JPH03257398A - Tank type fast breeder reactor - Google Patents

Tank type fast breeder reactor

Info

Publication number
JPH03257398A
JPH03257398A JP2057588A JP5758890A JPH03257398A JP H03257398 A JPH03257398 A JP H03257398A JP 2057588 A JP2057588 A JP 2057588A JP 5758890 A JP5758890 A JP 5758890A JP H03257398 A JPH03257398 A JP H03257398A
Authority
JP
Japan
Prior art keywords
coolant
reactor
temperature
temperature coolant
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2057588A
Other languages
Japanese (ja)
Inventor
Kohei Taruya
耕平 樽谷
Kyo Imaizumi
今泉 京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2057588A priority Critical patent/JPH03257398A/en
Publication of JPH03257398A publication Critical patent/JPH03257398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To mitigate thermal stresses of members and to keep structural integrity by elimianating a baffle plate which is, used to be, essentially required, and by forming, in stead, a gas space at least at an upper surrounding wall part. CONSTITUTION:At an upper half part 5A of a housing vessel of high temperature coolant, a plate 24 forming a gas space is placed, and its upper and lower ends are fit to an outer circumference part of the upper half part 5A to form a ring shaped gas space 25 internally. This space 25 is connected to a cover gas atmosphere which is sealed into an upper end part of a reactor vessel 1 through a gas vent hole 26 on a top part of the space. Under this constitution, temperature of a region G is around 380 deg.C and of a region E is around 530 deg.C during normal operation. Accordingly, by setting appropriately width of a region F which is the space 25, and by making the region function as a thermal insulating material, temperature of the region F can be set to be around 450 to 480 deg.C. Consequently, temperature difference to thickness direction of the plate 24 forming the gas space, becomes some 70 to 100 deg.C and the temperature difference can be reduced and also its structure can be simplified by elimination of a baffle plate.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は炉容器の健全性を確保するための冷却構造を備
えた高速増殖炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fast breeder reactor equipped with a cooling structure for ensuring the integrity of the reactor vessel.

(従来の技術) 一般に高速増殖炉は、炉容器内に炉心及び−次冷却材(
通常、液体ナトリウム)が収容されており、この−次冷
却材は炉心を通して循環されて、炉心における核燃料の
核反応により加熱される。
(Prior art) In general, a fast breeder reactor has a core and a secondary coolant (
This secondary coolant is circulated through the reactor core and heated by the nuclear reaction of the nuclear fuel in the reactor core.

この加熱された一次冷却材を中間熱交換器へ導いて二次
冷却材(これも通常、液体ナトリウム)と熱交換し、さ
らにその二次冷却材を蒸発器へ導いて水と熱交換し、こ
こで得られた過熱蒸気を発電機駆動用のタービンへ送り
込むように構成されている。
The heated primary coolant is guided to an intermediate heat exchanger to exchange heat with a secondary coolant (also typically liquid sodium), and the secondary coolant is further guided to an evaporator to exchange heat with water. The superheated steam obtained here is configured to be sent to a turbine for driving a generator.

ところで、この種の高速増殖炉にあっては、炉容器が高
温に耐えるように配慮した設計を行なう必要がある。ま
た炉心を通過した高温の一次冷却材を、温度を低下させ
ないように中間熱交換器へ導く必要もある。
By the way, in this type of fast breeder reactor, it is necessary to design the reactor vessel in such a way that it can withstand high temperatures. It is also necessary to guide the high temperature primary coolant that has passed through the core to an intermediate heat exchanger so as not to lower the temperature.

そこで、近年では第3図に示すような構成の高速増殖炉
が開発されている。
Therefore, in recent years, a fast breeder reactor having a configuration as shown in FIG. 3 has been developed.

第3図はタンク型高速増殖炉の概略構成を示すもので、
図中、符号1は炉心2及び−次冷却材(通称液体ナトリ
ウム)3を収容した炉容器であり、この炉容器1の上部
開口はルーフスラブ4によって遮蔽されている。また炉
容器1の内部には高温冷却材収容容器5が炉心2を支持
する炉心支持構体6に支持されて配置されている。この
収容容器5は、上半部5Aと炉容器1の内周面との間に
隙間7を存在させ、下半部5Bを小径としてその最下端
を前記炉心支持構体6に取着し、上半部5Aと下半部5
Bとの間には中心方向へ向って下り勾配となる円錐部5
CをHするように構成されている。
Figure 3 shows the schematic configuration of a tank-type fast breeder reactor.
In the figure, reference numeral 1 denotes a reactor vessel housing a reactor core 2 and a secondary coolant (commonly known as liquid sodium) 3, and an upper opening of this reactor vessel 1 is shielded by a roof slab 4. Further, a high-temperature coolant storage container 5 is disposed inside the reactor vessel 1 and is supported by a core support structure 6 that supports the reactor core 2 . This storage vessel 5 has a gap 7 between the upper half 5A and the inner circumferential surface of the reactor vessel 1, has a lower half 5B with a small diameter, and has its lowermost end attached to the core support structure 6. Half part 5A and lower half part 5
A conical portion 5 with a downward slope toward the center is provided between B and B.
It is configured to change C to H.

