JPH058996B2 - - Google Patents

Info

Publication number
JPH058996B2
JPH058996B2 JP61196640A JP19664086A JPH058996B2 JP H058996 B2 JPH058996 B2 JP H058996B2 JP 61196640 A JP61196640 A JP 61196640A JP 19664086 A JP19664086 A JP 19664086A JP H058996 B2 JPH058996 B2 JP H058996B2
Authority
JP
Japan
Prior art keywords
moderator
pressure
tank
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61196640A
Other languages
Japanese (ja)
Other versions
JPS6352098A (en
Inventor
Osamu Seki
Katsuyuki Kumasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61196640A priority Critical patent/JPS6352098A/en
Publication of JPS6352098A publication Critical patent/JPS6352098A/en
Publication of JPH058996B2 publication Critical patent/JPH058996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力管型原子炉に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a pressure tube nuclear reactor.

〔従来の技術〕[Conventional technology]

圧力管型原子炉の基本構造を動力炉核燃料開発
事業団が建設した新型転換炉「ふげん」原子炉設
置許可申請書を例にとり、第10図、第11図及
び第12図により説明する。
The basic structure of a pressure tube nuclear reactor will be explained using Figures 10, 11, and 12, taking as an example the application for permission to install a new converter reactor "Fugen" built by the Power Reactor and Nuclear Fuel Development Corporation.

圧力管型原子炉は、炉心4を収容し圧力管案内
管32内に挿通されている複数の圧力管21と、
圧力管案内管を包囲している減速材5を収容して
いる減速材タンク1と、減速材タンク1内に設け
られ、原子炉の出力を制御する制御棒を収容する
複数の制御棒案内管10とから成る。複数の圧力
管21は、原子炉を通過した後、圧力管集合管
(図示せず)に接続されている。
A pressure tube type nuclear reactor includes a plurality of pressure tubes 21 that house a reactor core 4 and are inserted into a pressure tube guide tube 32;
A moderator tank 1 that accommodates a moderator 5 surrounding a pressure pipe guide tube, and a plurality of control rod guide tubes that are provided in the moderator tank 1 and accommodate control rods that control the output of the reactor. It consists of 10. After passing through the nuclear reactor, the plurality of pressure pipes 21 are connected to a pressure pipe manifold (not shown).

炉心で発生した熱は、圧力管内を環流する原子
炉冷却材で冷却され、加熱された原子炉冷却材
は、圧力管集合管に導かれて蒸気となる。しか
し、炉心で発生した熱の一部は、圧力管から圧力
管案内管32を介して熱輻射により、減速材5に
伝達され、減速材の温度が上昇する。減速材の温
度が過度に上昇して沸騰すると、ボイド(気泡)
が発生し、原子炉に負の反応度が生じ、炉の制御
が不安定になるので、減速材の温度が過度に上昇
するのは好ましくない。
The heat generated in the reactor core is cooled by the reactor coolant circulating in the pressure pipes, and the heated reactor coolant is led to the pressure pipe collecting pipe and becomes steam. However, a part of the heat generated in the reactor core is transferred from the pressure pipe to the moderator 5 by thermal radiation via the pressure pipe guide pipe 32, and the temperature of the moderator increases. If the temperature of the moderator rises too much and boils, voids (bubbles)
It is undesirable for the temperature of the moderator to rise excessively because this will cause negative reactivity in the reactor and make reactor control unstable.

従つて、減速材の温度を下げる為に、減速材循
環ポンプ2、減速材循環配管33、熱交換器3及
び減速材配分管9から成る減速材冷却装置を設け
ている。減速材タンク1内の減速材5は減速材循
環ポンプ2で熱交換器3へ送られ、補機冷却系ポ
ンプ8で循環される二次冷却材で冷却された後、
減速材配分管9及び制御棒案内管10を通つて減
速材タンクへ還流する。
Therefore, in order to lower the temperature of the moderator, a moderator cooling device consisting of a moderator circulation pump 2, a moderator circulation pipe 33, a heat exchanger 3, and a moderator distribution pipe 9 is provided. The moderator 5 in the moderator tank 1 is sent to the heat exchanger 3 by the moderator circulation pump 2, and after being cooled by the secondary coolant circulated by the auxiliary equipment cooling system pump 8,
It returns to the moderator tank through the moderator distribution pipe 9 and the control rod guide pipe 10.

又、圧力管21から圧力管案内管32を介して
の熱輻射を遮蔽する為に、圧力管21の外壁と圧
力管案内管32の内壁との間隔を充分大きくする
と共に、この間に炭酸ガスを流している。「ふげ
ん」の場合、この間隔は16mmである。
In addition, in order to shield heat radiation from the pressure tube 21 via the pressure tube guide tube 32, the distance between the outer wall of the pressure tube 21 and the inner wall of the pressure tube guide tube 32 is made sufficiently large, and carbon dioxide gas is It's flowing. In the case of "Fugen", this spacing is 16 mm.

このように、減速材5と圧力管21内を流れる
原子炉冷却材とは、設計上、熱的にできるだけ切
りはなされており、減速材冷却装置も原子炉冷却
材の冷却とは、なんら関連を有していない。
In this way, the moderator 5 and the reactor coolant flowing in the pressure pipe 21 are thermally separated as much as possible by design, and the moderator cooling device has no connection with the cooling of the reactor coolant. does not have.

