JPH02206794A - Liquid-metal cooled fast reactor - Google Patents

Liquid-metal cooled fast reactor

Info

Publication number
JPH02206794A
JPH02206794A JP1028423A JP2842389A JPH02206794A JP H02206794 A JPH02206794 A JP H02206794A JP 1028423 A JP1028423 A JP 1028423A JP 2842389 A JP2842389 A JP 2842389A JP H02206794 A JPH02206794 A JP H02206794A
Authority
JP
Japan
Prior art keywords
reactor
reflector
core
cooled fast
output unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1028423A
Other languages
Japanese (ja)
Other versions
JPH0715503B2 (en
Inventor
Mitsuru Kanbe
満 神戸
Kazuo Haga
一男 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP1028423A priority Critical patent/JPH0715503B2/en
Priority to FR9001307A priority patent/FR2642888A1/en
Publication of JPH02206794A publication Critical patent/JPH02206794A/en
Publication of JPH0715503B2 publication Critical patent/JPH0715503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/30Control of nuclear reaction by displacement of the reactor fuel or fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To eliminate the need for a control rod drive mechanism and fuel exchanging device by fixing an annular diametral reflector into a coolant and providing two upper and lower axial reflectors. CONSTITUTION:An output unit 2 is inserted to the diametral reflector 4 positioned at the bottom end of the nuclear reactor in order to start this nuclear reactor. Then, the disposition of the diametral reflector 4 and a reactor core 8 change gradually and the core 8 comes to be enclosed by the two axial reflectors 9a, 9b and the diametral reflector 4 so that the output of this reactor attains critical. Further, the output of the reactor increases gradually as the axial reflector 9a positioned at the bottom end of the output unit 2 is inserted deep into the diametral reflector 4. The output of the reactor is maximized when the core 8 is positioned at the center of the diametral reflector 4. The need for the control rod drive mechanism and fuel exchanging device which are heretofore required for the conventional liquid-metal cooled fast reactor is eliminated in such a manner.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、熱供給プラント及び発電プラントのいずれ
のプラントにも利用できる超小型固有安全炉を実現する
ための液体金属冷却高速炉構造の簡略化技術に関する。
The present invention relates to a technology for simplifying the structure of a liquid metal cooled fast reactor for realizing an ultra-small inherently safe reactor that can be used in both heat supply plants and power generation plants.

【従来の技術】[Conventional technology]

従来の大型発電プラント等に採用されている液体金属冷
却高速炉は、原子炉容器内に向けて制御棒駆動機構や燃
料交換装置が設けられ、また、原子炉・容器の外部に熱
交換機や原子炉容器内の冷却材の循環を行なう1次冷却
循環ポンプが配管により接続された構造となっている。 現在の液体金属冷却高速炉よりも出力規模の数段小さい
超小型炉は、各国で検討されているが、小型化に伴って
発電単価が割高となる欠点があり、実用化には至ってい
ない。
Liquid metal cooled fast reactors, which are used in conventional large-scale power plants, are equipped with a control rod drive mechanism and fuel exchange device inside the reactor vessel, and a heat exchanger and nuclear reactor installed outside the reactor vessel. A primary cooling circulation pump that circulates the coolant inside the furnace vessel is connected by piping. Ultra-small reactors, which have an output scale that is several orders of magnitude smaller than current liquid metal-cooled fast reactors, are being considered in many countries, but they have not been put into practical use because the unit cost of power generation is relatively high due to miniaturization.

【発明が解決しようとする課題】 上記従来の液体金属冷却高速増殖炉のシステムをそのま
ま小型化した場合、システムが複雑となり経済性が著し
く劣ったものとなる。 従って、この発明は、固有の安全性を維持しながら超小
型炉を実現する上で必要な液体金属冷却高速炉の構造並
びに運転制御技術及び運転制御システムの簡略化を行な
うことを目的とする。
[Problems to be Solved by the Invention] If the conventional liquid metal cooled fast breeder reactor system described above is miniaturized as it is, the system will become complicated and the economical efficiency will be significantly lower. Therefore, it is an object of the present invention to simplify the structure, operation control technology, and operation control system of a liquid metal cooled fast reactor necessary to realize a micro reactor while maintaining inherent safety.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するためのこの発明の液体金属冷却高速
炉は、原子炉容器内に環状の径方向反射体が冷却材中に
配置されて固定されていると共に、前記径方向反射体の
環内を貫通可能な炉心及び該炉心を挟んで接合する軸方
向に冷却材流路を形成した上下2つの軸方向反射体と、
上部軸方向反射体の上端に下端が接続され、両端間の所
定位置の周面に冷却材流通孔を開けた構造の出力ユニッ
ト管であって、前記径方向反射体の環内に前記炉心に上
端を固定した下部軸方向反射体の下端を挿入しても上端
が前記原子炉容器外に突出する長さの出力ユニット管と
を有することを特徴上する。
A liquid metal cooled fast reactor of the present invention for achieving the above object includes an annular radial reflector disposed in a coolant and fixed in a reactor vessel, and a ring-shaped radial reflector within the ring of the radial reflector. a reactor core capable of penetrating the reactor core; and two upper and lower axial reflectors having coolant flow passages formed in the axial direction and joined to sandwich the reactor core;
An output unit tube having a structure in which a lower end is connected to an upper end of an upper axial reflector, and a coolant flow hole is formed in a circumferential surface at a predetermined position between both ends, the output unit tube having a structure in which a coolant flow hole is formed in a circumferential surface at a predetermined position between the two ends, and the output unit tube is connected to the reactor core within a ring of the radial reflector. The output unit tube has a length such that the upper end thereof protrudes outside the reactor vessel even when the lower end of the lower axial reflector whose upper end is fixed is inserted.