前記炉容器1の内側には、炉容器]の内面に沿って流路
形成板8が配設され、炉容器1内面と流路形成板8との
間には低温冷却材流路9が形成されている。上記流路形
成板8は炉心2の直下位置に流通口10を有し、かつ周
壁上部を二重壁(内周壁11A1外周壁11B)として
その二重壁で構成される円環領域(ダウンカマ)12を
低温冷却材収容空間15へ開口させている。この円環領
域12の上端内部には、後に詳述するバッフル板18が
配置されている。
A flow path forming plate 8 is disposed inside the furnace vessel 1 along the inner surface of the furnace vessel, and a low temperature coolant flow path 9 is formed between the inner surface of the furnace vessel 1 and the flow path forming plate 8. has been done. The flow path forming plate 8 has a communication port 10 located directly below the core 2, and has a double wall (inner peripheral wall 11A1 outer peripheral wall 11B) at the upper part of the peripheral wall, and an annular region (downcomer) constituted by the double wall. 12 is opened to a low temperature coolant storage space 15. A baffle plate 18, which will be described in detail later, is arranged inside the upper end of this annular region 12.

また前記流路形成板8の二重壁部下端と前記炉心支持構
体6との間には、前記炉心2を中心とする環状の隔壁1
3が取着されている。この隔壁13は高温冷却材収容容
器5の外側に位置して高温冷却材収容容器5の円錐部5
Cとの間に環状の冷却材滞留空間14を形成するととも
に、炉容器1との間には前記炉心2の下端部に連通ずる
低温冷却材収容空間15を形成するものである。
Further, between the lower end of the double wall of the flow path forming plate 8 and the core support structure 6, an annular partition wall 1 centered around the core 2 is provided.
3 is attached. This partition wall 13 is located on the outside of the high temperature coolant storage container 5 and
An annular coolant retention space 14 is formed between the reactor and the reactor vessel 1, and a low-temperature coolant storage space 15 that communicates with the lower end of the reactor core 2 is formed between the reactor vessel 1 and the reactor vessel 1.

さらに、前記ルーフスラブ4には一次冷却材循環ポンプ
16・・・及び中間熱交換器17・・が支持されている
。これらの循環ポンプ16・・・及び熱交換器17・・
・は炉心2を中心とする円周上に交互に配置されている
Further, the roof slab 4 supports a primary coolant circulation pump 16 and an intermediate heat exchanger 17. These circulation pumps 16... and heat exchangers 17...
* are arranged alternately on the circumference around the core 2.

一次冷却材循環ポンプ16は、前記冷却材滞留空間14
に連通して円錐部5C上に設けられた筒体19の内部を
通し、さらに隔壁13を貫通して低温冷却材収容空間1
5内に導入されている。そして吸入側を低温冷却材収容
空間15に連通させ、かつ吐出側を炉心2に連通させて
、低温冷却材収容空間15内の一次冷却材3を炉心2へ
矢印りの如く送り込むように構成されている。
The primary coolant circulation pump 16 operates in the coolant retention space 14.
It passes through the inside of the cylinder 19 provided on the conical part 5C and further penetrates the partition wall 13 to connect to the low temperature coolant storage space 1.
It has been introduced in 5. The suction side is communicated with the low-temperature coolant storage space 15, and the discharge side is connected with the reactor core 2, so that the primary coolant 3 in the low-temperature coolant storage space 15 is fed into the core 2 as shown by the arrow. ing.

また、中間熱交換器17は、−次冷却材流入側を高温冷
却材収容容器5内に位置させるとともに一次冷却材流出
側を低温冷却材収容空間15に連通させて、高温冷却材
収容容器5内の一次冷却材3を、低温冷却材収容空間1
5へ流通させるように構成されている。
Further, the intermediate heat exchanger 17 has a secondary coolant inflow side located in the high temperature coolant storage container 5 and a primary coolant outflow side communicated with the low temperature coolant storage space 15. The primary coolant 3 inside is stored in the low temperature coolant storage space 1.
It is configured to be distributed to 5.

次に、以上の如く構成されたタンク型高速増殖炉の作用
を説明する。
Next, the operation of the tank-type fast breeder reactor configured as described above will be explained.