自然循環による原子炉系装置の冷却について
は、「高速増殖炉」(安成弘著、昭和57年同文書院
刊)に記載されている。これを第13図により説
明する。炉心16は一次冷却材20で満たされた
原子炉容器14内に設置されており、この一次冷
却材が原子炉一次系冷却装置によつて循環されな
がら炉心で発生する熱を冷却している。原子炉一
次系冷却装置に故障が生じた際、炉心で加熱され
た一次冷却材を冷却する為の装置の一つとして、
原子炉容器内に設けられ、一次冷却材20と二次
冷却材の熱交換をする中間交換器15と、前記中
間熱交換器に接続されて二次冷却材を冷却する空
気冷却器17と、前記中間熱交換器15と前記空
気冷却器17の間にあつて二次冷却材を循環させ
る二次循環ポンプ19とから成る原子炉冷却材緊
急冷却装置を設けている。この装置は、二次循環
ポンプにより二次冷却材を循環させ、空気冷却器
17により二次冷却材を冷却することにより、一
次冷却材を冷却するよう計画されているが、二次
循環ポンプが故障の場合でも、二次冷却材の自然
循環による冷却が可能である。但し、これは、炉
心を直接冷却する一次冷却材の冷却の為のもので
あつて、減速材を対象としたものではない。
Cooling of nuclear reactor equipment using natural circulation is described in ``Fast Breeder Reactor'' (authored by Hiroshi Yasunari, published by the same publication in 1981). This will be explained with reference to FIG. The reactor core 16 is installed in a reactor vessel 14 filled with a primary coolant 20, and this primary coolant is circulated by a reactor primary cooling system to cool the heat generated in the reactor core. As one of the devices for cooling the primary coolant heated in the reactor core when a failure occurs in the reactor primary system cooling system,
an intermediate exchanger 15 that is provided in the reactor vessel and exchanges heat between the primary coolant 20 and the secondary coolant; an air cooler 17 that is connected to the intermediate heat exchanger and cools the secondary coolant; A reactor coolant emergency cooling system is provided, which is comprised of a secondary circulation pump 19 that is located between the intermediate heat exchanger 15 and the air cooler 17 and circulates secondary coolant. This device is designed to cool the primary coolant by circulating the secondary coolant with the secondary circulation pump and cooling the secondary coolant with the air cooler 17. Even in the event of a failure, cooling is possible through natural circulation of secondary coolant. However, this is for cooling the primary coolant that directly cools the core, and is not intended for the moderator.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

圧力管型原子炉において、原子炉冷却材が圧力
管に充分供給されない為、炉心の温度が異常に上
昇する場合は、圧力管集合管に非常用冷却水が注
入され、該冷却水が各圧力管を通じて炉心に達し
て炉心を冷却する他、種々の緊急炉心冷却装置が
設けられているが、いずれも何らかの動力を要す
るものである。従つて、前記動力の途絶あるいは
その動力で駆動される機械の故障が生じた場合
は、炉心の冷却が充分行われず、過熱による圧力
管の損傷や、炉心の溶融につながる可能性があ
る。
In a pressure tube reactor, if the reactor core temperature rises abnormally due to insufficient supply of reactor coolant to the pressure tubes, emergency cooling water is injected into the pressure tube collecting pipe, and the cooling water is supplied to each pressure tube. In addition to cooling the core by reaching the core through tubes, there are various emergency core cooling systems, but all of them require some kind of power. Therefore, if the power is interrupted or a machine driven by the power fails, the core will not be cooled sufficiently, which may lead to damage to the pressure pipes or melting of the core due to overheating.

また、減速材でもある冷却材の冷却装置を有す
る原子炉において、強制循環による冷却装置の他
に自然循環による冷却装置を設けることが知られ
ている。しかし、従来のこの技術では、通常運転
時に冷却材の自然循環による冷却によつて熱効率
が低下するのを防ぐためもあり、自然循環による
冷却装置を強制循環による冷却装置に隔離弁等を
介して接続し、通常運転時は該隔離弁等を閉じて
おき、異常時にのみ前記隔離弁等を開いて自然循
環による冷却装置を動作させるようになつてい
た。このため、これら隔離弁等の故障発生の可能
性に対する考慮が必要であつた。
Furthermore, in a nuclear reactor having a cooling device for a coolant that is also a moderator, it is known to provide a cooling device that uses natural circulation in addition to a cooling device that uses forced circulation. However, in this conventional technology, in order to prevent the thermal efficiency from decreasing due to cooling through the natural circulation of the coolant during normal operation, the natural circulation cooling system is replaced with a forced circulation cooling system via an isolation valve, etc. During normal operation, the isolation valve, etc. is closed, and only in the event of an abnormality, the isolation valve, etc. is opened to operate the cooling device using natural circulation. Therefore, it was necessary to consider the possibility of failure of these isolation valves, etc.

