JPH0715503B2 - Liquid metal cooling fast reactor - Google Patents

Liquid metal cooling fast reactor

Info

Publication number
JPH0715503B2
JPH0715503B2 JP1028423A JP2842389A JPH0715503B2 JP H0715503 B2 JPH0715503 B2 JP H0715503B2 JP 1028423 A JP1028423 A JP 1028423A JP 2842389 A JP2842389 A JP 2842389A JP H0715503 B2 JPH0715503 B2 JP H0715503B2
Authority
JP
Japan
Prior art keywords
output unit
liquid metal
reactor vessel
core
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1028423A
Other languages
Japanese (ja)
Other versions
JPH02206794A (en
Inventor
満 神戸
一男 羽賀
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP1028423A priority Critical patent/JPH0715503B2/en
Priority to FR9001307A priority patent/FR2642888A1/en
Publication of JPH02206794A publication Critical patent/JPH02206794A/en
Publication of JPH0715503B2 publication Critical patent/JPH0715503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/30Control of nuclear reaction by displacement of the reactor fuel or fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

この発明は、熱供給プラント及び発電プラントのいずれ
のプラントにも利用できる超小型固有安全炉を実現する
ための液体金属冷却高速炉構造の簡略化技術に関する。
The present invention relates to a technology for simplifying a liquid metal cooling fast reactor structure for realizing a microminiature intrinsic safety reactor that can be used in both heat supply plants and power generation plants.

【従来の技術】[Prior art]

従来の大型発電プラント等に採用されている液体金属冷
却高速炉は、原子炉容器内に向けて制御棒駆動機構や燃
料交換装置が設けられ、また、原子炉容器の外部に熱交
換機や原子炉容器内の冷却材の循環を行なう1次冷却循
環ポンプが配管により接続された構造となっている。 現在の液体金属冷却高速炉よりも出力規模の数段小さい
超小型炉は、各国で検討されているが、小型化に伴って
発電単価が割高となる欠点があり、実用化には至ってい
ない。
Liquid metal-cooled fast reactors used in conventional large-scale power plants, etc. are equipped with a control rod drive mechanism and a fuel exchange device toward the inside of the reactor vessel, and a heat exchanger and a reactor outside the reactor vessel. The structure is such that a primary cooling circulation pump that circulates the coolant in the container is connected by piping. Microminiature reactors, which have an output scale several orders of magnitude smaller than the current liquid metal cooled fast reactors, are being studied in various countries, but they have not been put to practical use because they have the disadvantage that the unit price of power generation becomes higher as they become smaller.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

上記従来の液体金属冷却高速増殖炉のシステムをそのま
ま小型化した場合、システムが複雑となり経済性が著し
く劣ったものとなる。 従って、この発明は、固有の安全性を維持しながら超小
型炉を実現する上で必要な液体金属冷却高速炉の構造並
びに運転制御技術及び運転制御システムの簡略化を行な
うことを目的とする。
If the conventional liquid metal cooling fast breeder reactor system is downsized as it is, the system becomes complicated and the economy is remarkably inferior. Therefore, an object of the present invention is to simplify the structure of a liquid metal cooled fast reactor, the operation control technique, and the operation control system necessary for realizing a micro reactor while maintaining the inherent safety.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するためのこの発明の液体金属冷却高速
炉は、液体金属冷却材が満たされている原子炉容器と、
該原子炉容器内に配置されて固定されている環状の径方
向反射体と、該原子炉容器内を垂直方向に延び、該径方
向反射体の環内を貫通可能な出力ユニットと、該原子炉
容器外部上方に配設され、該出力ユニットを上下に駆動
させる駆動装置とからなり、該出力ユニットは、炉心
と、該炉心の上下に取付けられかつ軸方向に冷却材流路
を有する上部および下部軸方向反射体と、該上部軸方向
反射体の上端に接続されて原子炉容器内を垂直に上方に
延びかつ所定位置に複数の冷却材流出孔を有する出力ユ
ニット管とからなる一体構造を有し、該出力ユニット管
の長さは、上部軸方向反射体の下端が径方向反射体の下
端と同じレベルとなるまで径方向反射体の環内を下降し
ても、出力ユニット管の上端が原子炉容器外部上方に突
出する長さを有することを特徴とする。
A liquid metal-cooled fast reactor of the present invention for achieving the above object, a reactor vessel filled with a liquid metal coolant,
An annular radial reflector arranged and fixed in the reactor vessel, an output unit extending vertically in the reactor vessel and penetrating through the ring of the radial reflector, and the atom. And a driving device which is arranged above the outside of the reactor vessel and drives the output unit up and down. The output unit includes a core and an upper part which is attached above and below the core and has a coolant passage in the axial direction. An integrated structure comprising a lower axial reflector and an output unit pipe connected to the upper end of the upper axial reflector and extending vertically upward in the reactor vessel and having a plurality of coolant outlet holes at predetermined positions The length of the output unit tube is such that even if the lower end of the upper axial reflector falls to the same level as the lower end of the radial reflector in the ring of the radial reflector, the upper end of the output unit tube Has a length protruding above the outside of the reactor vessel And wherein the door.