今、−次冷却材循環ポンプ16により低温冷却材収容空
間15内の一次冷却材3が加圧されると、低温冷却材収
容空間15内の一次冷却月3は炉心2を矢印aの如く通
過し、炉心2におけるウラン燃料の核反応によって生ず
る熱により加熱されて高温冷却材収容容器5内に至り、
中間熱交換器17内に矢印すの如く流入する。ここで、
−次冷却材3は二次冷却材への熱伝達を行ない、自らは
冷却されて矢印Cの如く低温冷却材収容空間15に流出
され、再び炉心2を通して高温冷却材収容容器5内への
循環を繰返す。
Now, when the primary coolant 3 in the low-temperature coolant storage space 15 is pressurized by the secondary coolant circulation pump 16, the primary coolant 3 in the low-temperature coolant storage space 15 passes through the core 2 as shown by arrow a. The uranium fuel is heated by the heat generated by the nuclear reaction of the uranium fuel in the reactor core 2 and reaches the high temperature coolant storage container 5.
It flows into the intermediate heat exchanger 17 as shown by the arrow. here,
- The secondary coolant 3 transfers heat to the secondary coolant, is cooled and flows out into the low temperature coolant storage space 15 as shown by arrow C, and is circulated again through the core 2 into the high temperature coolant storage vessel 5. Repeat.

一方、−次冷却材循環ポンプ16により加圧された、低
温冷却材収容空間15内の一次冷却材3は、流通口10
から入って、低温冷却相流路9を矢印dの如く上昇し、
二重壁部の外周壁11Bを矢印eの如く乗越えて山・外
周壁11.A、IIB間に流入し、さらに低温冷却材収
容空間15に流出する。
On the other hand, the primary coolant 3 in the low-temperature coolant storage space 15 pressurized by the secondary coolant circulation pump 16 is
Entering from
Climb over the outer circumferential wall 11B of the double wall portion as shown by arrow e and climb the mountain/outer circumferential wall 11. It flows into between A and IIB, and further flows out into the low temperature coolant storage space 15.

ところで、以上の如く構成されたタンク型高速増殖炉に
おいて、炉心2を通過して過熱された高温−次冷却材は
、高温冷却材収容容器5内に収容され、炉容器1には炉
心2を通過する前の低温−次冷却材が接触するようにな
るので、炉容器1は比較的低温に保たれることになる。
By the way, in the tank-type fast breeder reactor configured as described above, the high-temperature secondary coolant that has passed through the reactor core 2 and has been superheated is accommodated in the high-temperature coolant storage container 5, and the reactor core 2 is placed in the reactor container 1. The reactor vessel 1 will be kept at a relatively low temperature as the cold-secondary coolant will come into contact with it before it passes through.

従って炉容器1の設計を容易にすることができる。また
高温冷却材収容容器5の外側には、隔壁13を設けて冷
却材滞留空間14を形成しているので、この空間14に
存在する一次冷却材が高温冷却材収容容器5内の高温−
次冷却材と低温冷却材収容空間15の低温−次冷却材と
の間の遮熱材として機能し、高温冷却材収容容器5内の
冷却材3の温度低下を防止している。
Therefore, the design of the furnace vessel 1 can be facilitated. Further, on the outside of the high-temperature coolant container 5, a partition wall 13 is provided to form a coolant retention space 14, so that the primary coolant existing in this space 14 is transferred to the high temperature inside the high-temperature coolant container 5.
It functions as a heat shield between the secondary coolant and the low-temperature secondary coolant in the low-temperature coolant storage space 15, and prevents the temperature of the coolant 3 in the high-temperature coolant storage container 5 from decreasing.

次に、炉壁冷却構造におけるバッフル板18の機能を、
第4図(a)、  (b)を参照して説明する。第4図
(a)は、定常運転時における炉壁冷却流路周りの状態
を示し、また第4図(b)は、原子炉トリップ直後にお
ける炉壁冷却流路周りの状態を示す。
Next, the function of the baffle plate 18 in the furnace wall cooling structure is as follows.
This will be explained with reference to FIGS. 4(a) and 4(b). FIG. 4(a) shows the state around the reactor wall cooling channel during steady operation, and FIG. 4(b) shows the state around the reactor wall cooling channel immediately after a reactor trip.

定常運転特において、A領域は一次冷却刊とほぼ同一の
温度(約530℃)、C領域は低温冷却材流路9の冷却
材温度から若干昇温した温度(約380℃)となってい
る。
During steady operation, the temperature in area A is almost the same as that of the primary cooling (approximately 530°C), and the temperature in area C is slightly higher than the coolant temperature in the low-temperature coolant flow path 9 (approximately 380°C). .