本発明の目的は、圧力管型原子炉において炉心
周辺に大量に存在する減速材を冷却媒体として、
動力によつて駆動される機器を用いることなく、
炉心の熱を除去する装置を有する原子炉を提供す
ることにある。
The purpose of the present invention is to use a moderator, which is present in large quantities around the reactor core, as a cooling medium in a pressure tube nuclear reactor.
without using any equipment driven by power,
An object of the present invention is to provide a nuclear reactor having a device for removing heat from a reactor core.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的は、炉心を収容し冷却材が環流する
圧力管と、この圧力管が挿通されている圧力管案
内管と、前記圧力管を包囲する減速材を収容した
減速材タンクと、該減速材タンクの中に設けら
れ、原子炉の出力を制御する制御棒を収容する制
御棒案内管と、前記減速材タンクに接続されて該
減速材タンク内の減速材を循環させる減速材ポン
プと、該減速材循環ポンプによつて循環される減
速材を冷却する熱交換器とを含んでなる圧力管型
原子炉に、減速材タンクの上部に接続され炉心よ
り高い位置に設けられたサージタンクと、上部を
前記サージタンクに、下部を減速材タンクに接続
され、冷却塔に内蔵され且つ原子炉炉心より高く
前記サージタンクより低い位置に設けられて減速
材を空気冷却する空気冷却器とを設け、前記サー
ジタンクの上部と空気冷却器を接続する配管の最
も高い部分を、通常運転時は減速材が前記サージ
タンクから前記空気冷却器に流れることがなく、
減速材沸騰時に減速材が前記サージタンクから前
記空気冷却器に流れる高さに配置すること、又減
速材タンクに上下方向に貫設した圧力管案内管の
内壁と、前記圧力管案内管に挿通された圧力管の
外壁との間隔を、圧力管の過熱による熱膨脹に基
づく破断歪より小さく、且つ通常運転時の圧力管
と圧力管案内管の間の熱遮蔽に必要な最小の間隔
より大きくすることによつて達成される。
The purpose is to provide a pressure pipe that accommodates a reactor core and through which coolant circulates, a pressure pipe guide pipe through which this pressure pipe is inserted, a moderator tank that contains a moderator that surrounds the pressure pipe, and a moderator tank that contains a moderator that surrounds the pressure pipe. a control rod guide tube that is provided in a fuel tank and accommodates a control rod that controls the output of the reactor; a moderator pump that is connected to the moderator tank and circulates the moderator in the moderator tank; A pressure tube nuclear reactor comprising a heat exchanger for cooling the moderator circulated by the moderator circulation pump, and a surge tank connected to the upper part of the moderator tank and provided at a position higher than the reactor core. , an air cooler is provided, the upper part of which is connected to the surge tank, the lower part of which is connected to the moderator tank, and which is built into the cooling tower and is provided at a position higher than the reactor core and lower than the surge tank to cool the moderator with air. , the moderator does not flow from the surge tank to the air cooler during normal operation through the highest part of the piping connecting the upper part of the surge tank and the air cooler;
The moderator is placed at a height where the moderator flows from the surge tank to the air cooler when the moderator boils, and is inserted into the inner wall of the pressure pipe guide tube vertically penetrating the moderator tank and into the pressure pipe guide tube. The distance between the pressure pipe and the outer wall of the pressure pipe is smaller than the rupture strain caused by thermal expansion due to overheating of the pressure pipe, and larger than the minimum space required for thermal shielding between the pressure pipe and the pressure pipe guide pipe during normal operation. This is achieved by

〔作用〕[Effect]

第5図、第6図、第7図及び第14図により本
発明の作用を説明する。
The operation of the present invention will be explained with reference to FIGS. 5, 6, 7, and 14.

減速材タンク1内で熱せられた減速材5は、密
度が小さくなつて配管6内を上昇し、サージタン
ク28を経て冷却塔7内の空気冷却器30に達す
る。次いで、減速材は、空気冷却器30で冷却さ
れ、密度が大となつて配管29内を下降し、減速
材タンク1内へ還流する。
The moderator 5 heated in the moderator tank 1 becomes less dense and rises in the pipe 6, passes through the surge tank 28, and reaches the air cooler 30 in the cooling tower 7. Next, the moderator is cooled by the air cooler 30, becomes denser, moves down in the pipe 29, and flows back into the moderator tank 1.

第6図は圧力管21と圧力管案内管32の間隔
を小さくした場合の作用を示し、第14図は圧力
管の熱変形開始曲線と圧力管破断歪曲線を示す。
圧力管には、通常運転状態では常にある一定の応
力σcがかかつており、この条件下で圧力管温度が
圧力管熱変形開始温度Tcを超えると、圧力管は
破断歪εcで破断する。圧力管にかかる応力σcは次
の様に表わすことができる。
FIG. 6 shows the effect when the distance between the pressure pipe 21 and the pressure pipe guide pipe 32 is reduced, and FIG. 14 shows the thermal deformation start curve of the pressure pipe and the pressure pipe breaking strain curve.
A pressure tube always has a certain stress σ c under normal operating conditions, and under this condition, if the pressure tube temperature exceeds the pressure tube thermal deformation start temperature T c , the pressure tube will break at a breaking strain ε c do. The stress σ c applied to the pressure pipe can be expressed as follows.

σc=P・di/2t ……(1) σc…圧力管にかかる応力 P…圧力管にかかる内圧 t…圧力管の肉厚 di…圧力管の内径 圧力管案内管32の内径をDiとし、圧力管21
の外径をd0とした時、 Di≧d0(1+εc) ……(2) であれば、圧力管案内管は圧力管の破断に至る変
形に何ら関与しない。今、前記Diとdpの関係を、 Di<d0(1+εc) ……(3) となるように定めると、圧力管が異常昇温によつ
て変形をはじめても、歪量が破断歪εcに達する前
に圧力管21が圧力管案内管32の内面に接触し
て、圧力管案内管が圧力管の破損防止に有効に作
用する。更に圧力管外壁と圧力管案内管内壁が直
接接触することにより、圧力管から圧力管案内管
を介しての減速材タンク内の減速材への熱伝導性
がよくなり、炉心の熱の減速材への移動が促進さ
れる。第7図は、圧力管と圧力管案内管が接触し
た場合の圧力管の温度変化曲線26と圧力管案内
管の温度変化曲線27を示す図で、時間tAで圧力
管と、圧力管案内管が接触した状態を表わし、接
触後の圧力管の温度低下が明らかであり、熱伝導
性の向上と減速材による冷却の効果をよく示して
いる。
σ c = P・d i /2t ...(1) σ c ... Stress applied to the pressure pipe P ... Internal pressure applied to the pressure pipe t ... Wall thickness of the pressure pipe d i ... Inner diameter of the pressure pipe Inner diameter of the pressure pipe guide tube 32 Let D i be the pressure pipe 21
When the outer diameter of the pressure pipe is d 0 , if D i ≧d 0 (1+ε c ) (2), the pressure pipe guide pipe does not take any part in the deformation that leads to the breakage of the pressure pipe. Now, if we define the relationship between D i and d p as D i <d 0 (1+ε c )...(3), even if the pressure pipe begins to deform due to abnormal temperature rise, the amount of strain will be small. The pressure tube 21 comes into contact with the inner surface of the pressure tube guide tube 32 before reaching the breaking strain εc, and the pressure tube guide tube effectively acts to prevent damage to the pressure tube. Furthermore, direct contact between the outer wall of the pressure tube and the inner wall of the pressure tube guide tube improves thermal conductivity from the pressure tube to the moderator in the moderator tank through the pressure tube guide tube, and the moderator of the core heat This will encourage people to move to. FIG. 7 is a diagram showing a temperature change curve 26 of the pressure pipe and a temperature change curve 27 of the pressure pipe guide pipe when the pressure pipe and the pressure pipe guide pipe contact each other. This shows the state in which the tubes are in contact, and it is clear that the temperature of the pressure tube drops after contact, clearly demonstrating the improvement in thermal conductivity and the cooling effect of the moderator.