【作用】[Action]

上記構成のこの発明の液体金属冷却高速炉においては、
径方向反射体の環内に挿入した炉心の配置位置により、
炉心がこれを挟んで接合する上下2つの軸方向反射体と
環状の径方向反射体によって囲まれる囲まれ具合が変
り、この囲まれ具合に応じて炉心から出力される熱エネ
ルギー量が変り、炉の出力は臨界→定格出力→最大出力
→定格出力→部分出力→スクラムと順次変化する。 冷却材は、自然対流又は取付けられた循環ポンプによ
り、通常、軸方向反射体に形成された軸方向の冷却材流
路及び炉心の隙間を通って原子炉容器内の底から上に向
かって流れ、出力ユニット管の冷却材流通孔を通って原
子力容器内又は循環ポンプが原子力容器の外側に設けら
れた場合の原子力容器、循環ポンプ、及び両者を接続す
る配管によって形成された1次冷却系ループを循環す
る。 炉心の反応度は、上述した炉の出力に対応する炉心の径
方向反射体に対する配置位置及び炉心温度によって変
り、炉心温度が高くなるに従って抑制され、炉の出力を
減少させる性質を有する。従って、炉心の隙間を通って
流れる冷却材の温度が高くなったり、炉心流量を減少し
た場合には、一次的に炉心温度が高くなるが、これによ
り炉心の反応度が抑制されて炉心温度が元に戻り、冷却
材の吸熱容量、即ち、炉の出力が減少する。冷却材の温
度が低くなったり、炉心流量を減少した場合にはこの逆
である。 加えて、冷却材の温度が高くなった場合には出力ユニッ
ト管等が熱膨張し、原子炉運転中の出力ユニット管の上
端は固定されているので炉心は原子炉容器の底に向かっ
て移動する。他方、径方向反射体は原子炉容器に固定さ
れているので熱膨張により上方に移動し、炉心は径方向
反射体の環内に相対的に深く挿入される。従って両者の
相対的移動により炉心の反応度はやや低下する。
In the liquid metal cooling fast reactor of the present invention having the above configuration,
Depending on the position of the core inserted in the ring of the radial reflector,
The enclosure is surrounded by two upper and lower axial reflectors and an annular radial reflector which are sandwiched between the cores, and the surrounding condition changes, and the amount of heat energy output from the core changes depending on the surrounding condition. Output changes in the order of criticality → rated output → maximum output → rated output → partial output → scrum. The coolant flows upwards from the bottom in the reactor vessel, usually through natural convection or an attached circulation pump, through the axial coolant passages formed in the axial reflector and the core gap. A primary cooling system loop formed by a nuclear power container, a circulation pump, and a pipe connecting the nuclear power container in the case where the circulation pump is provided inside the nuclear power container or outside the nuclear power container through the coolant circulation hole of the output unit pipe Circulate. The reactivity of the core varies depending on the arrangement position of the core corresponding to the power output of the core with respect to the radial reflector and the core temperature, and is suppressed as the core temperature increases, and has the property of reducing the power output of the core. Therefore, when the temperature of the coolant flowing through the core gap increases or the core flow rate decreases, the core temperature rises temporarily, but this suppresses the reactivity of the core and reduces the core temperature. Once again, the endothermic capacity of the coolant, ie the power of the furnace, is reduced. The opposite is true when the coolant temperature is low or the core flow is reduced. In addition, when the temperature of the coolant rises, the output unit pipe, etc. expands thermally, and the upper end of the output unit pipe is fixed during reactor operation, so the core moves toward the bottom of the reactor vessel. To do. On the other hand, since the radial reflector is fixed to the reactor vessel, it moves upward due to thermal expansion, and the core is relatively deeply inserted into the ring of the radial reflector. Therefore, the relative reactivity of the two causes a slight decrease in the reactivity of the core.