ところで、原子炉トリップ時には、前記C領域の液位が
急上昇するため、バッフル板18を設置しない場合には
、原子炉トリップ直後の内周壁11Aの上部の肉厚方向
に、急激に約150℃(−530°C−380℃)の温
度差を生じ、この内周壁11Aの構造健全性確保の上で
大きな問題となる。
By the way, at the time of a reactor trip, the liquid level in the C region rises rapidly, so if the baffle plate 18 is not installed, the liquid level in the upper part of the inner circumferential wall 11A will suddenly rise by about 150° C. ( A temperature difference of -530° C. to 380° C.) is generated, which poses a major problem in ensuring the structural integrity of the inner peripheral wall 11A.

一方、バッフル板18を設置して内周壁11Aとの間に
B領域を形成した場合には、このB領域は、定常運転時
には約430℃となる。このため、原子炉トリップ時の
内周壁11A上部の肉厚方向の温度差を、約100℃に
低減させることが可能となる。
On the other hand, when the baffle plate 18 is installed to form a region B between the baffle plate 18 and the inner circumferential wall 11A, the temperature in the region B becomes approximately 430° C. during steady operation. Therefore, it is possible to reduce the temperature difference in the thickness direction of the upper part of the inner circumferential wall 11A to about 100° C. during a reactor trip.

(発明が解決しようとする課題) 前記従来のタンク型高速増殖炉において、−次冷却材3
の液面近傍位置では、外周壁11B、バッフル板18、
高温冷却材収容容器5の上半部5Aの4枚の薄肉構造物
で構成されることになり、また炉容器1の底部にも、薄
肉の流路形成板8が設置されることになるため、物量が
増大するとともに、耐震設計も複雑になるという問題が
ある。
(Problem to be Solved by the Invention) In the conventional tank-type fast breeder reactor, the second coolant 3
At a position near the liquid level, the outer peripheral wall 11B, the baffle plate 18,
The upper half 5A of the high-temperature coolant storage container 5 will be composed of four thin-walled structures, and the thin-walled flow path forming plate 8 will also be installed at the bottom of the furnace container 1. As the amount of materials increases, the seismic design becomes more complex.

本発明は、このような点を考慮してなされたもので、炉
壁冷却構造を簡素化することができるとともに、物量の
低減を図ることができるタンク型高速増殖炉を提供する
ことを目的とする。
The present invention has been made in consideration of these points, and an object of the present invention is to provide a tank-type fast breeder reactor that can simplify the reactor wall cooling structure and reduce the amount of material. do.

〔発明の構成〕[Structure of the invention]

(課題を構成するための手段) 本発明は、前記目的を達成する手段として、炉心および
一次冷却材が収容される炉容器と、この炉容器の上端開
口部を閉塞する蓋と、炉容器の内面との間に隙間を有し
て炉容器出に配置され炉心を通過した高温冷却材を収容
する高温冷却材収容容器と、前記炉容器の少なくとも上
部周壁部に形成され炉心を通過する前の低温冷却材が供
給されて炉壁を冷却する環状の低温冷却材流路と、この
低温冷却材流路と前記高温冷却材収容容器との間に形成
され、低温冷却材流路の上端から溢流した冷却材が導か
れる冷却材滞留空間と、前記高温冷却材収容容器の少な
くとも上部周壁部に形成され内部が炉容器の上端部に封
入したカバーガスにより満される環状のガス空間と、を
それぞれ設けるようにしたことを特徴とする。
(Means for Constructing the Problem) As a means for achieving the above object, the present invention provides a reactor vessel in which a reactor core and a primary coolant are housed, a lid for closing an upper end opening of the reactor vessel, and a lid for closing an upper end opening of the reactor vessel. a high-temperature coolant storage container that is disposed on the outside of the reactor vessel with a gap between the inner surface and the high-temperature coolant container that contains the high-temperature coolant that has passed through the reactor core; An annular low-temperature coolant flow path is formed between the low-temperature coolant flow path and the high-temperature coolant container, and the low-temperature coolant flow path overflows from the upper end of the low-temperature coolant flow path. A coolant retention space into which the flowing coolant is guided, and an annular gas space formed in at least the upper peripheral wall of the high-temperature coolant storage container and whose interior is filled with a cover gas sealed in the upper end of the furnace container. The feature is that each is provided separately.

(作 用) 本発明に係るタンク型高速増殖炉においては、炉心を通
過する前の低温冷却材が低温冷却材流路に供給され、炉
壁の冷却がなされる。そして、この冷却構は、低温冷却
材流路の上端から基液して冷却材滞留空間に導かれる。
(Function) In the tank-type fast breeder reactor according to the present invention, the low-temperature coolant before passing through the reactor core is supplied to the low-temperature coolant channel to cool the reactor wall. In this cooling structure, the base liquid is introduced into the coolant retention space from the upper end of the low-temperature coolant flow path.