〔実施例〕〔Example〕

第1〜4図及び第6図により本発明の一実施例
を説明する。
An embodiment of the present invention will be explained with reference to FIGS. 1 to 4 and FIG. 6.

第1図は、本発明による圧力管型原子炉を示
す。炉心4を収容し冷却材が環流する圧力管21
と、該圧力管21を包囲する減速材5を収容した
減速材タンク1と、減速材タンク1の中に設けら
れ、原子炉の出力を制御する制御棒を収容する制
御棒案内管10とから成る圧力管型原子炉が、原
子炉格納容器11内に設けられ、減速材冷却装置
は、減速材タンク1に接続され、減速材を循環す
る減速材循環ポンプ2と、一端を減速材循環ポン
プ2に、他端を減速材配分管9に接続され、原子
炉格納容器外に設けられた補機冷却系ポンプ8に
よつて循環される二次冷却材で減速材を冷却する
熱交換器3とを有し、更に一端を前記熱交換器3
に、他端を複数の制御棒案内管10に接続した減
速材配分管9と、炉心より高い位置に設けられた
サージタンク28と、前記減速材タンク1と前記
サージタンク28を接続する減速材上昇管6と、
格納容器外に設けられた冷却塔7及び冷却塔7に
内蔵され、且つ原子炉炉心より高い位置に設けら
れた空気冷却器30と、空気冷却器30と減速材
配分管9を接続する減速材戻り管29とから成る
自然循環冷却装置35を有する。
FIG. 1 shows a pressure tube nuclear reactor according to the invention. Pressure pipe 21 that accommodates the reactor core 4 and through which coolant circulates
, a moderator tank 1 that accommodates a moderator 5 surrounding the pressure pipe 21, and a control rod guide tube 10 that is provided in the moderator tank 1 and accommodates control rods that control the output of the reactor. A pressure tube type nuclear reactor is provided in a reactor containment vessel 11, and a moderator cooling device is connected to a moderator tank 1 and includes a moderator circulation pump 2 that circulates the moderator; 2, a heat exchanger 3 whose other end is connected to a moderator distribution pipe 9 and which cools the moderator with a secondary coolant circulated by an auxiliary cooling system pump 8 provided outside the reactor containment vessel; and further has one end connected to the heat exchanger 3.
, a moderator distribution pipe 9 whose other end is connected to a plurality of control rod guide tubes 10, a surge tank 28 provided at a position higher than the reactor core, and a moderator connecting the moderator tank 1 and the surge tank 28. riser pipe 6;
A cooling tower 7 provided outside the containment vessel, an air cooler 30 built into the cooling tower 7 and provided at a higher position than the reactor core, and a moderator connecting the air cooler 30 and the moderator distribution pipe 9. It has a natural circulation cooling device 35 consisting of a return pipe 29.

本実施例では、減速材の液面は、通常運転状態
では第2図に示されるように、減速材上昇管6と
減速材戻り管29(第2図及び第3図では、減速
材配分管9及び制御棒案内管10を省略してあ
る)に自由液面を有するように制御されており、
且つ冷却された減速材は、減速材配分管9及び制
御棒案内管10を経て減速材タンク1へ還流す
る。温度上昇による減速材の体積増加分は、配管
又はサージタンクの空間部分に収容され、減速材
を内包するタンク、配管に過大な圧力を生ずるこ
とはない。
In this embodiment, under normal operating conditions, the liquid level of the moderator is adjusted to the moderator rising pipe 6 and the moderator return pipe 29 (in Figs. 2 and 3, the moderator distribution pipe 9 and the control rod guide tube 10 are omitted).
The cooled moderator then flows back to the moderator tank 1 via the moderator distribution pipe 9 and the control rod guide pipe 10. The increase in volume of the moderator due to temperature rise is accommodated in the space of the piping or surge tank, so that excessive pressure is not generated in the tank or piping containing the moderator.

通常運転状態では、炉心4が発生した熱は、圧
力管21内を環流する原紙炉冷却材によつて冷却
されるが、熱の一部は輻射により、圧力管外壁か
ら圧力管案内管壁を通して減速材タンク内の減速
材へ伝達される。この結果、減速材の温度が上昇
するので、減速材循環ポンプ2により減速材5を
循環させ、熱交換器3により所望の温度にまで冷
却する。この状態では、第2図に示したように減
速材液面は、減速材上昇管6及び減速材戻り管2
9の中にあり、空気冷却器30を通過する減速材
の流れはなく、自然循環による減速材冷却は行わ
れない。
Under normal operating conditions, the heat generated by the reactor core 4 is cooled by the paper reactor coolant circulating inside the pressure tube 21, but some of the heat is radiated from the outer wall of the pressure tube to the wall of the pressure tube guide tube. It is transmitted to the moderator in the moderator tank. As a result, the temperature of the moderator increases, so the moderator 5 is circulated by the moderator circulation pump 2 and cooled to a desired temperature by the heat exchanger 3. In this state, as shown in FIG.
9, there is no moderator flow through the air cooler 30, and no moderator cooling by natural circulation occurs.