【実施例】【Example】

以下に実施例を示し、この発明を更に具体的に説明す
る。 第1図にこの発明の液体金属冷却高速炉の1例を示す。 この液体金属冷却高速炉は、原子炉容器1及び出力ユニ
ット2を含んで構成されている。 この内の原子炉容器1内には溶融金属、例えばNa又はNa
Kから成る冷却材3が収容されている。また、この原子
炉容器1内の近底部に環状の径方向反射体4が支持体5
を介して固定されている。この支持体5は径方向反射体
4の環と同一内径の環状支持板5aと開放管5bとから成
り、環状支持板5aが原子炉容器1内に接合され、環状支
持板5aに開放管5bが下向きに、径方向反射体4が上向き
に相互の内縁を合わせて接合され、また、環状支持板5a
には冷却材3を流通可能とする複数の穴5cが開けられて
いる。更に、原子炉容器1は、その底端が原子炉容器1
を囲むピット6に固定され、その上部位置のピット6か
ら突出する振れ止め7により横揺れが防止されるように
なっている。 他方、出力ユニット2においては、径方向反射体4の環
内を貫通可能の径の炉心8及び炉心8を挟んで接合する
軸方向に冷却材3の複数の流路9cを形成した2つの軸方
向反射体9a,9bの一方の端縁に炉心8及び軸方向反射体9
a,9bと同径の出力ユニット管10の下端が接続されてい
る。この出力ユニット管10は、上部軸方向反射体9aの下
端が径方向反射体4の下端と同じレベルとなるまで径方
向反射体4の環内を下降しても、出力ユニット管の上端
が原子炉容器1外部上方に突出する長さを有しており、
また、この際の冷却材3中の液面近くに位置する所定位
置の周面に冷却材3を出力ユニット管10の内側から外側
へ流通可能とする複数の流通孔10c及び冷却材3上に位
置する所定位置の周面に上記冷却材3の流通をスムーズ
に行なうためのベント孔10dが開けられている。また、
この出力ユニット管10内には上端から下端に向けて冷却
材3の流路11cを形成した2次系ヒートパイプ11が、軸
方向反射体9aと2次系ヒートパイプ11との間には循環ポ
ンプ12が配設され、出力ユニット管10の上端は遮蔽体13
によって気密に覆われている。更に出力ユニット管10の
上端外周部位にはその上端面を境として下側の区画に熱
電対変換器14及び上側の区画に作動流体が流通する放熱
部16が接合され、また両区画を貫通する放熱系ヒートパ
イプ17が設けられている。以上の構成部材から成る一体
構造の出力ユニット2は、放熱部16の上端において図示
しない駆動系に接続され、また、原子炉容器1の上端部
は、出力ユニット2が上下動可能な貫通口を有する遮蔽
プラグ18により封栓されている。 また、上記構成部材において、例えば、炉心8で使用さ
れる燃料としてはU,Puの混合酸化物又はUNが挙げられ、
反射体4,9の材質としては例えばBe又はBeOが使用され
る。ヒートパイプ11,17、特に放熱系ヒートパイプ17の
材質は、作動流体がCeの場合にはTi又はNb-Zrが適当で
あり、この場合、通常、450〜900℃の温度範囲で適用さ
れる。また、作動流体がKの場合にはNiが適当であり、
この場合、通常、50〜1000℃の温度範囲で適用される。 また、原子炉容器1の内壁、支持体5、出力ユニット管
10等の冷却材3と接触し、かつ、上記に挙げられた構成
部材を除くものの材質としては、例えばステンレス鋼が
使用され、遮蔽体13の材質としては、LiH,B4C等の中性
子遮蔽材及びW等のγ線遮蔽材が使用される。 上記構成の液体金属冷却高速炉において、冷却材3に使
用されるNa,NaK等の溶融金属は、原子炉容器1の周囲に
電気ヒータを巻いたり、あるいは原子炉容器1とピット
6との間の隙間に高温のガスを流したりなどして融点以
上の温度に加熱した状態で注入する。次いで原子炉容器
1内に出力ユニット2を設置し、原子炉容器1内の冷却
材3を自然対流又は循環ポンプ12により循環する。この
冷却材3の循環は、第1図の矢印に従って行なわれる。
即ち、冷却材3は、支持体5の開放管5bの管内に流入
し、順次、軸方向反射体9aの流路9c、炉心8の隙間、他
方の軸方向反射体9bの流路9cを経て出力ユニット管10の
管内を上向きに流れ、次いで流通孔10cから管外に流出
して出力ユニット管10と原子炉容器1との間を下向きに
流れ、支持体5の環状支持板5aに開けられた穴5cを通っ
て再び開放管5bの管内に流入する。 原子炉を起動するには、出力ユニット2をその下端に位
置する軸方向反射体9bから徐々に径方向反射体4に挿入
する。すると径方向反射体4と炉心8の配置が徐々に変
り、炉心8が2つの軸方向反射体9a,9bと径方向反射体
4とによって囲まれるようになり(第2図a)この液体
金属冷却高速炉の出力は臨界に達する。更に出力ユニッ
ト2の下端に位置する軸方向反射体9aが径方向反射体4
中に深く挿入されるに従い、炉の出力が徐々に上昇し、
炉心8が径方向反射体4の中央に位置する(第2図c)
場合、炉の出力は最大となる。この場合、炉の出力が臨
界から最大に変化するまでの途中位置(第2図b)の定
格出力を数10%上回るが、後述する熱伝達系の吸放熱過
程により対処できる構成となっている。そして炉心8が
径方向反射体4の中央位置(第2図c)を越えて更に深
く挿入されると、炉の出力は徐々に減少し、第2図dに
示す位置で再び定格出力に達し、次いで第2図eに示す
位置で臨界出力に対応する部分出力に達し、炉心8が径
方向反射体4を完全に通過する(第2図f)とスクラム
される。炉心8の反応度に応じて炉心8で発生した熱
は、炉心8の回りで冷却材3により吸熱され、炉心8回
りの冷却材3の温度を上昇させる。そして高温となった
冷却材3は流れに沿って出力ユニット管10中の2次系ヒ
ートパイプ11を加熱し、2次系ヒートパイプ11により吸
熱された後、出力管10の流通孔10cから外側へ流出され
る。他方2次系ヒートパイプ11により吸熱された熱は、
2次系ヒートパイプ11中を伝わってその上端まで伝達さ
れ、熱電対変換器14によりその1部が電気エネルギーに
変換(変換効率7%程度)され、残部は放熱系ヒートパ
イプ17を伝わって放熱部16において冷却される。そし
て、上記熱伝達系の吸放熱過程で生じた熱電対変換器14
の電気エネルギーが炉から出力されて利用されることと
なる。この炉の出力の自己制御性は、炉心8の燃料にU,
Puの混合酸化物又はUNを使用した場合、それぞれのドッ
プラー効果によるフィードバック効果が期待できる。ま
た、炉心8で冷却材3の温度が高くなり過ぎても、既に
説明したように原子炉容器1及び出力ユニット2が熱膨
張して炉心8は径方向反射体4に対して中央から下方に
向かって移動するので前記冷却材3の温度に加え、この
炉心8の径方向反射体4に対する配置位置によっても炉
心8の反応度、従って炉の出力が抑制されて調節され
る。 以上に示したように第1図に示す液体金属冷却高速炉は
固有の安全性を有する。例えば循環ポンプ12が停止して
も冷却材3は自然循環により支障なく循環し、かつ駆動
系の故障によりスクラムが不可能となり、炉心8の温度
がある程度上昇しても冷却材3が高温となり、炉心8の
反応度が減少し、炉心8の温度は許容値以下に押えるこ
とができる。 この様にして炉心8が例えば7〜8年の年月の後にスク
ラムされた後には、出力ユニット2を原子炉容器1から
引抜き、新たな出力ユニット2と交換することにより炉
心8の燃料交換を行なうことができ、出力ユニット2内
の構成部材の保守補修の際にも出力ユニット2全体を引
抜き、付着している冷却材3からの放射線を遮蔽するた
め不活性ガス雰囲気の遮蔽容器に入れて運搬し、出力ユ
ニット2内の構成部材の保守補修が行なわれる。 以上にこの発明の液体金属冷却高速炉の1例を示した
が、この炉は、例えば炉心の規模に応じて循環ポンプ12
のない構成とすることもでき、また、炉の出力として熱
エネルギーのみを利用する場合には熱電対変換器14及び
放熱系ヒートパイプ17を省略し、出力ユニット管10の上
端外周部位に2次系ヒートパイプ11の上端が位置する構
造にすることができる。また、出力管ユニット2に内蔵
した2次系ヒートパイプ11及び循環ポンプ12を削除し、
第3図aに示す様に原子炉容器1の外部に循環ポンプ12
を介して熱交換器20を1次冷却系ループを形成する配管
19a,19b,19cにより接続したり、あるいは第3図bに示
すように原子炉容器1内の出力ユニット管の外部にそれ
ぞれ循環ポンプ12及び熱交換器20を配設しても良い。更
に炉心の規模により第3図a及びbに示す炉から循環ポ
ンプ12を除いた構成とすることができるのは勿論であ
る。また、炉心がある程度大型化した場合には第3図c
に示すように原子炉容器1の底に炉心8及び軸方向反射
体9a,9bの内部に軸方向に沿って出し入れ可能な配置位
置に制御棒21を必要な本数立設固定しても良い。なお第
3図cの炉において、制御棒21は制御棒取付台22に取付
けられ、この制御棒取付台22が原子炉容器1の底に設け
られた制御棒取付台受23に着脱自在に取付けられ、炉心
8及び軸方向反射体9a,9bの内部に制御棒案内管24が軸
方向に貫通するように取付けられ、この制御棒案内管24
は少なくとも定格運転中に完全に制御棒21が挿入され、
これ等により出力ユニット2引抜き後の制御棒21の交換
が行なえ、地震時の制御棒挿入性に問題の生じない構造