【作 用】[For use]

上記構成のこの発明の液体金属冷却高速炉においては、
径方向反射体の環内に挿入した炉心の配置位置により、
炉心がこれを挟んで接合する上下2つの軸方向反射体と
環状の径方向反射体によって囲まれる囲まれ具合が変り
、この囲まれ具合に応じて炉心から出力される熱エネル
ギー量が変り、炉の出力は臨界一定格出力−最大出力一
定格出力一部分出カースクラムと順次変化する。 冷却材は、自然対流又は取付けられた循環ポンプにより
、通常、軸方向反射体に形成された軸方向の冷却材流路
及び炉心の隙間を通って原子炉容器内の底から上に向か
って流れ、出力ユニット管の冷却材流通孔を通って原子
力容器内又は循環ポンプが原子力容器の外側に設けられ
た場合の原子力容器、循環ポンプ、及び両者を接続する
配管によって形成された1次冷却系ループを循環する。 炉心の反応度は、上述した炉の出力に対応する炉心の径
方向反射体に対する配置位置及び炉心温度によって変り
、炉心温度が高くなるに従って抑制され、炉の出力を減
少させる性質を有する。従って、炉心の隙間を通って流
れる冷却材の温度が高くなったり、炉心流量を減少した
場合には、−次的に炉心温度が高くなるが、これにより
炉心の反応度が抑制されて炉心温度が元に戻り、冷却材
の吸熱容量、即ち、炉の出力が減少する。冷却材の温度
が低くなったり、炉心流量を減少した場合にはこの逆で
ある。 加えて、冷却材の温度が高くなった場合には出力ユニッ
ト管等が熱膨張し、原子炉運転中の出力ユニット管の上
端は固定されているので炉心は原子炉容器の底に向かっ
て移動する。他方、径方向反射体は原子炉容器に固定さ
れているので熱膨張により上方に移動し、炉心は径方向
反射体の環内に相対的に深く挿入される。従って両者の
相対的移動により炉心の反応度はやや低下する。
In the liquid metal cooled fast reactor of the present invention having the above configuration,
Depending on the position of the core inserted within the ring of the radial reflector,
The extent to which the reactor core is surrounded by the two upper and lower axial reflectors and the annular radial reflector that are joined to each other changes, and the amount of thermal energy output from the core changes depending on this surrounding condition. The output changes sequentially as critical - rated output - maximum output - rated output - partial output Kerr scram. Coolant flows from the bottom up within the reactor vessel, typically through axial coolant channels formed in the axial reflector and through gaps in the core, either by natural convection or by installed circulation pumps. , the primary cooling system loop formed by the nuclear vessel, the circulation pump, and the piping connecting the two when the circulation pump is installed inside the nuclear vessel or outside the nuclear vessel through the coolant distribution hole of the output unit pipe. cycle. The reactivity of the reactor core varies depending on the position of the reactor core with respect to the radial reflector corresponding to the above-described reactor output and the core temperature, and has the property of being suppressed as the core temperature increases, reducing the reactor output. Therefore, if the temperature of the coolant flowing through the core gap increases or the core flow rate is reduced, the core temperature will increase, but this will suppress the core reactivity and reduce the core temperature. returns to normal, and the heat absorption capacity of the coolant, ie, the output of the furnace, decreases. The opposite is true if the coolant temperature is lowered or the core flow rate is reduced. In addition, when the temperature of the coolant increases, the output unit tubes, etc. will thermally expand, and since the upper end of the output unit tubes is fixed during reactor operation, the reactor core will move toward the bottom of the reactor vessel. do. On the other hand, since the radial reflector is fixed to the reactor vessel, it moves upward due to thermal expansion, and the core is inserted relatively deeply into the annulus of the radial reflector. Therefore, the reactivity of the core decreases slightly due to the relative movement of the two.