何かの原因で圧力管21の温度が異常に上昇
し、圧力管案内管32を通しての減速材5への熱
伝達量が増加し、同時に減速材循環ポンプ2又は
補機冷却系ポンプ8が停止すると、減速材5が沸
騰して減速材中にボイド(気泡)31が発生し、
減速材液位が上昇し、減速材は第3図に示す如く
サージタンク28を経て空気冷却器30に達す
る。これに伴い、減速材5は、空気冷却器30で
冷却され、減速材戻り管29、減速材配分管9及
び制御棒案内管10を経て減速材タンク1へ還流
する。減速材沸騰時には、減速材の密度は次の通
りとなる。
For some reason, the temperature of the pressure pipe 21 rises abnormally, the amount of heat transferred to the moderator 5 through the pressure pipe guide pipe 32 increases, and at the same time, the moderator circulation pump 2 or the auxiliary equipment cooling system pump 8 stops. Then, the moderator 5 boils and voids (bubbles) 31 are generated in the moderator.
The moderator liquid level rises and the moderator passes through the surge tank 28 and reaches the air cooler 30 as shown in FIG. Accordingly, the moderator 5 is cooled by the air cooler 30 and flows back to the moderator tank 1 via the moderator return pipe 29, the moderator distribution pipe 9, and the control rod guide pipe 10. At the time of moderator boiling, the density of the moderator is as follows.

=α・σg+(1−α)σe ……(4) …減速材沸騰時の減速材の密度 α…ボイド率 σg…減速材沸騰時の減速材の気相密度 σe…減速材沸騰時の減速材の液相密度 自然循環力は、減速材の冷却前と冷却後の密度
差により生じる為、次の式で表わすことができ
る。
=α・σ g +(1-α)σ e ...(4) ... Density of moderator when moderator boils α ... Void ratio σ g ... Gas phase density of moderator when moderator boils σ e ... Deceleration Liquid phase density of the moderator when the material boils The natural circulation force is caused by the difference in the density of the moderator before and after cooling, so it can be expressed by the following equation.

ΔP=(−σ1)H ……(5) ={α・σg+(1−α)σe−σ1}H……(6) ΔP…自然循環力 σ1…減速材冷却後の減速材の密度 H…減速材タンクと空気冷却器の高さの差(比
高) これからHとαの関係は、 H=ΔP/σ−σ1 =ΔP/α(σg−σe)−(σ1−σe) ……(7) となり、減速材タンクと空気冷却器の高さの差H
が一定ならば、ボイド率が増加すればする程、す
なわち減速材の沸騰が激しくなるほど、自然循環
力が増加する。第9図は、前記第7式を図に表わ
したもので、ある特定の自然循環力に対しては、
ボイド率すなわち自然循環を行うべき沸騰状態を
定めれば、冷却塔7を配置すべき高さHが求めら
れることを示している。
ΔP=(-σ 1 )H...(5) = {α・σ g +(1-α)σ e −σ 1 }H...(6) ΔP...Natural circulation force σ 1 ...After moderator cooling Density of moderator H...Difference in height between moderator tank and air cooler (specific height) From now on, the relationship between H and α is: H=ΔP/σ−σ 1 =ΔP/α(σ g −σ e )− (σ 1 −σ e ) ...(7), and the difference in height between the moderator tank and the air cooler is H
If is constant, the natural circulation force increases as the void fraction increases, that is, as the boiling of the moderator becomes more intense. Figure 9 is a graphical representation of the seventh equation, and for a certain natural circulation force,
It is shown that if the void ratio, that is, the boiling state in which natural circulation is to be performed, is determined, the height H at which the cooling tower 7 should be placed can be determined.

高速増殖炉における原子炉一次冷却材の自然循
環冷却では、冷却材が沸騰してボイドができる
と、原子炉の正の反応度が生じて出力が増加し、
冷却できなくなるが、圧力管型原子炉の場合は、
減速材が沸騰してボイドができると、前述のよう
に自然循環力が増加する共に、第9図に示すごと
く、原子炉の出力が減少する方向の原子炉の負の
反応度を生じて出力が低下し、炉心の冷却に有利
である。
In natural circulation cooling of the reactor primary coolant in a fast breeder reactor, when the coolant boils and creates voids, positive reactivity of the reactor occurs and the power increases,
However, in the case of a pressure tube reactor,
When the moderator boils and voids are formed, the natural circulation force increases as mentioned above, and as shown in Figure 9, it causes negative reactivity of the reactor, which decreases the reactor's output. This is advantageous for cooling the core.

冷却塔7の比高Hの設定に当つても高速増殖炉
の原子炉一次冷却材は、温度による密度の差が大
きいので沸騰状態を考慮する必要はないが、圧力
管型原子炉の減速材の場合は、温度による密度の
差が少なく、沸騰を考慮に入れることによつては
じめて、実現可能な冷却塔の比高Hとすることが
可能となる。
When setting the specific height H of the cooling tower 7, there is no need to consider the boiling state of the reactor primary coolant of a fast breeder reactor, as the density differs greatly depending on the temperature. In the case of , there is little difference in density due to temperature, and it is possible to set the specific height H of the cooling tower to a feasible value only by taking boiling into consideration.

減速材冷却系の強制循環による冷却容量は、通
常運転時、炉心で発生する熱量のうちの減速材へ
の伝熱分と炉心で発生するγ線による減速材の発
熱分の冷却を行える容量として決定される。本実
施例の自然循環冷却装置は、異常事象が発生して
原子炉が停止し、原子炉停止後炉心で発生する崩
壊熱を除去するものであるから、要求される冷却
容量は、異常事象発生前の減速材の温度、減速材
のインベントリー、炉心で発生する崩壊熱、冷却
材のインベントリーで決定される。概ね、通常運
転時炉心で発生する熱出力の数%の除熱量があれ
ばよい。
The cooling capacity of the moderator cooling system through forced circulation is the capacity that can cool the amount of heat generated in the reactor core transferred to the moderator and the amount of heat generated by the moderator due to gamma rays generated in the core during normal operation. It is determined. The natural circulation cooling system of this embodiment is designed to remove the decay heat generated in the reactor core after an abnormal event occurs and the reactor is shut down, so the required cooling capacity is It is determined by the previous moderator temperature, moderator inventory, decay heat generated in the core, and coolant inventory. In general, the amount of heat removed is sufficient to be several percent of the thermal output generated in the core during normal operation.