となっている。この様にこの発明の液体金属冷却高速炉
は、特許請求の範囲に記載された範囲内で、炉心の規模
炉の利用途等により様々な変形が可能である。
Hereinafter, the present invention will be described more specifically with reference to examples. FIG. 1 shows an example of the liquid metal cooling fast reactor of the present invention. This liquid metal cooled fast reactor is configured to include a reactor vessel 1 and an output unit 2. In the reactor vessel 1 in this, molten metal such as Na or Na
A coolant 3 made of K is contained. In addition, an annular radial reflector 4 is provided at the bottom of the reactor vessel 1 at the support 5
Is fixed through. This support 5 is composed of an annular support plate 5a having the same inner diameter as the ring of the radial reflector 4 and an open pipe 5b. The annular support plate 5a is joined inside the reactor vessel 1 and the open pipe 5b is connected to the annular support plate 5a. Are joined downward, and the radial reflectors 4 are joined upward with their inner edges aligned with each other, and the annular support plate 5a
A plurality of holes 5c for allowing the coolant 3 to flow therethrough are formed in the. Furthermore, the reactor vessel 1 has a bottom end with the reactor vessel 1
Rolling is prevented by a steady rest 7 which is fixed to a pit 6 surrounding the pit 6 and projects from the pit 6 at the upper position. On the other hand, in the output unit 2, the two cores 8 having a plurality of flow passages 9c of the coolant 3 formed in the axial direction of the core 8 having a diameter penetrable through the ring of the radial reflector 4 and the cores 8 sandwiching the core 8 to be joined. The core 8 and the axial reflector 9 are provided on one edge of the directional reflectors 9a, 9b.
The lower end of an output unit pipe 10 having the same diameter as a and 9b is connected. This output unit tube 10 is such that even if the lower end of the upper axial reflector 9a reaches the same level as the lower end of the radial reflector 4 in the ring of the radial reflector 4, the upper end of the output unit tube is atomized. It has a length that protrudes above the outside of the furnace vessel 1,
Further, at this time, on the peripheral surface at a predetermined position located near the liquid surface in the coolant 3, the coolant 3 is allowed to flow from the inner side to the outer side of the output unit pipe 10 and on the coolant 3. A vent hole 10d is formed in the peripheral surface at a predetermined position to smoothly flow the coolant 3. Also,
In the output unit pipe 10, a secondary heat pipe 11 having a flow path 11c for the coolant 3 formed from the upper end to the lower end is circulated between the axial reflector 9a and the secondary heat pipe 11. A pump 12 is provided, and the upper end of the output unit pipe 10 is covered with a shield 13.
Is airtightly covered by. Further, the thermocouple converter 14 is joined to the lower section and the heat radiating section 16 through which the working fluid flows is joined to the upper section at the upper end outer peripheral portion of the output unit pipe 10 with the upper end surface as a boundary, and also penetrates both sections. A heat radiation system heat pipe 17 is provided. The output unit 2 of the integral structure composed of the above components is connected to a drive system (not shown) at the upper end of the heat dissipation unit 16, and the upper end of the reactor vessel 1 has a through hole through which the output unit 2 can move up and down. It is sealed by a shielding plug 18 that it has. Further, in the above-mentioned constituent members, for example, the fuel used in the core 8 may be a mixed oxide of U and Pu or UN,
As the material of the reflectors 4 and 9, for example, Be or BeO is used. As the material of the heat pipes 11 and 17, especially the heat radiation system heat pipe 17, Ti or Nb-Zr is suitable when the working fluid is Ce, and in this case, it is usually applied in the temperature range of 450 to 900 ° C. . When the working fluid is K, Ni is suitable,