【実施例】【Example】

以下に実施例を示し、この発明を更に具体的に説明する
。 第1図にこの発明の液体金属冷却高速炉の1例を示す。 この液体金属冷却高速炉は、原子炉容器1及び出力ユニ
ット2を含んで構成されている。 この内の原子炉容器1内には溶融金属、例えばNa又は
NfiKから成る冷却材3が収容されている。また、こ
の原子炉容器1内の近底部に環状の径方向反射体4が支
持体5を介して固定されている。この支持体5は径方向
反射体4の環と同一内径の環状支持板5aと開放管5b
とから成り、環状支持板5aが原子炉容器1内に接合さ
れ、環状支持板5aに開放管5bが下向きに、径方向反
射体4が上向きに相互の内縁を合わせて接合され、また
、環状支持板5aには冷却材3を流通可能とする複数の
穴5Cが開けられている。更に、原子炉容器1は、その
底端が原子炉容器1を囲むピット6に固定され、その上
部位置のピット6から突出する振れ止め7により横揺れ
が防止されるようになっている。 他方、出力ユニット2においては、径方向反射体4の環
内を貫通可能の径の炉心8及び炉心8を挟んで接合する
軸方向に冷却材3の複数の流路9cを形成した2つの軸
方向反射体9a。 9bの一方の端縁に炉心8及び軸方向反射体9a、9b
と同径の出力ユニット管lOの下端が接続されている。 。この出力ユニット管10は径方向反射体4の環内に軸
方向反射体9bの下端を挿入しても上端が原子炉容器外
に突出する長さとなっおり、また、この際の冷却材3中
の液面近くに位置する所定位置の周面に冷却材3を出力
ユニット管10の内側から外側へ流通可能とする複数の
流通孔10c及び冷却材3上に位置する所定位置の周囲
に上記冷却材3の流通をスムーズに行なうためのベント
孔10dが開けられている。また、この出力ユニット管
10内には上端から下端に向けて冷却材3の流路11c
を形成した2次系ヒートパイプ11が、軸方向反射体9
aと2次系ヒートパイプ11との間には循環ポンプ12
が配設され、出力ユニット管IOの上端は遮蔽体13に
よって気密に覆われている。更に出力ユニット管IOの
上端外周部位にはその上端面を境として下側の区画に熱
電対変換器14及び上側の区画に作動流体が流通する放
熱部16が接合され、また側区画を貫通する放熱系ヒー
トパイプ17が設けられている。以上の構成部材から成
る出力ユニット2は、放熱部I6の上端において図示し
ない駆動系に接続され、また、原子炉容器1の上端部は
、出力ユニット2が上下動可能な貫通口を有する遮蔽プ
ラグ18により封栓されている。 また、上記構成部材において、例えば、炉心8で使用さ
れる燃料としてはU、Puの混合酸化物又はUNが挙げ
られ、反射体4,9の材質としては例えばBe又はBe
Oが使用される。 ヒートパイプ11.17、特に放熱系ヒートパイプ17
の材質は、作動流体がCeの場合にはTi又はNb−Z
rが適当であり、この場合、通常、450〜900℃の
温度範囲で適用される。また、作動流体がKの場合には
NIが適当であり、この場合、通常、5flO−t(1
00℃の温度範囲で適用される。 また、原子炉容器1の内壁、支持体5、出力ユニット管
10等の冷却材3と接触し、かつ、上記に挙げられた構
成部材を除くものの材質としては、例えばステンレス鋼
が使用され、遮蔽体13の材質としては、L iH,8
4C等の中性子遮蔽材及びW等のγ線遮蔽材が使用され
る。 上記構成の液体金属冷却高速炉において、冷却材3に使
用されるNa、NaK等の溶融金属は、原子炉容器1の
周囲に電気ヒータを巻いたり、あるいは原子炉容器1と
ピット6との間の隙間に高温のガスを流したりなどして
融点以上の温度に加熱した状態で注入する。次いで原子
炉容器1内に出力ユニット2を設置し、原子炉容器l内
の冷却材3を自然対流又は循環ポンプI2により循環す
る。この冷却材3の循環は、第1図の矢印に従って行な
われる。即ち、冷却材3は、支持体5の開放管5bの管
内に流入し、順次、軸方向反射体9aの流路9c、炉心
8の隙間、他方の軸方向反射体9bの流路9Cを経て出
力ユニット管lOの管内を上向きに流れ、次いで流通孔
10cから管外に流出して出力ユニット管IOと原子炉
容器1との間を下向きに流れ、支持体5の環状支持板5
aに開けられた穴5Cを通って再び開放管5bの管内に
流入する。 原子炉を起動するには、出力ユニット2をその下端に位
置する軸方向反射体9bから徐々に径方向反射体4に挿
入する。すると径方向反射体4と炉心8の配置が徐々に
変り、炉心8が2つの軸方向反射体9a、9bと径方向
反射体4とによって囲まれるようになり(第2図a)こ
の液体金属冷却高速炉の出力は臨界に達する。更に出力
ユニット2の下端に位置する軸方向反射体9aが径方向
反射体4中に深く挿入されるに従い、炉の出力が徐々に
上昇し、炉心8が径方向反射体4の中央に位置する(第
2図C)場合、炉の出力は最大となる。この場合、炉の
出力が臨界から最大に変化するまでの途中位置(第2図
b)の定格出力を数lO%上回るが、後述する熱伝達系
の吸放熱過程により対処できる構成となっている。そし
て炉心8が径方向反射体4の中央位置(第2図C)を越
えて更に深く挿入されると、炉の出力は徐々に減少し、
第2図dに示す位置で再び定格出力に達し、次いで第2
図「に示す位置で臨界出力に対応する部分出力に達し1
、炉心8が径方向反射体4を完全に通過する(第2図「
)とスクラ・ムされる。炉心8の反応度に応じて炉心8
で発生した熱は、炉心8の回りで冷却材3により吸熱さ
れ、炉心8回りの冷却材3の温度を上昇させる。そして
高温となった冷却材3は流れに沿って出力ユニット管l
O中の2次系ヒートパイプ11を加熱し、2次系ヒート
パイプ11により吸熱された後、出力管IOの流通孔1
0eから外側へ流出される。他方2次系ヒートパイプ1
1により吸熱された熱は、2次系ヒートパイプ11中を
伝わってその上端まで伝達され、熱雷対変換器14によ
りその1部が電気エネルギーに変換(変換効率7%程度
)され、残部は放熱系ヒートパイプ17を伝わって放熱
部16にお咬1て冷却される。そして、上記熱伝達系の
吸放熱過程で生じた熱電対変換器14の電気エネルギー
が炉から出力されて利用されることとなる。この炉の出
力の自己制御性は、炉心8の燃料にU。 Puの混合酸化物又はUNを使用した場合、それぞれの
ドツプラー効果によるフィードバック効果が期待できる
。また、炉心8で冷却材3の温度が高くなり過ぎても、
既に説明したように原子炉容器1及び出力ユニット2が
熱膨張して炉心8は径方向反射体4に対して中央から下
方に向かって移動するので前記冷却材3の温度に加え、
この炉心8の径方向反射体4に対する配置位置によって
も炉心8の反応度、従って炉の出力が抑制されて調節さ
れる。 以上に示したように第1図に示す液体金属冷却高速炉は
固有の安全性を有する。例えば循環ポンプ12が停止し
ても冷却材3は自然循環により支障なく循環し、かつ駆
動系の故障によりスクラムが不可能となり、炉心8の温
度がある程度上昇しても冷却材3が高温となり、炉心8
の反応度が減少し、炉心8の温度は許容値以下に押える
ことができる。 この様にして炉心8が例えば7〜8年の年月の後にスク
ラムされた後には、出力ユニット2を原子炉容器1から
引抜き、新たな出力ユニット2と交換することにより炉
心8の燃料交換を行なうことができ、出力ユニット2内
の構成部材の保守補修の際にも出力ユニット2全体を引
抜き、付着している冷却材3からの放射線を遮蔽するた
め不活性ガス雰囲気の遮蔽容器に入れて運搬し、出力ユ
ニット2内の構成部材の保守補修が行なわれる。 以上にこの発明の液体金属冷却高速炉の1例を示したが
、この炉は、例えば炉心の規模に応じて循環ポンプ■2
のない構成とすることもでき、また、炉の出力として熱
エネルギーのみを利用する場合には熱電対変換器14及
び放熱系ヒートパイプ17を省略し、出力ユニット管1
(lの上端外周部位に2次系ヒートパイプ11の上端が
位置する構造にすることができる。また、出力管ユニッ
ト2に内蔵した2次系ヒートパイプ11及び循環ポンプ
12を削除し、第3図aに示す様に原子炉容器1の外部
に循環ポンプ12を介して熱交換器20を1次冷却系ル
ープを形成する配管19a。 19b、 19cにより接続したり、あるいは第3図す
に示すように原子炉容器1内の出力ユニット管の外部に
それぞれ循環ポンプ12及び熱交換器20を配設しても
良い。更に炉心の規模により第3図a及びbに示す炉か
ら循環ポンプ12を除いた構成とすることができるのは
勿論である。また、炉心がある程度大型化した場合には
第3図Cに示すように原子炉容器1の底に炉心8及び軸
方向反射体9a、9bの両者の隙間に軸方向に沿って出
し入れ可能な配置位置に制御棒2Iを必要な本数立設固
定しても良い。なお第3図Cの炉において、制御棒21
は制御棒取付台22に取付けられ、この制御棒取付台2
2が原子炉容器1の底に設けられた制御棒取付台受23
に着脱自在に取付けられ、炉心8に制御棒案内管24が
取付けられ、この制御棒案内管24は少なくとも定格運
転中に完全に制御棒21が挿入され、これ等により出力
ユニット2引抜き後の制御棒21の交換が行なえ、地震
時の制御棒挿入性に問題の生じない構造となっている。 この様にこの発明の液体金属冷却高速炉は、特許請求の
範囲に記載された範囲内で、炉心の規模炉の利用途等に
より、様々な変形が可能である。 【発明の効果] 以上の説明から明らかなように、この発明によれば、従
来の液体金属冷却高速炉に必要とされていた制御棒駆動
機構及び燃料交換装置を省略でき、更に炉心の規模等に
より循環ポンプ等をも省略できるため、液体金属冷却高
速炉の小型化のために必要な簡略化が行なえ、更に固有
の安全性にも優れており、将来の超小型固有安全炉を実
現する上で適当な構造の液体金属冷却高速炉が提供され
る。