この冷却材滞留空間には、従来必須であったバッフル板
は設けられておらず、構造の簡素化が図られている。ま
たバッフル板を省略したことに伴なう温度差の増大は、
高温冷却材収容容器の少なくとも上部周壁部にガス空間
を形成し、このガス空間を、断熱材として機能させるこ
とにより解決している。
This coolant retention space is not provided with a baffle plate, which was conventionally essential, and the structure is simplified. In addition, the increase in temperature difference due to the omission of the baffle plate is
This problem is solved by forming a gas space in at least the upper peripheral wall of the high-temperature coolant storage container and making this gas space function as a heat insulating material.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係るタンク型高速増殖炉の一例を示
すもので、図中、符号1は炉心2および一次冷却材3を
収容した炉容器であり、この炉容器1の上端開口部は、
ルーフスラブ4によって閉塞されている。
FIG. 1 shows an example of a tank-type fast breeder reactor according to the present invention. In the figure, reference numeral 1 denotes a reactor vessel containing a reactor core 2 and a primary coolant 3, and an upper opening of this reactor vessel 1. teeth,
It is closed by a roof slab 4.

また、この炉容器1の内部には、第1図に示すように、
高温冷却材収容容器5が、炉心2を支持する炉心支持構
体6に支持されて配置されている。
Additionally, inside the furnace vessel 1, as shown in FIG.
A high-temperature coolant storage container 5 is supported by a core support structure 6 that supports the reactor core 2 .

この高温冷却材収容容器5は、第1図に示すように、上
半部5Aと炉容器1の内周面との間に隙間7を存在させ
、下半部5Bを小径としてその最下端を前記炉心支持構
体6に取着し、上半部5Aと下半部5Bとの間には中心
方向に向かって下り勾配となる円錐部5Cを有するよう
に構成されている。
As shown in FIG. 1, this high-temperature coolant storage container 5 has a gap 7 between the upper half 5A and the inner circumferential surface of the furnace vessel 1, and has a lower half 5B with a small diameter and a lowermost end thereof. It is attached to the core support structure 6, and is configured to have a conical part 5C between the upper half part 5A and the lower half part 5B, which slopes downward toward the center.

炉容器1の上部内周部には、第1図および第2図(a)
、(b)に示すように、周壁20が配置されて炉壁との
間に環状をなす低温冷却材流路21が形成されており、
この低温冷却材流路21には、炉心支持構体6下部の低
温の一次冷却材3が、配管22を介し供給されるように
なっている。
The upper inner periphery of the furnace vessel 1 is shown in FIGS. 1 and 2 (a).
, as shown in (b), a peripheral wall 20 is arranged to form an annular low-temperature coolant flow path 21 between the peripheral wall 20 and the furnace wall,
The low-temperature coolant flow path 21 is supplied with the low-temperature primary coolant 3 from the lower part of the core support structure 6 via a pipe 22 .

この低温冷却材流路21下端と炉心支持構体6との間に
は、第1図に示すように、前記炉心2を中心とする環状
の隔壁13が設置されている。この隔壁13は、前記高
温冷却材収容容器5の外側下方に位置し、高温冷却材収
容容器5の円錐部5Cとの間に、環状の冷却材滞留空間
]4を形成するとともに、炉容器1との間には、前記炉
心2の下端部に連通する低温冷却材収容容器15を形成
している。そして、冷却材滞留空間14は、第1図に示
すように、隔壁13の外周縁に設けた流通口23を介し
、低温冷却材収容容器15と連通している。
As shown in FIG. 1, an annular partition wall 13 is installed between the lower end of the low-temperature coolant channel 21 and the core support structure 6, with the core 2 at its center. The partition wall 13 is located below the outside of the high-temperature coolant container 5 and forms an annular coolant retention space 4 between the high-temperature coolant container 5 and the conical portion 5C. A low-temperature coolant storage container 15 communicating with the lower end of the core 2 is formed between the reactor core 2 and the reactor core 2 . As shown in FIG. 1, the coolant retention space 14 communicates with the low-temperature coolant storage container 15 via a flow port 23 provided at the outer peripheral edge of the partition wall 13.

一方、ルーフスラブ4には、第1図に示すように、複数
台の一次冷却材3環ポンプ16および中間熱交換器17
がそれぞれ支持されており、これらの−次冷却材循環ポ
ンブ16および中間熱交換器17は、炉心2を中心とす
る円周上に交互に配置されている。
On the other hand, as shown in FIG.
are supported, respectively, and these secondary coolant circulation pumps 16 and intermediate heat exchangers 17 are arranged alternately on the circumference around the core 2.