In this case, it is usually applied in the temperature range of 50 to 1000 ° C. Also, the inner wall of the reactor vessel 1, the support 5, the output unit pipe
For example, stainless steel is used as the material of the materials that are in contact with the coolant 3 such as 10 and other than the above-mentioned constituent members, and the material of the shield 13 is a neutron shield such as LiH, B 4 C or the like. Materials and gamma ray shielding materials such as W are used. In the liquid metal cooling fast reactor configured as described above, the molten metal such as Na and NaK used for the coolant 3 may be wound around the reactor vessel 1 with an electric heater or between the reactor vessel 1 and the pit 6. It is injected while being heated to a temperature equal to or higher than the melting point by, for example, flowing a high temperature gas into the gap. Next, the output unit 2 is installed in the reactor vessel 1, and the coolant 3 in the reactor vessel 1 is circulated by natural convection or a circulation pump 12. The circulation of the coolant 3 is performed according to the arrow in FIG.
That is, the coolant 3 flows into the open pipe 5b of the support 5 and sequentially passes through the flow passage 9c of the axial reflector 9a, the gap of the core 8 and the flow passage 9c of the other axial reflector 9b. It flows upward in the output unit pipe 10, then flows out of the flow hole 10c to the outside of the pipe, flows downward between the output unit pipe 10 and the reactor vessel 1, and is opened in the annular support plate 5a of the support body 5. It again flows into the open pipe 5b through the open hole 5c. To start the reactor, the output unit 2 is gradually inserted into the radial reflector 4 from the axial reflector 9b located at its lower end. Then, the arrangement of the radial reflector 4 and the core 8 is gradually changed so that the core 8 is surrounded by the two axial reflectors 9a and 9b and the radial reflector 4 (Fig. 2a). The output of the cooled fast reactor reaches a critical level. Furthermore, the axial reflector 9a located at the lower end of the output unit 2 is the radial reflector 4a.
As it is deeply inserted inside, the power of the furnace gradually increases,
The core 8 is located in the center of the radial reflector 4 (Fig. 2c).
In this case, the output of the furnace is maximum. In this case, the rated output at the midway position (Fig. 2b) until the output of the furnace changes from the critical level to the maximum exceeds the rated output by several tens of percent, but it can be dealt with by the heat absorption and release process of the heat transfer system described later. . When the core 8 is inserted further deeper than the central position of the radial reflector 4 (Fig. 2c), the power of the reactor gradually decreases and reaches the rated power again at the position shown in Fig. 2d. Then, at the position shown in FIG. 2e, a partial power corresponding to the critical power is reached and the core 8 is scrammed when it has completely passed the radial reflector 4 (FIG. 2f). The heat generated in the core 8 according to the reactivity of the core 8 is absorbed by the coolant 3 around the core 8 to raise the temperature of the coolant 3 around the core 8. Then, the coolant 3 having a high temperature heats the secondary heat pipe 11 in the output unit pipe 10 along the flow, and after being absorbed by the secondary heat pipe 11, it is outside from the flow hole 10c of the output pipe 10. Is leaked to. On the other hand, the heat absorbed by the secondary heat pipe 11 is
It is transmitted to the upper end of the secondary heat pipe 11 and part of it is converted into electric energy by the thermocouple converter 14 (conversion efficiency of about 7%), and the rest is transferred to the heat radiation system heat pipe 17 for heat dissipation. Cooled in section 16. Then, the thermocouple converter 14 generated in the process of absorbing and releasing heat in the heat transfer system