EXAMPLES The present invention will be explained in more detail with reference to Examples below. FIG. 1 shows an example of the liquid metal cooled fast reactor of the present invention. This liquid metal cooled fast reactor includes a reactor vessel 1 and an output unit 2. Inside the reactor vessel 1, a coolant 3 made of molten metal, for example Na or NfiK, is accommodated. Further, an annular radial reflector 4 is fixed to the near bottom of the reactor vessel 1 via a support 5 . This support body 5 includes an annular support plate 5a having the same inner diameter as the ring of the radial reflector 4, and an open tube 5b.
An annular support plate 5a is joined to the inside of the reactor vessel 1, an open tube 5b is joined to the annular support plate 5a facing downward, and a radial reflector 4 is joined to the radial reflector 4 facing upward with their inner edges aligned, and A plurality of holes 5C are formed in the support plate 5a to allow the coolant 3 to flow therethrough. Further, the bottom end of the reactor vessel 1 is fixed to a pit 6 surrounding the reactor vessel 1, and a steady rest 7 protruding from the pit 6 at an upper position prevents the reactor vessel 1 from rolling. On the other hand, the output unit 2 includes a core 8 having a diameter that can penetrate the inside of the ring of the radial reflector 4, and two shafts that are joined with the core 8 in between and have a plurality of flow paths 9c for the coolant 3 in the axial direction. Directional reflector 9a. The core 8 and the axial reflectors 9a, 9b are attached to one edge of the core 9b.
The lower end of the output unit pipe 1O having the same diameter as 1 is connected. . The output unit pipe 10 has a length such that its upper end protrudes outside the reactor vessel even if the lower end of the axial reflector 9b is inserted into the ring of the radial reflector 4. A plurality of circulation holes 10c that allow the coolant 3 to flow from the inside to the outside of the output unit pipe 10 on the circumferential surface of a predetermined position located near the liquid surface of the A vent hole 10d is provided to allow the material 3 to flow smoothly. In addition, a flow path 11c for the coolant 3 is provided in the output unit pipe 10 from the upper end to the lower end.
The secondary heat pipe 11 formed with the axial reflector 9
A circulation pump 12 is installed between the a and the secondary heat pipe 11.
is provided, and the upper end of the output unit pipe IO is hermetically covered by a shield 13. Furthermore, a thermocouple converter 14 is connected to the upper end of the output unit pipe IO in the outer circumferential region of the upper end thereof, and a thermocouple converter 14 is connected to the lower section of the output unit pipe IO as a boundary, and a heat dissipation section 16 through which the working fluid flows is connected to the upper section. A heat dissipation system heat pipe 17 is provided. The output unit 2 made up of the above components is connected to a drive system (not shown) at the upper end of the heat dissipation part I6, and the upper end of the reactor vessel 1 is connected to a shielding plug having a through hole through which the output unit 2 can move up and down. It is sealed by 18. Further, in the above-mentioned structural members, for example, the fuel used in the core 8 may be a mixed oxide of U or Pu, or UN, and the material of the reflectors 4 and 9 may be, for example, Be or Be.
O is used. Heat pipe 11.17, especially heat dissipation system heat pipe 17
The material of is Ti or Nb-Z when the working fluid is Ce.
r is suitable, in which case it is usually applied at a temperature range of 450-900°C. Furthermore, when the working fluid is K, NI is suitable; in this case, usually 5flO-t(1
Applicable in the temperature range of 00°C. In addition, the materials that come into contact with the coolant 3, such as the inner wall of the reactor vessel 1, the support body 5, the output unit tube 10, and other than the above-mentioned structural members, are made of, for example, stainless steel. The material of the body 13 is L iH,8