各−次冷却材循環ポンプ16は、第1図に示すように、
冷却材滞留空間14に連通させて円錐部5C上に設けた
筒体19内を通し、さらに隔壁13を貫通して低温冷却
材収容空間15内に導入されており、その吸入側は、低
温冷却材収容空間1 2 15に連通しているとともに、吐出側は、前記炉心2に
連通し、低温冷却材収容空間15内の一次冷却材3を、
炉心2に送り込むようになっている。
As shown in FIG. 1, each secondary coolant circulation pump 16 has a
The coolant is introduced into the low-temperature coolant storage space 15 through a cylindrical body 19 provided on the conical portion 5C in communication with the coolant retention space 14, and further through the partition wall 13. The discharge side communicates with the reactor core 2, and the primary coolant 3 in the low-temperature coolant accommodation space 15 is
It is designed to be sent to the reactor core 2.

また、各中間熱交換器17は、第1図に示すように、−
次冷却材流入側が、高温冷却材収容容器5内に位置して
いるとともに、−次冷却祠流出側が、低温冷却材収容空
間15内に位置しており、高温冷却材収容容器5内の高
温の一次冷却月3を、二次冷却月との間で熱交換させて
降温させた後、低温冷却材収容空間15に流下させるよ
うになっている。
Moreover, each intermediate heat exchanger 17 has -
The secondary coolant inflow side is located within the high-temperature coolant storage container 5, and the secondary cooling shrine outflow side is located within the low-temperature coolant storage space 15. After the primary cooling moon 3 is lowered in temperature by exchanging heat with the secondary cooling moon, it is made to flow down into the low-temperature coolant storage space 15.

一方、高温冷却材収容容器5の上半部5Aには、第1図
および第2図(a)、  (b)に示すように、ガス空
間形成板24が設置されており、その上端および下端は
、上半部5Aの外周部に接合されて内部に環状のガス空
間25を形成している。そしてこのガス空間25は、そ
の頂部のガス抜き孔26を介し、炉容器1の上端部に封
入されるカバーガス雰囲気と連通している。
On the other hand, as shown in FIGS. 1 and 2(a) and (b), a gas space forming plate 24 is installed in the upper half 5A of the high-temperature coolant storage container 5, and the upper and lower ends thereof are is joined to the outer periphery of the upper half 5A to form an annular gas space 25 inside. This gas space 25 communicates with a cover gas atmosphere sealed in the upper end of the furnace vessel 1 through a gas vent hole 26 at the top thereof.

また、ルーフスラブ4の下面には、第1図に示すように
、円筒状の振れ止め27が設置されており、この振れ止
め27の下端縁は、冷却材収容容器5上端部との間に、
適正な径方向の間隙を保持して、冷却利収容容器5内に
挿入配置されている。
Further, on the lower surface of the roof slab 4, as shown in FIG. ,
It is inserted into the cooling storage container 5 while maintaining an appropriate radial gap.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

−次冷却材循環ポンブ16により、低温冷却材収容空間
15内の一次冷却材3を加圧すると、低温冷却材収容空
間15山の一次冷却材3は、炉心2を下方から上方に通
過し、炉心2におけるウラン燃料の核反応によって生ず
る熱により加熱されて高温冷却材収容容器5内に至り、
中間熱交換器17内に流入する。そして、−次冷却材3
は、二次冷却材への熱伝達を行ない、自らは冷却されて
低温冷却材収容空間15に流出し、再び炉心2を通して
高温冷却材収容容器5内への循環を繰返す。
- When the primary coolant 3 in the low temperature coolant storage space 15 is pressurized by the secondary coolant circulation pump 16, the primary coolant 3 in the low temperature coolant storage space 15 passes through the core 2 from below to above, It is heated by the heat generated by the nuclear reaction of the uranium fuel in the reactor core 2 and reaches the high temperature coolant storage container 5,
It flows into the intermediate heat exchanger 17. and - next coolant 3
transfers heat to the secondary coolant, is cooled and flows out into the low-temperature coolant storage space 15, and repeats the circulation through the core 2 into the high-temperature coolant storage container 5.

一方、−次冷却材循環ポンプ16により加圧された低温
冷却材収容空間15内の一次冷却材3の一部は、配管2
1を通って低温冷却材流路21に導かれ、炉壁を冷却す
る。そして、低温冷却材流路21の上端から溢流した一
次冷却祠3は、冷却材滞留空間14に導かれ、高温冷却
材収容容器5内の高温の一次冷却材3と低温冷却材収容
空間15内の低温の一次冷却材3との間を遮熱し、高温
冷却材収容容器5内の一次冷却材3の温度低下を防止す
る。冷却材滞留空間14内の一次冷却材3は、最終的に
は流通口23を介して低温冷却材収容空間15に戻され
る。
On the other hand, a part of the primary coolant 3 in the low-temperature coolant storage space 15 pressurized by the secondary coolant circulation pump 16 is transferred to the pipe 2
1 to the low-temperature coolant flow path 21 to cool the furnace wall. The primary cooling shrine 3 overflowing from the upper end of the low-temperature coolant channel 21 is guided to the coolant retention space 14, and the high-temperature primary coolant 3 in the high-temperature coolant storage container 5 and the low-temperature coolant storage space 15 The temperature of the primary coolant 3 in the high-temperature coolant storage container 5 is prevented from decreasing by providing heat insulation between the primary coolant 3 and the low-temperature primary coolant 3 in the high-temperature coolant container 5 . The primary coolant 3 in the coolant retention space 14 is ultimately returned to the low-temperature coolant storage space 15 via the flow port 23 .