This electric energy will be output from the furnace and used. The self-controllability of the power output of this reactor is
When Pu mixed oxide or UN is used, the feedback effect by each Doppler effect can be expected. Further, even if the temperature of the coolant 3 in the core 8 becomes too high, the reactor vessel 1 and the output unit 2 are thermally expanded as described above, and the core 8 moves downward from the center with respect to the radial reflector 4. Since it moves toward the center, the reactivity of the core 8, and hence the power of the furnace, is suppressed and controlled not only by the temperature of the coolant 3 but also by the arrangement position of the core 8 with respect to the radial reflector 4. As described above, the liquid metal cooled fast reactor shown in FIG. 1 has inherent safety. For example, even if the circulation pump 12 is stopped, the coolant 3 circulates without trouble due to natural circulation, and scram cannot be performed due to a failure of the drive system. Even if the temperature of the core 8 rises to some extent, the coolant 3 becomes high in temperature. The reactivity of the core 8 is reduced, and the temperature of the core 8 can be suppressed below the allowable value. In this way, after the core 8 is scrammed after, for example, 7 to 8 years, the power unit 2 is pulled out from the reactor vessel 1 and is replaced with a new power unit 2 to refuel the core 8. Even when maintenance and repair of the components in the output unit 2 are performed, the entire output unit 2 is pulled out and placed in a shielding container in an inert gas atmosphere to shield the radiation from the adhering coolant 3. It is transported and the maintenance and repair of the components in the output unit 2 are performed. An example of the liquid metal cooled fast reactor of the present invention has been described above. However, this reactor has a circulation pump 12 depending on, for example, the scale of the core.
Alternatively, the thermocouple converter 14 and the heat radiation system heat pipe 17 may be omitted when only the thermal energy is used as the output of the furnace, and the secondary unit may be provided at the outer peripheral portion of the upper end of the output unit pipe 10. The structure may be such that the upper end of the system heat pipe 11 is located. Also, the secondary heat pipe 11 and the circulation pump 12 built in the output tube unit 2 are deleted,
A circulation pump 12 is provided outside the reactor vessel 1 as shown in FIG. 3a.
Piping to form the primary cooling system loop through the heat exchanger 20
They may be connected by 19a, 19b, 19c, or as shown in FIG. 3b, the circulation pump 12 and the heat exchanger 20 may be arranged outside the output unit pipe in the reactor vessel 1, respectively. Furthermore, it goes without saying that the circulation pump 12 may be removed from the furnace shown in FIGS. 3A and 3B depending on the scale of the core. Also, when the core is enlarged to some extent, it is shown in FIG.
As shown in FIG. 5, the required number of control rods 21 may be vertically fixed to the bottom of the reactor vessel 1 at positions where they can be taken in and out in the core 8 and the axial reflectors 9a and 9b along the axial direction. In the furnace of FIG. 3c, the control rod 21 is attached to the control rod mounting base 22, and the control rod mounting base 22 is detachably mounted to the control rod mounting base 23 provided on the bottom of the reactor vessel 1. A control rod guide tube 24 is attached inside the core 8 and the axial reflectors 9a, 9b so as to penetrate in the axial direction.
Control rod 21 is fully inserted at least during rated operation,
As a result, the control rod 21 can be exchanged after the output unit 2 is pulled out, and there is no problem in the control rod insertability during an earthquake. As described above, the liquid metal cooled fast reactor of the present invention can be variously modified within the scope described in the claims depending on the usage of the core-scale reactor.

【発明の効果】【The invention's effect】

以上の説明から明らかなように、この発明によれば、従
来の液体金属冷却高速炉に必要とされていた制御棒駆動
機構及び燃料交換装置を省略でき、更に炉心の規模等に
より循環ポンプ等をも省略できるため、液体金属冷却高
速炉の小型化のために必要な簡略化が行なえ、更に固有
の安全性にも優れており、将来の超小型固有安全炉を実
現する上で適当な構造の液体金属冷却高速炉が提供され
る。
As is apparent from the above description, according to the present invention, the control rod drive mechanism and the fuel exchange device, which were required in the conventional liquid metal cooled fast reactor, can be omitted, and further, the circulation pump or the like can be provided depending on the scale of the reactor core. Since it can be omitted, the simplification required for downsizing of the liquid metal cooled fast reactor can be performed, and it has excellent inherent safety, and it has an appropriate structure for realizing the future ultra-small intrinsic safety reactor. A liquid metal cooled fast reactor is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の液体金属冷却高速炉の1例を示す
説明図、 第2図aないしfは、炉の出力が臨界からスクラムに至
るまでのこの発明に係る炉心の配置を順次示す説明図、 第3図aないしcは、それぞれこの発明の液体金属冷却
高速炉の別の1例を示す説明図である。 1……原子炉容器、2……出力ユニット、3……冷却
材、4……径方向反射体、8……炉心、9……軸方向反
射体、10……出力ユニット管、11……2次系ヒートパイ
プ、12……循環ポンプ、14……熱電対変換器、17……放
熱系ヒートパイプ、20……熱交換器、21……制御棒、9
c,11c……冷却材流路、10c……冷却材流通孔。
FIG. 1 is an explanatory view showing an example of a liquid metal cooled fast reactor of the present invention, and FIGS. 2 a to f sequentially show the arrangement of the core according to the present invention from when the power of the reactor reaches the critical to the scrum. Explanatory drawing and FIG. 3 a-c are explanatory drawings which show another example of the liquid metal cooling fast reactor of this invention, respectively. 1 ... Reactor vessel, 2 ... Output unit, 3 ... Coolant, 4 ... Radial reflector, 8 ... Reactor core, 9 ... Axial reflector, 10 ... Output unit tube, 11 ... Secondary heat pipe, 12 ... Circulation pump, 14 ... Thermocouple converter, 17 ... Radiating heat pipe, 20 ... Heat exchanger, 21 ... Control rod, 9
c, 11c ... Coolant flow path, 10c ... Coolant flow hole.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】液体金属冷却材が満たされている原子炉容
器と、該原子炉容器内に配置されて固定されている環状
の径方向反射体と、該原子炉容器内を垂直方向に延び、
該径方向反射体の環内を貫通可能な出力ユニットと、該
原子炉容器外部上方に配設され、該出力ユニットを上下
に駆動させる駆動装置とからなり、該出力ユニットは、
炉心と、該炉心の上下に取付けられかつ軸方向に冷却材
流路を有する上部および下部軸方向反射体と、該上部軸
方向反射体の上端に接続されて原子炉容器内を垂直に上
方に延びかつ所定位置に複数の冷却材流出孔を有する出
力ユニット管とからなる一体構造を有し、該出力ユニッ
ト管の長さは、上部軸方向反射体の下端が径方向反射体
の下端と同じレベルとなるまで径方向反射体の環内を下
降しても、出力ユニット管の上端が原子炉容器外部上方
に突出する長さを有することを特徴とする液体金属冷却
高速炉。
1. A nuclear reactor vessel filled with a liquid metal coolant, an annular radial reflector arranged and fixed in the nuclear reactor vessel, and extending vertically in the nuclear reactor vessel. ,
The output unit is capable of penetrating the inside of the ring of the radial reflector, and a drive device arranged above the outside of the reactor vessel to drive the output unit up and down.
A core, upper and lower axial reflectors mounted above and below the core and having a coolant flow path in the axial direction, and connected vertically to the upper ends of the upper axial reflectors to move vertically upward in the reactor vessel. It has an integral structure consisting of an output unit tube extending and having a plurality of coolant outlet holes at predetermined positions, the output unit tube having a length such that the lower end of the upper axial reflector is the same as the lower end of the radial reflector. A liquid metal-cooled fast reactor characterized in that the upper end of the output unit tube has a length protruding above the outside of the reactor vessel even when the radial reflector is lowered to the level.
【請求項2】出力ユニット管内に上端から下端に向けて
冷却材流路を形成した2次系ヒートパイプを配設した請
求項1記載の液体金属冷却高速炉。
2. A liquid metal cooled fast reactor according to claim 1, wherein a secondary heat pipe having a coolant passage formed from the upper end to the lower end is arranged in the output unit pipe.
【請求項3】出力ユニット管の上端外周部位に放熱系ヒ
ートパイプ及び熱電対変換器を配設した請求項2記載の
液体金属冷却高速炉。
3. The liquid metal cooling fast reactor according to claim 2, wherein a heat radiation system heat pipe and a thermocouple converter are arranged at the outer peripheral portion of the upper end of the output unit pipe.
【請求項4】2次系ヒートパイプと上部軸方向反射体と
の間に循環ポンプを設けた請求項2又は3記載の液体金
属冷却高速炉。
4. The liquid metal cooled fast reactor according to claim 2, wherein a circulation pump is provided between the secondary heat pipe and the upper axial reflector.
【請求項5】熱交換器を原子炉容器の1次冷却系ループ
を形成する配管により接続した請求項1記載の液体金属
冷却高速炉。
5. The liquid metal cooled fast reactor according to claim 1, wherein the heat exchangers are connected by a pipe forming a primary cooling system loop of the reactor vessel.
【請求項6】熱交換器と原子炉容器との間に循環ポンプ
を介設した請求項5記載の液体金属冷却高速炉。
6. The liquid metal cooled fast reactor according to claim 5, wherein a circulation pump is provided between the heat exchanger and the reactor vessel.
【請求項7】原子炉容器内の出力ユニット管配置位置周
辺に熱交換器を配設した請求項1記載の液体金属冷却高
速炉。
7. The liquid metal cooled fast reactor according to claim 1, wherein a heat exchanger is arranged around the output unit pipe arrangement position in the reactor vessel.
【請求項8】原子炉容器内の出力ユニット管配置位置周
辺に更に循環ポンプを配設した請求項7記載の液体金属
冷却高速炉。
8. A liquid metal cooling fast reactor according to claim 7, further comprising a circulation pump arranged around the output unit pipe arrangement position in the reactor vessel.
【請求項9】原子炉容器内底部から径方向反射体の環内
に向けて複数本の制御棒を立設して固定し、出力ユニッ
トが径方向反射体の環内の所定位置まで下降してきたと
きに、炉心および軸方向反射体の内部に軸方向に沿って
制御棒が挿入されるようにした請求項1ないし8のいず
れか1項記載の液体金属冷却高速炉。
9. A plurality of control rods are erected and fixed from the bottom of the reactor vessel toward the inside of the ring of the radial reflector, and the output unit descends to a predetermined position within the ring of the radial reflector. 9. The liquid metal cooled fast reactor according to claim 1, wherein the control rods are axially inserted inside the core and the axial reflector when the liquid is cooled.
JP1028423A 1989-02-07 1989-02-07 Liquid metal cooling fast reactor Expired - Lifetime JPH0715503B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1028423A JPH0715503B2 (en) 1989-02-07 1989-02-07 Liquid metal cooling fast reactor
FR9001307A FR2642888A1 (en) 1989-02-07 1990-02-05 Fast reactor cooled with liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028423A JPH0715503B2 (en) 1989-02-07 1989-02-07 Liquid metal cooling fast reactor

Publications (2)

Publication Number Publication Date
JPH02206794A JPH02206794A (en) 1990-08-16
JPH0715503B2 true JPH0715503B2 (en) 1995-02-22

Family

ID=12248250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028423A Expired - Lifetime JPH0715503B2 (en) 1989-02-07 1989-02-07 Liquid metal cooling fast reactor

Country Status (2)

Country Link
JP (1) JPH0715503B2 (en)
FR (1) FR2642888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404954B1 (en) * 2012-10-23 2014-06-12 국립대학법인 울산과학기술대학교 산학협력단 Method Of Nuclear Corium Cooling Using Liquid Metal Layer, And Nuclear Corium Cooling System Using The Same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472581B2 (en) 2008-11-17 2013-06-25 Nuscale Power, Llc Reactor vessel reflector with integrated flow-through
AU2011212810B2 (en) 2010-02-04 2013-10-10 General Atomics Modular nuclear fission waste conversion reactor
JP5727799B2 (en) * 2011-01-21 2015-06-03 株式会社東芝 Heat transfer device for reactor containment
CN114530263B (en) * 2022-01-04 2024-03-22 中国原子能科学研究院 Nuclear reactor
CN114530264B (en) * 2022-01-04 2024-02-20 中国原子能科学研究院 Space pile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385759A (en) * 1967-05-08 1968-05-28 Atomic Energy Commission Usa Fast burst neutronic reactor
US3664923A (en) * 1968-09-11 1972-05-23 Thomas J Connolly Fast neutronic reactor utilizing plutonium 240 fuel
ATE56302T1 (en) * 1984-09-05 1990-09-15 Georg Vecsey METHOD FOR THE PASSIVE TRANSFER OF HEAT FROM NUCLEAR REACTORS AND DEVICE FOR OPERATING SUCH METHOD.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404954B1 (en) * 2012-10-23 2014-06-12 국립대학법인 울산과학기술대학교 산학협력단 Method Of Nuclear Corium Cooling Using Liquid Metal Layer, And Nuclear Corium Cooling System Using The Same

Also Published As

Publication number Publication date
JPH02206794A (en) 1990-08-16
FR2642888A1 (en) 1990-08-10
FR2642888B1 (en) 1993-06-04

Similar Documents

Publication Publication Date Title
US4508677A (en) Modular nuclear reactor for a land-based power plant and method for the fabrication, installation and operation thereof
US5420897A (en) Fast reactor having reflector control system
US20150117589A1 (en) Molten Salt Reactor
JP2014512013A (en) Integrated compact pressurized water reactor
JPS62265597A (en) Auxiliary cooling system of radiating vessel
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
EP3422360A1 (en) Nuclear reactor module
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US20090207963A1 (en) Nuclear reactor
US3244597A (en) Fast breeder neutronic reactor
CN112635083A (en) Molten salt pile capable of changing materials online and material changing method thereof
JPH0715503B2 (en) Liquid metal cooling fast reactor
US3262820A (en) Control means for a heat source
US20230197301A1 (en) Nuclear reactor cooled by liquid metal incorporating a passive decay heat removal system with a phase change material thermal reservoir and a removable thermally-insulating layer around the phase change material reservoir
US4863676A (en) Inherently safe, modular, high-temperature gas-cooled reactor system
JP2006308395A (en) Fast reactor and construction method for fast reactor facility
US20080159465A1 (en) Fast reactor
US2961391A (en) Water boiler reactor
JP2002257967A (en) Fast breeding reactor
JP4101424B2 (en) Reflector-controlled fast breeder reactor
JP4341876B2 (en) Solid cooled reactor
JP2022509725A (en) Control rod drive mechanism with heat pipe cooling
US3377993A (en) Radioisotope heat source with overheat protection
FI129308B (en) A nuclear reactor module and a nuclear district heating reactor comprising and method of operating the same
JP3110901B2 (en) Fast breeder reactor