Neutron shielding materials such as 4C and gamma ray shielding materials such as W are used. In the liquid metal cooled fast reactor having the above configuration, the molten metal such as Na and NaK used as the coolant 3 is heated by wrapping an electric heater around the reactor vessel 1 or between the reactor vessel 1 and the pit 6. It is injected after being heated to a temperature above the melting point, such as by flowing a high-temperature gas through the gap between the two. Next, an output unit 2 is installed in the reactor vessel 1, and the coolant 3 in the reactor vessel 1 is circulated by natural convection or by a circulation pump I2. This circulation of the coolant 3 is performed according to the arrows in FIG. That is, the coolant 3 flows into the open tube 5b of the support body 5, and sequentially passes through the channel 9c of the axial reflector 9a, the gap in the core 8, and the channel 9C of the other axial reflector 9b. It flows upward in the output unit pipe IO, then flows out of the pipe from the flow hole 10c, flows downward between the output unit pipe IO and the reactor vessel 1, and flows through the annular support plate 5 of the support body 5.
It flows into the open tube 5b again through the hole 5C made in the hole 5C. To start the reactor, the power unit 2 is gradually inserted into the radial reflector 4 starting with the axial reflector 9b located at its lower end. Then, the arrangement of the radial reflectors 4 and the core 8 gradually changes, and the core 8 is now surrounded by the two axial reflectors 9a, 9b and the radial reflector 4 (Fig. 2a). The output of the cooled fast reactor reaches criticality. Furthermore, as the axial reflector 9a located at the lower end of the output unit 2 is inserted deeper into the radial reflector 4, the output of the furnace gradually increases, and the core 8 is located at the center of the radial reflector 4. (Fig. 2C), the furnace output is maximum. In this case, the furnace output exceeds the rated output by several 10% at the intermediate position (Fig. 2b) before changing from critical to maximum, but the configuration is such that this can be dealt with by the heat absorption and release process of the heat transfer system, which will be described later. . As the core 8 is inserted deeper beyond the center position of the radial reflector 4 (FIG. 2C), the power of the reactor gradually decreases.
The rated output is reached again at the position shown in Figure 2d, and then the second
The partial power corresponding to the critical power is reached at the position shown in the figure 1.
, the core 8 completely passes through the radial reflector 4 (see Figure 2).
) and is scrammed. Core 8 depending on the reactivity of core 8
The heat generated is absorbed by the coolant 3 around the core 8, increasing the temperature of the coolant 3 around the core 8. The high temperature coolant 3 flows along the flow into the output unit pipe l.
After the secondary heat pipe 11 in O is heated and heat is absorbed by the secondary heat pipe 11, the flow hole 1 of the output pipe IO is heated.
It flows out from 0e. On the other hand, secondary heat pipe 1
The heat absorbed by 1 is transmitted through the secondary heat pipe 11 to its upper end, and a part of it is converted into electrical energy by the thermal lightning pair converter 14 (conversion efficiency is about 7%), and the rest is It is transmitted through the heat dissipation system heat pipe 17 and cooled by the heat dissipation part 16. Then, the electrical energy of the thermocouple converter 14 generated during the heat absorption/dissipation process of the heat transfer system is outputted from the furnace and used. The self-controllability of the output of this reactor is based on the fuel in the core 8. When a mixed oxide of Pu or UN is used, a feedback effect due to the Doppler effect of each can be expected. Furthermore, even if the temperature of the coolant 3 in the core 8 becomes too high,
As already explained, as the reactor vessel 1 and the output unit 2 thermally expand and the reactor core 8 moves downward from the center relative to the radial reflector 4, in addition to the temperature of the coolant 3,
The reactivity of the core 8 and, therefore, the output of the reactor are suppressed and regulated by the arrangement position of the core 8 with respect to the radial reflector 4. As shown above, the liquid metal cooled fast reactor shown in FIG. 1 has inherent safety. For example, even if the circulation pump 12 stops, the coolant 3 continues to circulate without any problem due to natural circulation, and a drive system failure makes scram impossible, and even if the temperature of the core 8 rises to a certain extent, the coolant 3 becomes high temperature. core 8
