449A JPH046492A (en) 1990-04-25 1990-04-25 Tank-type fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107449A JPH046492A (en) 1990-04-25 1990-04-25 Tank-type fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH046492A true JPH046492A (en) 1992-01-10

Family

ID=14459439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107449A Pending JPH046492A (en) 1990-04-25 1990-04-25 Tank-type fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH046492A (en)

Similar Documents

Publication Publication Date Title
US4048011A (en) Fast nuclear reactor
US4309252A (en) Nuclear reactor constructions
JPS627996B2 (en)
CN201126717Y (en) Pool type natrium cold fast reactor accident waste heat discharging system
JPH0326795B2 (en)
CN201130542Y (en) Sodium-sodium heat exchanger
CN201126716Y (en) Natrium-air heat exchanger
CN101174481B (en) Sodium-sodium heat exchanger
JPH046492A (en) Tank-type fast breeder reactor
JPH01105191A (en) Nuclear reactor having integral type pressure vessel construction
JP2539405B2 (en) Liquid metal cooling heat exchanger
JPH04110694A (en) Fast breeder reactor
JPH04307397A (en) Tank-type high-speed reactor
JPH0749391A (en) Nuclear reactor
JPH03102288A (en) Tank fast breeder
JP2508538Y2 (en) Fast breeder reactor cooling unit
JPS62142294A (en) Tank type fast breeder reactor
JPH03122593A (en) Tank type fast bredder reactor
JPS62186101A (en) Steam generator
JPS6381294A (en) Tank type fast breeder reactor
JPS6244694A (en) Nuclear reactor
JPH07117591B2 (en) Nuclear reactor plant
Ventre Nuclear reactor with integrated heat exchanger
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPH03257398A (en) Tank type fast breeder reactor