第2図(a)は、定常運転時における炉壁冷却流路周り
の状態を示し、また第2図(b)は、原子炉トリップ直
後における炉壁冷却流路周りの状態を示す。
FIG. 2(a) shows the state around the reactor wall cooling channel during steady operation, and FIG. 2(b) shows the state around the reactor wall cooling channel immediately after a reactor trip.

定常運転時には、領域Gは約380℃、領域Eは約53
0℃である。したがって、ガス空間25である領域Fの
幅を適正に設定し、断熱材として作用させることにより
、領域Fを約450℃〜480℃にすることが可能とな
る。この結果、原子炉トリップ時のガス空間形成板24
の肉厚方向の温度差は、約り0℃〜100℃程度となり
、バッフル板18を用いた従来構造の場合(第4図(a
)、  (b)参照)と同等、あるいはそれ以上の温度
差低減が可能となる。しかも、バッフル板18を省略で
きるので、構造を大幅に簡素化できる。
During steady operation, region G is approximately 380°C and region E is approximately 53°C.
It is 0°C. Therefore, by appropriately setting the width of the region F, which is the gas space 25, and making it act as a heat insulating material, it becomes possible to set the region F to approximately 450° C. to 480° C. As a result, the gas space forming plate 24 at the time of reactor trip
The temperature difference in the wall thickness direction is approximately 0°C to 100°C, and in the case of the conventional structure using the baffle plate 18 (Fig. 4 (a)
), it is possible to reduce the temperature difference to a degree equal to or greater than (see (b)). Moreover, since the baffle plate 18 can be omitted, the structure can be greatly simplified.

また、炉心支持構体6下部と、低温冷却材流路21とを
、配管22で接続しているので、物量を減少させて構造
をさらに簡素化できる。
Further, since the lower part of the core support structure 6 and the low-temperature coolant channel 21 are connected by the piping 22, the amount of material can be reduced and the structure can be further simplified.

またルーフスラブ4下面には、高温冷却材収容容器5に
接近させて振れ止め板27が設けられているので、地震
時の荷重を低減させることができる。
Further, since the steady rest plate 27 is provided on the lower surface of the roof slab 4 in close proximity to the high temperature coolant container 5, the load during an earthquake can be reduced.

なお、前記実施例では、ガス空間25を、高温冷却材収
容容器5の上半部5Aのみに形成する場合について説明
したが、円錐部5Cに拡大するようにしてもよい。
In the above embodiment, a case has been described in which the gas space 25 is formed only in the upper half portion 5A of the high-temperature coolant storage container 5, but it may be expanded to the conical portion 5C.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、従来必須であったバッフ
ル板を省略し、これに代えて、高温冷却材収容容器の少
なくとも上部周壁部にガス空間を形成するようにしてい
るので、部材の熱応力を緩和して構造の健全性を確保す
ることができるとと5 6 もに、構造の簡素化および物量の低減を図ることができ
る。
As explained above, the present invention eliminates the conventionally essential baffle plate and instead forms a gas space in at least the upper peripheral wall of the high-temperature coolant storage container. Not only can the stress be relaxed and the soundness of the structure be ensured, but also the structure can be simplified and the amount of material can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るタンク型高速増殖炉を
示す縦断面図、第2図(a)は定常運転時における炉壁
冷却流路周りの状態を示す説明図、第2図(b)は原子
炉トリップ直後における炉壁冷却流路周りの状態を示す
説明図、第3図は従来のタンク型高速増殖炉を示す縦断
面図、第4図(a)は定常運転時におる従来の炉壁冷却
流路周りの状態を示す説明図、第4図(b)は原子炉ト
リップ直後における従来の炉壁冷却流路周りの状態を示
す説明図である。 1・・・炉容器、2・・・炉心、3・・・−次冷却材、
4・・・ルーフスラブ、5・・・高温冷却材収容容器、
14・・・冷却材滞留空間、15・・・低温冷却材収容
空間、21・・・低温冷却材流路、22・・・配管、2
5・・・ガス空間、26・・・ガス抜き孔、27・・・
振れ止め。 (0) (b) 第 図 (0) (b) 第 図
FIG. 1 is a vertical cross-sectional view showing a tank-type fast breeder reactor according to an embodiment of the present invention, FIG. 2(a) is an explanatory diagram showing the state around the reactor wall cooling channel during steady operation, (b) is an explanatory diagram showing the state around the reactor wall cooling channel immediately after a reactor trip, Figure 3 is a vertical cross-sectional view showing a conventional tank-type fast breeder reactor, and Figure 4 (a) is during steady operation. FIG. 4B is an explanatory diagram showing the state around the conventional reactor wall cooling channel. FIG. 4(b) is an explanatory diagram showing the state around the conventional reactor wall cooling channel immediately after a reactor trip. 1... Reactor vessel, 2... Reactor core, 3... -Secondary coolant,
4... Roof slab, 5... High temperature coolant storage container,
14... Coolant retention space, 15... Low temperature coolant storage space, 21... Low temperature coolant flow path, 22... Piping, 2
5... Gas space, 26... Gas vent hole, 27...
Steady rest. (0) (b) Figure (0) (b) Figure