The reactivity of the reactor core 8 is reduced, and the temperature of the reactor core 8 can be kept below the permissible value. After the reactor core 8 has been scrammed in this way, for example after 7 to 8 years, the refueling of the reactor core 8 can be carried out by pulling out the power unit 2 from the reactor vessel 1 and replacing it with a new power unit 2. During maintenance and repair of the components inside the output unit 2, the entire output unit 2 can be pulled out and placed in a shielded container with an inert gas atmosphere to shield radiation from the coolant 3 attached. The output unit 2 is transported, and the components inside the output unit 2 are maintained and repaired. An example of the liquid metal cooled fast reactor of the present invention has been shown above.
In addition, when only thermal energy is used as the output of the furnace, the thermocouple converter 14 and the heat dissipation system heat pipe 17 can be omitted, and the output unit pipe 1
(It is possible to have a structure in which the upper end of the secondary heat pipe 11 is located at the outer circumferential portion of the upper end of the As shown in Figure a, the heat exchanger 20 is connected to the outside of the reactor vessel 1 via the circulation pump 12 through piping 19a, 19b, 19c forming a primary cooling system loop, or as shown in Figure 3. As shown in FIG. Of course, it is possible to have a configuration in which the reactor core 8 and axial reflectors 9a and 9b are removed from the bottom of the reactor vessel 1, as shown in FIG. The required number of control rods 2I may be fixed upright in a position where they can be taken in and out along the axial direction in the gap between the two.In addition, in the furnace shown in FIG.
is attached to the control rod mount 22, and this control rod mount 2
2 is a control rod mount support 23 provided at the bottom of the reactor vessel 1.
A control rod guide tube 24 is attached to the reactor core 8, and the control rods 21 are completely inserted into the control rod guide tube 24 at least during rated operation. The structure allows the rod 21 to be replaced and there is no problem with inserting the control rod during an earthquake. In this manner, the liquid metal cooled fast reactor of the present invention can be modified in various ways within the scope of the claims, depending on the use of the core scale reactor, etc. [Effects of the Invention] As is clear from the above description, according to the present invention, the control rod drive mechanism and fuel exchange device required for conventional liquid metal cooled fast reactors can be omitted, and the scale of the reactor core can be reduced. Since circulation pumps, etc. can be omitted, the simplification necessary for downsizing liquid metal-cooled fast reactors can be achieved, and it also has excellent inherent safety, which will help realize future ultra-small inherently safe reactors. A liquid metal cooled fast reactor of suitable construction is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の液体金属冷却高速炉の1例を示す
説明図、 第2図aないしrは、炉の出力が臨界からスクラムに至
るまでのこの発明に係る炉心、の配置を順次示す説明図
、 第3図aないしCは、それぞれこの発明の液体金属冷却
高速炉の別の1例を示す説明図である。 l・・・原子炉容器、2・・・出力ユニット、3・・・
冷却材、4・・・径方向反射体、8・・・炉心、9・・
・軸方向反射体、10・・・出力ユニット管、11・・
・2次系ヒートパイプ、12・・・循環ポンプ、14・
・・熱電対変換器、17・・・放熱系ヒートパイプ、2
0・・・熱交換器、21・・・制御棒、9c、llc・
・・冷却材流路、LOc・・・冷却材流通孔。 )(2川 リC1 l・・・原子炉容器 2・・・出力ユニ1ト 3・・・冷却祠 ll・・・径ノr1句j5f−Q4 (本8・・・炉心 9・・・軸)l向板q(体 10・・・出力−1,ニツト管 11・・・2次系ヒートバイア 12・・・■環ボン1 1/I・・・熱電対交換2ii 17・・・放熱系ヒートバイ1 20・・・熱交換器 21・・・制御ツ1+ 11+・・・・冷却t4流路 lO(:・・・冷却(イ流通孔 !を勤tへ
FIG. 1 is an explanatory diagram showing one example of the liquid metal cooled fast reactor of the present invention, and FIGS. 2 a to 2 r sequentially show the arrangement of the reactor core according to the present invention as the reactor output ranges from critical to scram. The explanatory diagrams shown in FIGS. 3A to 3C are explanatory diagrams each showing another example of the liquid metal cooled fast reactor of the present invention. l...Reactor vessel, 2...Output unit, 3...
Coolant, 4... Radial reflector, 8... Core, 9...
・Axial reflector, 10... Output unit tube, 11...
・Secondary system heat pipe, 12...Circulation pump, 14・
...Thermocouple converter, 17...Radiation system heat pipe, 2
0...Heat exchanger, 21...Control rod, 9c, llc・
...Coolant flow path, LOc...Coolant distribution hole. ) (2 rivers C1 l...Reactor vessel 2...Output unit 13...Cooling shrine ll...Diameter r1 clause j5f-Q4 (Book 8...Core 9...Axis ) l facing plate q (body 10...output -1, knit tube 11...secondary system heat via 12...■ ring bomb 1 1/I...thermocouple exchange 2ii 17...radiation system heat via 1 20...Heat exchanger 21...Control 1+ 11+...Cooling t4 flow path lO(:...Cooling (a)