第4図は、減速材タンク1にヒートパイプ12
を設けた実施例を示す図である。基本的な構造
は、従来の技術と同じであるので詳細な説明は省
略するが、第10図の従来技術に示す部分と対応
する部分には同一の参照符号を付してある。従来
技術による減速材冷却装置に追加して、自然循環
冷却装置としてのヒートパイプ12が、蒸発端を
減速材タンク1内に、冷却器13を設けた凝縮端
を減速材タンク1の外側にして減速材タンク1に
装着されている。減速材タンク1内の減速材5の
熱は、ヒートパイプ12の蒸発端でヒートパイプ
の内部流体を蒸発させ、蒸発した内部流体は、ヒ
ートパイプ内を凝縮端へ上昇した前記流体は凝縮
端に設けられた冷却器13で熱を奪われて凝縮
し、再び液体となつてヒートパイプ内を蒸発端へ
移動する。この作用が継続して行われ、減速材5
の冷却が行われる。このようにして、ヒートパイ
プを用いることにより、減速材タンク1内の減速
材5を、動的機器を用いて循環することなく冷却
することが可能であり、減速材循環ポンプ運転時
間を短縮することができると共に、放射性物質を
含んだ減速材を原子炉格納容器外へ取出すことな
く自然循環冷却可能となり、放射線管理上も有利
である。
Figure 4 shows the heat pipe 12 in the moderator tank 1.
It is a figure showing an example provided with. Since the basic structure is the same as that of the conventional technique, a detailed explanation will be omitted, but the same reference numerals are given to the parts corresponding to those shown in the conventional technique of FIG. In addition to the moderator cooling device according to the prior art, a heat pipe 12 as a natural circulation cooling device has an evaporating end inside the moderator tank 1 and a condensing end provided with a cooler 13 outside the moderator tank 1. It is attached to the moderator tank 1. The heat of the moderator 5 in the moderator tank 1 evaporates the internal fluid of the heat pipe at the evaporation end of the heat pipe 12, and the evaporated internal fluid rises in the heat pipe to the condensation end. The heat is removed by the provided cooler 13 and condenses, becoming a liquid again and moving inside the heat pipe to the evaporation end. This action continues, and the moderator 5
cooling is performed. In this way, by using the heat pipe, it is possible to cool the moderator 5 in the moderator tank 1 without having to circulate it using dynamic equipment, reducing the operating time of the moderator circulation pump. In addition, it is possible to cool the moderator containing radioactive substances by natural circulation without taking it out of the reactor containment vessel, which is advantageous in terms of radiation control.

第6図は、圧力管21と圧力管案内管32の間
隔を制限した時の実施例を示す。原子炉の基本的
な構造は、従来技術及び減速材の自然循環冷却装
置で構成したものであり、実施例を記載してある
ので詳細な説明は省略する。圧力管21と圧力管
案内管32の間隔は、前述の Di<d0(1+εc) ……(8) Di…圧力管案内管外径 d0…圧力管外径 εc…圧力管の破断歪 を満足し、且つ通常運転時の熱遮蔽の機能を果す
大きさとする。「ふげん」の場合6〜10mmが適当
である。圧力管21の温度上昇が激しく、熱変形
や内圧による変形を生じた場合でも、前記(8)式に
より圧力管21の外径と圧力管案内管32の内径
の比を定めているので、破断歪εcに至る前に圧力
管21の外径が圧力管案内管32の内壁に接触し
て、圧力管21から圧力管案内管32を通しての
減速材5への熱伝達性が良くなり、減速材による
炉心の冷却が能率よく行えると共に、圧力管案内
管32が圧力管21の変形を防ぐ補強材として作
用する。
FIG. 6 shows an embodiment in which the distance between the pressure pipe 21 and the pressure pipe guide pipe 32 is limited. The basic structure of the nuclear reactor is composed of conventional technology and a moderator natural circulation cooling device, and since examples have been described, detailed explanation will be omitted. The distance between the pressure pipe 21 and the pressure pipe guide pipe 32 is determined by the above-mentioned D i <d 0 (1+ε c ) ...(8) D i ... Pressure pipe outer diameter d 0 ... Pressure pipe outer diameter ε c ... Pressure pipe The size shall be such that it satisfies the breaking strain and functions as a heat shield during normal operation. In the case of "Fugen", 6 to 10 mm is appropriate. Even if the temperature of the pressure tube 21 increases sharply and deforms due to heat or internal pressure, the ratio of the outer diameter of the pressure tube 21 to the inner diameter of the pressure tube guide tube 32 is determined by the equation (8) above, so rupture will not occur. Before the strain ε c is reached, the outer diameter of the pressure pipe 21 comes into contact with the inner wall of the pressure pipe guide pipe 32, improving heat transfer from the pressure pipe 21 to the moderator 5 through the pressure pipe guide pipe 32, resulting in deceleration. The core can be efficiently cooled by the material, and the pressure pipe guide tube 32 acts as a reinforcing material to prevent the pressure pipe 21 from deforming.