Claims (1)

【特許請求の範囲】 炉心および一次冷却材が収容される炉容器と、この炉容
器の上端開口部を閉塞する蓋と、炉容器の内面との間に
隙間を有して炉容器内に配置され、炉心を通過した高温
冷却材を収容する高温冷却材収容容器と、 前記炉容器の少なくとも上部周壁部に形成され、炉心を
通過する前の低温冷却材が供給されて炉壁を冷却する環
状の低温冷却材流路と、 この低温冷却材流路と前記高温冷却材収容容器との間に
形成され、低温冷却材流路の上端から溢流した冷却材が
導かれる冷却材滞留空間と、前記高温冷却材収容容器の
少なくとも上部周壁部に形成され、内部が、炉容器の上
端部に封入したカバーガスにより満される環状のガス空
間と、を具備することを特徴とするタンク型高速増殖炉
[Claims] Arranged in the reactor vessel with a gap between a reactor vessel in which the reactor core and primary coolant are housed, a lid that closes the upper end opening of the reactor vessel, and the inner surface of the reactor vessel. a high-temperature coolant storage container that accommodates the high-temperature coolant that has passed through the reactor core; and an annular shape that is formed in at least the upper peripheral wall of the reactor vessel and that is supplied with the low-temperature coolant before passing through the reactor core to cool the reactor wall. a coolant retention space formed between the low temperature coolant flow path and the high temperature coolant storage container, into which the coolant overflowing from the upper end of the low temperature coolant flow path is guided; A tank-type high-speed breeder characterized by comprising an annular gas space formed in at least the upper peripheral wall of the high-temperature coolant storage container, the interior of which is filled with cover gas sealed in the upper end of the reactor container. Furnace.
JP2057588A 1990-03-08 1990-03-08 Tank type fast breeder reactor Pending JPH03257398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2057588A JPH03257398A (en) 1990-03-08 1990-03-08 Tank type fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057588A JPH03257398A (en) 1990-03-08 1990-03-08 Tank type fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH03257398A true JPH03257398A (en) 1991-11-15

Family

ID=13060005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057588A Pending JPH03257398A (en) 1990-03-08 1990-03-08 Tank type fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH03257398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521927A (en) * 2011-05-16 2014-08-28 バブコック・アンド・ウィルコックス・カナダ・リミテッド Pressurizer baffle plate and pressurized water reactor (PWR) using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521927A (en) * 2011-05-16 2014-08-28 バブコック・アンド・ウィルコックス・カナダ・リミテッド Pressurizer baffle plate and pressurized water reactor (PWR) using the same

Similar Documents

Publication Publication Date Title
US4115192A (en) Fast neutron nuclear reactor
US4032399A (en) Integrated fast reactor of the liquid metal cooled type
US3715270A (en) Nuclear reactors
US4382907A (en) Liquid metal cooled nuclear reactor
JPS6153675B2 (en)
US4056438A (en) Liquid sodium cooled fast reactor
US4127444A (en) Device for thermal protection of a nuclear reactor vessel
JPS60244891A (en) Fast neutron reactor
JPH03257398A (en) Tank type fast breeder reactor
GB2157880A (en) An improved nuclear reactor plant construction
US4198271A (en) Liquid metal cooled nuclear reactor constructions
US4585058A (en) Heat exchanger having a bundle of straight tubes
JPH03287094A (en) Tank type fast breeder
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPS60205278A (en) Fast breeder reactor
JP3110901B2 (en) Fast breeder reactor
JP2001228279A (en) Split suppression chamber and reactor containment facility
JPH0295299A (en) Nuclear reactor containment
JPH0261594A (en) Internal shell of fast neutron reactor
JPH0735882A (en) Liquid metal cooled fast reactor
JP3964489B2 (en) Gas filled assembly
JPH04313099A (en) Double-tank type atomic reactor
JPH03102288A (en) Tank fast breeder
JP2685994B2 (en) Core structure of fast breeder reactor
JPH046492A (en) Tank-type fast breeder reactor