Claims (1)

【特許請求の範囲】 1、原子炉容器内に環状の径方向反射体が冷却材中に配
置されて固定されていると共に、前記径方向反射体の環
内を貫通可能な炉心及び該炉心を挟んで接合する軸方向
に冷却材流路を形成した上下2つの軸方向反射体と、上
部軸方向反射体の上端に下端が接続され、両端間の所定
位置の周面に冷却材流通孔を開けた構造の出力ユニット
管であって、前記径方向反射体の環内に前記炉心に上端
を固定した下部軸方向反射体の下端を挿入しても上端が
前記原子炉容器外に突出する長さの出力ユニット管とを
有することを特徴とする液体金属冷却高速炉。 2、出力ユニット管内に上端から下端に向けて冷却材流
路を形成した2次系ヒートパイプを配設した請求項1記
載の液体金属冷却高速炉。 3、出力ユニット管の上端外周部位に放熱系ヒートパイ
プ及び熱電対変換器を配設した請求項2記載の液体金属
冷却高速炉。 4、2次系ヒートパイプと軸方向反射体との間に循環ポ
ンプを設けた請求項2又は3記載の液体金属冷却高速炉
。 5、熱交換器を原子炉容器に1次冷却系ループを形成す
る配管により接続した請求項1記載の液体金属冷却高速
炉。 6、熱交換器と原子炉容器との間に循環ポンプを介設し
た請求項5記載の液体金属冷却高速炉。 7、原子炉容器内の出力ユニット管配置位置周辺に熱交
換器を配設した請求項1記載の液体金属冷却高速炉。 8、原子炉容器内の出力ユニット管配置位置周辺に更に
循環ポンプを配設した請求項7記載の液体金属冷却高速
炉。 9、原子炉容器内底部から炉心及び軸方向反射体の両者
の隙間に軸方向に沿って出し入れ可能な配置位置に制御
棒を立設した請求項1ないし8のいずれか1項記載の液
体金属冷却高速炉。
[Scope of Claims] 1. A reactor core in which an annular radial reflector is disposed and fixed in a coolant in a reactor vessel, and the inside of the ring of the radial reflector can be penetrated, and the core There are two upper and lower axial reflectors that form a coolant flow path in the axial direction that are sandwiched and joined, and the lower end is connected to the upper end of the upper axial reflector, and coolant flow holes are formed on the circumferential surface at a predetermined position between both ends. An output unit tube having an open structure, the output unit tube having a length such that its upper end protrudes outside the reactor vessel even if the lower end of a lower axial reflector whose upper end is fixed to the reactor core is inserted into the ring of the radial reflector. A liquid metal cooled fast reactor, characterized in that it has a power unit tube. 2. The liquid metal cooled fast reactor according to claim 1, further comprising a secondary heat pipe having a coolant flow path formed in the output unit tube from the upper end to the lower end. 3. The liquid metal cooled fast reactor according to claim 2, wherein a heat dissipation system heat pipe and a thermocouple converter are disposed at the outer peripheral portion of the upper end of the output unit tube. 4. The liquid metal cooled fast reactor according to claim 2 or 3, further comprising a circulation pump provided between the secondary heat pipe and the axial reflector. 5. The liquid metal cooled fast reactor according to claim 1, wherein the heat exchanger is connected to the reactor vessel by piping forming a primary cooling system loop. 6. The liquid metal cooled fast reactor according to claim 5, further comprising a circulation pump interposed between the heat exchanger and the reactor vessel. 7. The liquid metal cooled fast reactor according to claim 1, further comprising a heat exchanger disposed around the output unit tube arrangement position within the reactor vessel. 8. The liquid metal cooled fast reactor according to claim 7, further comprising a circulation pump disposed around the output unit pipe arrangement position within the reactor vessel. 9. The liquid metal according to any one of claims 1 to 8, wherein the control rod is erected at a position where it can be taken in and out along the axial direction from the inner bottom of the reactor vessel into the gap between both the reactor core and the axial reflector. Cooled fast reactor.
JP1028423A 1989-02-07 1989-02-07 Liquid metal cooling fast reactor Expired - Lifetime JPH0715503B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1028423A JPH0715503B2 (en) 1989-02-07 1989-02-07 Liquid metal cooling fast reactor
FR9001307A FR2642888A1 (en) 1989-02-07 1990-02-05 Fast reactor cooled with liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028423A JPH0715503B2 (en) 1989-02-07 1989-02-07 Liquid metal cooling fast reactor

Publications (2)

Publication Number Publication Date
JPH02206794A true JPH02206794A (en) 1990-08-16
JPH0715503B2 JPH0715503B2 (en) 1995-02-22

Family

ID=12248250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028423A Expired - Lifetime JPH0715503B2 (en) 1989-02-07 1989-02-07 Liquid metal cooling fast reactor

Country Status (2)

Country Link
JP (1) JPH0715503B2 (en)
FR (1) FR2642888A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509467A (en) * 2008-11-17 2012-04-19 ニュースケール パワー インコーポレイテッド Through-flow integrated reactor vessel reflector
JP2012154644A (en) * 2011-01-21 2012-08-16 Toshiba Corp Heat transportation device of reactor container and method of the same
JP2013519094A (en) * 2010-02-04 2013-05-23 ジェネラル アトミックス Modular fission waste converter
CN114530264A (en) * 2022-01-04 2022-05-24 中国原子能科学研究院 Space heap

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404954B1 (en) * 2012-10-23 2014-06-12 국립대학법인 울산과학기술대학교 산학협력단 Method Of Nuclear Corium Cooling Using Liquid Metal Layer, And Nuclear Corium Cooling System Using The Same
CN114530263B (en) * 2022-01-04 2024-03-22 中国原子能科学研究院 Nuclear reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385759A (en) * 1967-05-08 1968-05-28 Atomic Energy Commission Usa Fast burst neutronic reactor
US3664923A (en) * 1968-09-11 1972-05-23 Thomas J Connolly Fast neutronic reactor utilizing plutonium 240 fuel
DE3579588D1 (en) * 1984-09-05 1990-10-11 Georg Vecsey METHOD FOR PASSIVE TRANSFER OF HEAT FROM CORE REACTORS AND DEVICE FOR OPERATING THIS METHOD.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509467A (en) * 2008-11-17 2012-04-19 ニュースケール パワー インコーポレイテッド Through-flow integrated reactor vessel reflector
US10636529B2 (en) 2008-11-17 2020-04-28 Nuscale Power, Llc Reactor vessel reflector with integrated flow-through
JP2013519094A (en) * 2010-02-04 2013-05-23 ジェネラル アトミックス Modular fission waste converter
US9767926B2 (en) 2010-02-04 2017-09-19 General Atomics Modular nuclear fission waste conversion reactor
JP2012154644A (en) * 2011-01-21 2012-08-16 Toshiba Corp Heat transportation device of reactor container and method of the same
CN114530264A (en) * 2022-01-04 2022-05-24 中国原子能科学研究院 Space heap
CN114530264B (en) * 2022-01-04 2024-02-20 中国原子能科学研究院 Space pile

Also Published As

Publication number Publication date
JPH0715503B2 (en) 1995-02-22
FR2642888A1 (en) 1990-08-10
FR2642888B1 (en) 1993-06-04

Similar Documents

Publication Publication Date Title
US11145424B2 (en) Direct heat exchanger for molten chloride fast reactor
US10991468B2 (en) Load-following nuclear reactor system using thermal expansion-based neutron reflector movement and fuel assembly interval adjustment mechanisms and liquid metal primary coolant
Yetisir et al. Development and integration of Canadian SCWR concept with counter-flow fuel assembly
KR101930615B1 (en) Small load-following nuclear power generation system using heat deformation of reflector caused by thermal expansion phenomenon
US20150117589A1 (en) Molten Salt Reactor
JPS62265597A (en) Auxiliary cooling system of radiating vessel
JP6395802B2 (en) Reactor system and method
CN112102972B (en) Reactor core heat transfer scheme for high-power heat pipe reactor
JP2021092566A (en) Liquid metal cooling reactor with fully passive residual force removal (dhr) system
US3830695A (en) Nuclear reactor
JPH02206794A (en) Liquid-metal cooled fast reactor
Raqué et al. Design and 1D analysis of the safety systems for the SCWR fuel qualification test
US3031388A (en) Fuel element for nuclear reactors
US20080159465A1 (en) Fast reactor
JP2023055218A (en) Liquid metal cooled nuclear reactor incorporating completely passive decay heat removal (dhr) system with modular cold source
JP5838511B2 (en) Reactor
JP3524884B2 (en) Fast breeder reactor
JP2015072223A (en) Nuclear reactor
Pitts et al. Conceptual design of a 10-MWe nuclear Rankine system for space power
JP2022509725A (en) Control rod drive mechanism with heat pipe cooling
US20240170168A1 (en) Solid-state fluid thermal bonded heat pipe micro-reactor
JP2002303691A (en) Solid-cooled reactor
JP6650935B2 (en) System, apparatus and method for passive decay heat transport
KR20230160291A (en) nuclear reactor and fuel
JPH05281380A (en) Nuclear fuel channel and inherent safety water cooling tube reactor