〔発明の効果〕〔Effect of the invention〕

本発明により、圧力管型原子炉において、動的
機器から成る原子炉冷却材冷却装置が使用できな
い事故が発生しても、炉心の温度上昇をおくらせ
ることが可能となり、他の対策を行う時間の余裕
を増すことができると共に、減速材冷却装置を確
率論に基づいて評価した時の信頼度を向上するこ
と可能となる。また、通常運転時は自然循環によ
る減速材の冷却は行われず、無駄に放熱されるこ
ともない。
According to the present invention, even if an accident occurs in a pressure tube reactor in which the reactor coolant cooling system, which consists of dynamic equipment, cannot be used, it is possible to delay the temperature rise in the reactor core, giving time for other countermeasures to be taken. In addition, it is possible to increase the margin and improve the reliability when evaluating the moderator cooling device based on probability theory. Furthermore, during normal operation, the moderator is not cooled by natural circulation, and no heat is wasted.

更に、炉心を収容した圧力管と圧力管案内管の
間の間隔を制限することにより、事故時の炉心の
温度上昇をおくらせ、事故に対する対策を行う時
間の余裕を増すことができる。
Furthermore, by limiting the distance between the pressure tube housing the core and the pressure tube guide tube, the temperature rise of the core in the event of an accident can be delayed and more time can be taken to take measures against the accident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統図、第2図
は本発明の実施例の通常運転時の作動状態を示す
図、第3図は事故時の作動状態を示す図、第4図
は本発明の他の実施例を示す系統図、第5図は本
発明の作用を示す図、第6図は本発明のもう一つ
の実施例を示す図、第7図は圧力管と圧力管案内
管が接触した時の温度変化を示す図、第8図は減
速材のボイド率αと空気冷却器の比高Hの関係を
示す図、第9図は減速材のボイド率αと炉心の反
応度との関係を示す図、第10図は従来の圧力管
型原子炉を示す系統図、第11図は圧力管と圧力
管案内管及び減速材タンクを示す図、第12図は
圧力管と圧力管案内管の相互間連を示す図、第1
3図は高速増殖炉の原子炉一次冷却材の緊急冷却
装置であり、第14図は圧力管の熱変形開始曲線
と圧力管破断歪曲線を示す。 1……減速材タンク、2……減速材循環ポン
プ、3……熱交換器、4……炉心、5……減速
材、6……減速材上昇管、7……冷却塔、10…
…制御棒案内管、12……自然循環冷却装置(ヒ
ートパイプ)、13……冷却器、21……圧力管、
28……サージタンク、29……減速材戻り管、
30……空気冷却器、32……圧力管案内管、3
5……自然循環冷却装置。
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the operating state of the embodiment of the present invention during normal operation, Fig. 3 is a diagram showing the operating state at the time of an accident, and Fig. 4 is a system diagram showing another embodiment of the present invention, FIG. 5 is a diagram showing the operation of the present invention, FIG. 6 is a diagram showing another embodiment of the present invention, and FIG. 7 is a diagram showing pressure pipes and pressure pipes. Figure 8 shows the relationship between the void ratio α of the moderator and the specific height H of the air cooler. Figure 9 shows the relationship between the void ratio α of the moderator and the core. A diagram showing the relationship with reactivity, Figure 10 is a system diagram showing a conventional pressure tube reactor, Figure 11 is a diagram showing the pressure tube, pressure tube guide pipe, and moderator tank, and Figure 12 is a diagram showing the pressure tube. Figure 1 showing the interconnection of the pressure pipe guide pipe and the pressure pipe guide pipe.
Figure 3 shows an emergency cooling system for the reactor primary coolant of a fast breeder reactor, and Figure 14 shows the pressure tube thermal deformation onset curve and pressure tube rupture strain curve. DESCRIPTION OF SYMBOLS 1... Moderator tank, 2... Moderator circulation pump, 3... Heat exchanger, 4... Core, 5... Moderator, 6... Moderator riser pipe, 7... Cooling tower, 10...
... Control rod guide tube, 12 ... Natural circulation cooling device (heat pipe), 13 ... Cooler, 21 ... Pressure pipe,
28... Surge tank, 29... Moderator return pipe,
30...Air cooler, 32...Pressure pipe guide pipe, 3
5...Natural circulation cooling device.

Claims (1)

【特許請求の範囲】 1 炉心を収容し冷却材が環流する圧力管と、こ
の圧力管が挿通されている圧力管案内管と、前記
圧力管を包囲する減速材を収容した減速材タンク
と、該減速材タンクの中に設けられ、原子炉の出
力を制御する制御棒を収容する制御棒案内管と、
前記減速材タンクに接続されて該減速材タンク内
の減速材を循環させる減速材循環ポンプと、該減
速材循環ポンプによつて循環される減速材を冷却
する熱交換器とを含んでなる圧力管型原子炉にお
いて、 減速材タンクの上部に接続され炉心より高い位
置に設けられたサージタンクと、上部を前記サー
ジタンクに、下部を減速材タンクに接続され、冷
却塔に内蔵され且つ原子炉炉心より高く前記サー
ジタンクより低い位置に設けられて減速材を空気
冷却する空気冷却器とを含んでなり、前記サージ
タンクの上部と空気冷却器を接続する配管の最も
高い部分は、通常運転時は減速材が前記サージタ
ンクから前記空気冷却器に流れることがなく、減
速材沸騰時に減速材が前記サージタンクから前記
空気冷却器に流れる高さに配置されていることを
特徴とする圧力管型原子炉。 2 圧力管案内管の内壁と、該圧力管案内管内に
挿通された圧力管の外壁との間隔を、圧力管の過
熱による熱膨張に基づく破断歪より小さく、且つ
通常運転時の圧力管と圧力管案内管の間の熱遮蔽
に必要な最小の間隔よりも大きくしたことを特徴
とする特許請求の範囲第1項に記載の圧力管型原
子炉。 3 炉心を収容し冷却材が環流する圧力管と、こ
の圧力管が挿通されている圧力管案内管と、前記
圧力管を包囲する減速材を収容した減速材タンク
と、該減速材タンクの中に設けられ、原子炉の出
力を制御する制御棒を収容する制御棒案内管と、
前記減速材タンクに接続されて該減速材タンク内
の減速材を循環させる減速材循環ポンプと、該減
速材循環ポンプによつて循環される減速材を冷却
する熱交換器とを含んでなる圧力管型原子炉にお
いて、 蒸発器を減速材タンク内に、冷却器を設けた凝
縮端を減速材タンク外にして配置されたヒートパ
イプを設けたことを特徴とする圧力管型原子炉。 4 圧力管案内管の内壁と、該圧力管案内管内に
挿通された圧力管の外壁との間隔を、圧力管の過
熱による熱膨張に基づく破断歪より小さく、且つ
通常運転時の圧力管と圧力管案内管の間の熱遮蔽
に必要な最小の間隔よりも大きくしたことを特徴
とする特許請求の範囲第3項に記載の圧力管型原
子炉。
[Scope of Claims] 1. A pressure pipe that accommodates a reactor core and through which coolant circulates, a pressure pipe guide pipe through which this pressure pipe is inserted, and a moderator tank that contains a moderator that surrounds the pressure pipe. a control rod guide tube provided in the moderator tank and accommodating a control rod that controls the output of the nuclear reactor;
A pressure moderator comprising a moderator circulation pump connected to the moderator tank and circulating the moderator in the moderator tank, and a heat exchanger cooling the moderator circulated by the moderator circulation pump. In a tubular nuclear reactor, there is a surge tank connected to the top of the moderator tank and installed at a position higher than the reactor core, and a surge tank that is connected to the surge tank at the top and to the moderator tank at the bottom, built in the cooling tower, and installed at a position higher than the reactor core. and an air cooler installed at a position higher than the core and lower than the surge tank to cool the moderator with air, and the highest part of the piping connecting the upper part of the surge tank and the air cooler during normal operation. The pressure pipe type is characterized in that the moderator does not flow from the surge tank to the air cooler, and is arranged at a height where the moderator flows from the surge tank to the air cooler when the moderator boils. Reactor. 2. The distance between the inner wall of the pressure tube guide tube and the outer wall of the pressure tube inserted into the pressure tube guide tube must be smaller than the rupture strain due to thermal expansion due to overheating of the pressure tube, and the distance between the pressure tube and the pressure tube during normal operation is 2. The pressure tube nuclear reactor according to claim 1, wherein the distance between the tube guide tubes is larger than the minimum distance required for heat shielding. 3. A pressure pipe that accommodates the core and through which coolant circulates, a pressure pipe guide pipe through which this pressure pipe is inserted, a moderator tank that contains a moderator that surrounds the pressure pipe, and a moderator tank that contains a moderator that surrounds the pressure pipe. a control rod guide tube that is installed in the reactor and accommodates control rods that control the output of the reactor;
A pressure moderator comprising a moderator circulation pump that is connected to the moderator tank and circulates the moderator in the moderator tank, and a heat exchanger that cools the moderator circulated by the moderator circulation pump. A pressure tube nuclear reactor characterized in that a heat pipe is provided with an evaporator placed inside a moderator tank and a condensing end provided with a cooler outside the moderator tank. 4. The distance between the inner wall of the pressure tube guide tube and the outer wall of the pressure tube inserted into the pressure tube guide tube must be smaller than the rupture strain due to thermal expansion due to overheating of the pressure tube, and the distance between the pressure tube and the pressure tube during normal operation is 4. The pressure tube nuclear reactor according to claim 3, wherein the distance between the tube guide tubes is larger than the minimum distance required for heat shielding.
JP61196640A 1986-08-22 1986-08-22 Pressure tube type reactor Granted JPS6352098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196640A JPS6352098A (en) 1986-08-22 1986-08-22 Pressure tube type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196640A JPS6352098A (en) 1986-08-22 1986-08-22 Pressure tube type reactor

Publications (2)

Publication Number Publication Date
JPS6352098A JPS6352098A (en) 1988-03-05
JPH058996B2 true JPH058996B2 (en) 1993-02-03

Family

ID=16361133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196640A Granted JPS6352098A (en) 1986-08-22 1986-08-22 Pressure tube type reactor

Country Status (1)

Country Link
JP (1) JPS6352098A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940008250B1 (en) * 1992-02-11 1994-09-09 한국과학기술원 Nuclear fuel channel and natural safety water cooled type tube reactor using this
JP6249677B2 (en) * 2013-08-21 2017-12-20 三菱重工業株式会社 Cooling system

Also Published As

Publication number Publication date
JPS6352098A (en) 1988-03-05

Similar Documents

Publication Publication Date Title
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US5043136A (en) Passive cooling safety system for liquid metal cooled nuclear reactors
US5276720A (en) Emergency cooling system and method
EP2518731A2 (en) Nuclear power plant, fuel pool water cooling facility and method thereof
JPS62265597A (en) Auxiliary cooling system of radiating vessel
KR940001175A (en) How to reduce rupture of steam generator pipe with automatic safety device in pressurized water reactor
JPH02268295A (en) Heat removing system for containment vessel
US4950448A (en) Passive heat removal from containment
JP2002156485A (en) Reactor
JPH04125495A (en) Nuclear reactor facility
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US5217682A (en) Passive indirect shutdown cooling system for nuclear reactors
JP2012233698A (en) Nuclear power plant emergency cooling system
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US3190808A (en) Nuclear reactor powered steam generating systems
US5126099A (en) Boiling water reactor plant with hybrid pressure containment cooling system
US4998509A (en) Passive heat removal from containment
JPH0463357B2 (en)
US3506539A (en) Nuclear reactors
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
JPH058996B2 (en)
JPH04290994A (en) Reactor container vessel
RU2025798C1 (en) Nuclear reactor with natural circulation of heat carrier
Spinks A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors