JPS62188994A - Thermal shielding device for fast breeder reactor - Google Patents

Thermal shielding device for fast breeder reactor

Info

Publication number
JPS62188994A
JPS62188994A JP61030133A JP3013386A JPS62188994A JP S62188994 A JPS62188994 A JP S62188994A JP 61030133 A JP61030133 A JP 61030133A JP 3013386 A JP3013386 A JP 3013386A JP S62188994 A JPS62188994 A JP S62188994A
Authority
JP
Japan
Prior art keywords
coolant
reactor vessel
low
temperature
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030133A
Other languages
Japanese (ja)
Inventor
三郎 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61030133A priority Critical patent/JPS62188994A/en
Publication of JPS62188994A publication Critical patent/JPS62188994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷却材に液体金属ナトリウムなどを使用する
高速増殖炉の熱遮蔽装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat shielding device for a fast breeder reactor that uses liquid metal sodium or the like as a coolant.

〔発明の技術的背景〕[Technical background of the invention]

一般に高速増殖炉は液体金属ナトリウム等の液体金属を
冷却材として使用する。液体金属の冷却材は熱伝達能力
がきわめて大きいため、この冷却材に接している原子炉
容器周壁の温度は冷却材の温度変化に迅速に追従する。
Generally, fast breeder reactors use liquid metal, such as liquid metal sodium, as a coolant. Since the liquid metal coolant has an extremely large heat transfer capacity, the temperature of the reactor vessel peripheral wall that is in contact with the coolant quickly follows the temperature change of the coolant.

しかし、原子炉容器のうち冷却材の液面より上方の部分
では冷却材の温度変化にはさほど迅速に追従することは
ない。このため、原子炉の運転開始時または停止時のよ
うに冷却材の温度が急激に変化すると、原子炉容器周壁
のうち冷却材の液面下の部分と液面上の部分との間に大
きな温度差が生じる。よって、この冷却材の液面近傍の
原子炉周壁には大きな温度勾配が生じて過大な熱応力が
発生し、原子炉停止後の健全性を損うことになる。
However, the portion of the reactor vessel above the liquid level of the coolant does not follow the temperature change of the coolant very quickly. For this reason, when the temperature of the coolant changes rapidly, such as when a reactor starts or shuts down, there is a large gap between the part of the reactor vessel peripheral wall below the coolant liquid level and the part above the liquid level. A temperature difference occurs. Therefore, a large temperature gradient occurs on the reactor peripheral wall near the coolant liquid level, generating excessive thermal stress, which impairs the integrity of the reactor after it is shut down.

そこで、このような事態を回避するため、原子炉容器の
内側に原子炉容器よりやや小径の円筒体を配置し、この
円筒体と原子炉容器内周面との間の同筒空間内に原子炉
容器内の循環ポンプから吐出される低温冷却側の一部を
流通させることにより、炉心の上面から流出した高温の
冷却材が原子炉容器に直接接触しないようにすることが
提案されている。
Therefore, in order to avoid such a situation, a cylindrical body with a diameter slightly smaller than that of the reactor vessel is placed inside the reactor vessel, and atoms are placed in the cylindrical space between this cylindrical body and the inner peripheral surface of the reactor vessel. It has been proposed to circulate a portion of the low-temperature cooling side discharged from a circulation pump inside the reactor vessel so that the high-temperature coolant flowing out from the top surface of the reactor core does not come into direct contact with the reactor vessel.

また、原子炉停止後には崩壊熱により炉心から全出力の
数−の出力があるため、原子炉容器にはこの崩壊熱を除
去するだめの補助冷却系が設けられている。
Furthermore, after the nuclear reactor is shut down, decay heat produces an output equal to the total output from the core, so the reactor vessel is provided with an auxiliary cooling system to remove this decay heat.

〔背景技術の問題点〕[Problems with background technology]

しかしながら上記の熱遮蔽装置では、循環ポンプから吐
出される冷却材の一部を前記円筒体と原子炉容器内面と
の間の円筒空間内に流通させるようにしているため、万
一、循環ポンプがトリ、プした場合などの非常時の際に
は、低温冷却材の流通による原子炉容器周壁の冷却、ひ
いては原子炉容器の健全性確保が困難となる問題があっ
た。また、補助冷却系の冷却器が原子炉容器内に配置さ
れているため、原子炉容器が大形になるという不具合も
あった。
However, in the above heat shielding device, a part of the coolant discharged from the circulation pump is made to flow in the cylindrical space between the cylindrical body and the inner surface of the reactor vessel. In the event of an emergency such as a trip or explosion, there is a problem in that it is difficult to cool the peripheral wall of the reactor vessel through the flow of low-temperature coolant and, by extension, to ensure the integrity of the reactor vessel. Furthermore, since the cooler of the auxiliary cooling system was placed inside the reactor vessel, there was also the problem that the reactor vessel became large.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情にもとづいてなされたもので、
その目的は、循環デンジが万一トリ、プした場合でも原
子炉容器周壁と円筒体との間の冷却材の流通を維持して
原子炉容器周壁部の冷却を行ない、原子炉容器の熱応力
を軽減して原子炉容器の健全性を維持し、さらに、原子
炉容器を大形にすることなしに原子炉停止時の崩壊熱も
除去し得る高速増殖炉の熱遮蔽装置を提供することにあ
る。
The present invention was made based on these circumstances, and
The purpose of this is to maintain the flow of coolant between the reactor vessel circumferential wall and the cylindrical body even in the unlikely event that the circulation reactor is tripped, to cool the reactor vessel circumferential wall, and to reduce thermal stress in the reactor vessel. An object of the present invention is to provide a heat shielding device for a fast breeder reactor that can maintain the integrity of a reactor vessel by reducing the amount of damage caused by the reactor, and can also remove decay heat during reactor shutdown without increasing the size of the reactor vessel. be.

〔発明の概要〕[Summary of the invention]

以上の目的達成のため、本発明の熱遮蔽装置は、原子炉
容器の内周面との間に低温冷却材上昇流路を形成するよ
うに原子炉容器の内側に設けられその上端を原子炉容器
内の冷却材液面よりわずか下方に位置させるとともに、
原子炉容器内の循環ポンプより吐出された低温冷却材の
一部を上記低温冷却材上昇流路内にその下端より流入さ
せる外側円筒体と、この外側円筒体との間に低温冷却材
下降流路を形成するように内側円筒体のさらに内側に設
けられその上端を原子炉容器内の冷却材液面より上方に
位置させるとともに、上記低温冷却材下降流路の下端を
原子炉容器内の低温プレナムに連通させた内側円筒体と
、前記低温冷却材下降流路内の上端部に配設された冷却
配管と、原子炉容器の外部に設けられて前記冷却配管内
に冷却媒体を流通させる冷却機構とを具備して構成され
る。
In order to achieve the above object, the heat shielding device of the present invention is provided inside the reactor vessel so as to form a low-temperature coolant ascending flow path between the inner peripheral surface of the reactor vessel and the upper end of the heat shielding device Located slightly below the coolant liquid level in the container,
An outer cylindrical body allows a portion of the low-temperature coolant discharged from the circulation pump in the reactor vessel to flow into the low-temperature coolant ascending passage from its lower end, and a low-temperature coolant downward flow is formed between the outer cylindrical body and the outer cylindrical body. The lower end of the low-temperature coolant descending flow path is located further inside the inner cylindrical body so as to form a passageway, and its upper end is located above the coolant liquid level in the reactor vessel. an inner cylindrical body communicating with the plenum; a cooling pipe disposed at the upper end of the low-temperature coolant descending flow path; and a cooling pipe disposed outside the reactor vessel to allow a cooling medium to flow through the cooling pipe. It is configured with a mechanism.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を示す。第1図はタンク型高速
増殖炉の概略構成を示し、第2図は原子炉容器の熱遮蔽
設置部周辺を示している。
An embodiment of the present invention will be shown below. FIG. 1 shows a schematic configuration of a tank-type fast breeder reactor, and FIG. 2 shows the vicinity of a heat shield installation part of a reactor vessel.

また第3図は熱遮蔽設置の概略構成を示している。Further, FIG. 3 shows a schematic configuration of the heat shield installation.

第1図に示すように、原子炉のコンクリートケーソン1
を閉鎖するルーフスラブ2には、大小2つの回転シール
ドプラグ3,4が回転可能に載置されている。
As shown in Figure 1, the concrete caisson 1 of the reactor
Two large and small rotary shield plugs 3 and 4 are rotatably mounted on the roof slab 2 that closes the roof slab.

原子炉容器5と、その外側に原子炉容器5との間に所定
の間隔をあけて配置された安全容器6とは前記ルーフス
ラブ2に直接懸架されてコンクリートケーソン1内に収
容されている。そして原子炉容器5内には炉心7および
冷却材(たとえば金属ナトリウム等の液体金属)8が収
容されている。また原子炉容器5内には中間熱交換器9
および循環ポンプ10が収容され、これらは前記ルーフ
スラブ2に支持されている。
The reactor vessel 5 and a safety vessel 6 disposed outside the reactor vessel 5 at a predetermined interval are directly suspended from the roof slab 2 and housed within the concrete caisson 1. A reactor core 7 and a coolant (for example, liquid metal such as metallic sodium) 8 are housed within the reactor vessel 5 . Additionally, an intermediate heat exchanger 9 is installed inside the reactor vessel 5.
and a circulation pump 10, which are supported by the roof slab 2.

そして原子炉容器5内の冷却材8液面とルーフスラブ2
との間は、不活性ガスを封入したカバーガス空間となっ
ている。
The coolant 8 liquid level in the reactor vessel 5 and the roof slab 2
There is a cover gas space filled with inert gas.

前記炉心7には燃料集合体が多数本装荷されている。こ
れは炉心?下部の格子板12に上方より差込まれて下方
より支持されておシ、その格子板12は一部に流通孔1
3mを有する床板13上に載置されている。そして前記
循環ポンプ10の出口14は、格子板12と床板13と
の間に形成されたダイヤグリッドI5に、導通管16を
介して接続されている。
The reactor core 7 is loaded with a large number of fuel assemblies. Is this the core? It is inserted into the lower lattice plate 12 from above and supported from below, and the lattice plate 12 is partially provided with communication holes 1.
It is placed on a floor plate 13 having a length of 3 m. The outlet 14 of the circulation pump 10 is connected to a diagonal grid I5 formed between the grid plate 12 and the floor plate 13 via a conduction pipe 16.

原子炉容器5の内部は隔壁17m、17bによって、高
温プレナム18と低温プレナム19とに区画され、高温
プレナム18には炉心7の上面より流出した高温冷却材
8aを収容して中間熱交換器9の一次冷却材出口21お
よび循環線 ポンプ10の入口22を2ませている。
The inside of the reactor vessel 5 is divided into a high temperature plenum 18 and a low temperature plenum 19 by partition walls 17m and 17b. The primary coolant outlet 21 and the inlet 22 of the circulation line pump 10 are made two.

そして原子炉容器5周壁の内側には次のような熱遮蔽装
置23が設置されている。すなわち、第2図に示すよう
に原子炉容器5周壁の内側には冷却材液面のわずか下方
位置より原子炉容器5周壁の垂直部下端付近までの間に
、原子炉容器5よりやや/」1径の外側円筒体24が設
置され、この外側円筒体24と原子炉容器5周壁との間
には前記床板13の下方空間に連通ずる円筒状の低温冷
却材上昇流路25が形成されている。
A heat shielding device 23 as described below is installed inside the peripheral wall of the reactor vessel 5. In other words, as shown in FIG. 2, there is a space inside the peripheral wall of the reactor vessel 5 from a position slightly below the coolant liquid level to near the vertical lower end of the peripheral wall of the reactor vessel 5. An outer cylindrical body 24 with a diameter of 1 is installed, and a cylindrical low-temperature coolant upward passage 25 communicating with the space below the floor plate 13 is formed between the outer cylindrical body 24 and the peripheral wall of the reactor vessel 5. There is.

そして上記外側円筒体24のさらに内側に、内側円筒体
26が設置されている。この内側円筒体26は上端を冷
却材液面よジやや高めに位置させるとともに、下端を前
記熱交換器9の一時冷却材出口21の上端付近に位置さ
せてお9、外側円筒体24との間に低温冷却材下降流路
27を形成している。なお前記外側円筒体24の下端は
前記床板13に接合支持されておシ、内側円筒体26は
、その下方付近を前記隔壁17mに支持されている。そ
して前記低温冷却材下降流路25の上端部位置には、外
側円筒体24の内周面および内側円筒体26の外周面に
沿う螺旋状の冷却配管28t、28bがそれぞれ配設さ
れている。これら両冷却配管28a。
Further inside the outer cylindrical body 24, an inner cylindrical body 26 is installed. This inner cylindrical body 26 has an upper end located slightly higher than the coolant liquid level, and a lower end located near the upper end of the temporary coolant outlet 21 of the heat exchanger 9, so that it is connected to the outer cylindrical body 24. A low-temperature coolant downward flow path 27 is formed between them. The lower end of the outer cylindrical body 24 is joined and supported by the floor plate 13, and the inner cylindrical body 26 is supported near its lower part by the partition wall 17m. At the upper end of the low-temperature coolant downward flow path 25, spiral cooling pipes 28t and 28b are arranged along the inner circumferential surface of the outer cylindrical body 24 and the outer circumferential surface of the inner cylindrical body 26, respectively. Both of these cooling pipes 28a.

28bは下端部を互いに連通させ、各上端は原子炉容器
5の外部に設けられた冷却機構29に接続されている。
28b have their lower ends communicated with each other, and each upper end is connected to a cooling mechanism 29 provided outside the reactor vessel 5.

そしてこの冷却機構29より供給された冷却媒体(たと
えば空気)が両冷却配管2B&、28b内を流通する構
成となっている。
A cooling medium (for example, air) supplied from this cooling mechanism 29 is configured to flow through both cooling pipes 2B&, 28b.

第3図は冷却機構29の概略構成を示すもので、ポンプ
30によって冷却媒体が空気冷却器31を介して供給配
管32を流通し、低温冷却材下降流路27の上部に配設
された外側の冷却配管28内に導かれる。そしてこの冷
却媒体は外側円筒体24の内周面近傍の冷却材を冷却し
た後、内側冷却配管28b内に流入して内側円筒体26
の外周面近傍の冷却材を冷却する。その後、戻し配管3
3により前記空気冷却器31に流入して除熱および温度
調節がなされ、再び供給配管32を通して冷却配管28
aに導かれる。なお、第3図において符号34は空気冷
却器31に冷却風を供給するプロアで、これは原子炉容
器5の周壁、外側および内側円筒体24゜26の周壁、
並びにそれらの近傍の冷却材の各温度を検出し、かつ、
それらの温度差および周壁部の熱応力を軽減するべく冷
却媒体温度を調節する演算機能を備えている。
FIG. 3 shows a schematic configuration of the cooling mechanism 29, in which a pump 30 causes the cooling medium to flow through the supply pipe 32 via the air cooler 31, and the cooling medium is passed through the supply pipe 32 via the air cooler 31. is guided into the cooling pipe 28 of. After this cooling medium cools the coolant near the inner peripheral surface of the outer cylindrical body 24, it flows into the inner cooling pipe 28b and flows into the inner cylindrical body 26.
to cool the coolant near the outer peripheral surface of the After that, return pipe 3
3, the air flows into the air cooler 31 for heat removal and temperature adjustment, and then passes through the supply pipe 32 again to the cooling pipe 28.
guided by a. In addition, in FIG. 3, the reference numeral 34 is a proar that supplies cooling air to the air cooler 31, which is connected to the peripheral wall of the reactor vessel 5, the peripheral walls of the outer and inner cylindrical bodies 24, 26,
and each temperature of the coolant in their vicinity, and
It is equipped with a calculation function that adjusts the coolant temperature in order to reduce the temperature difference between them and the thermal stress on the peripheral wall.

また、前記冷却機構29の配管中には切換用開閉弁35
.36.37.38.39,40.41およびフィルタ
42が介挿されている。なお、符号43は冷却媒体供給
系である。
In addition, a switching valve 35 is provided in the piping of the cooling mechanism 29.
.. 36, 37, 38, 39, 40, 41 and a filter 42 are inserted. In addition, the code|symbol 43 is a cooling medium supply system.

次に作用を説明する。Next, the action will be explained.

原子炉容器5内の冷却材8の循環サイクルは次の通シで
ある。第1図に示すように炉心7を下方より上方へ通過
する際に核反応熱により加熱される。そしてこのように
加熱された冷却材8&は高温プレナム18より中間熱交
換器9内へその一次冷却材入口20より流入し、ここで
二次冷却材と熱交換して冷却され、冷却された低温冷却
材8bは一次冷却材出口21より低温プレナム19内へ
流出する。さらに、この低温冷却材8bは、循環ポンプ
10内にその人口22より吸込まれ、出口14を通して
炉心7下方のダイヤグリッド15内に吐出され、以下こ
の循環を繰返す。
The circulation cycle of the coolant 8 within the reactor vessel 5 is as follows. As shown in FIG. 1, when passing through the reactor core 7 from the bottom to the top, it is heated by nuclear reaction heat. The thus heated coolant 8& flows from the high temperature plenum 18 into the intermediate heat exchanger 9 through its primary coolant inlet 20, where it exchanges heat with the secondary coolant and is cooled. The coolant 8b flows out from the primary coolant outlet 21 into the low temperature plenum 19. Furthermore, this low-temperature coolant 8b is sucked into the circulation pump 10 from its port 22, and is discharged into the diagonal grid 15 below the core 7 through the outlet 14, and this circulation is repeated thereafter.

また熱遮蔽装置23の作用は次の通シである。The action of the heat shielding device 23 is as follows.

循環ポンプ10の出口よりダイヤグリッド15内に吐出
された冷却材8の一部は、床板13の一部に設けられた
流通孔13aを通って床板13の下方へ流入する。そし
て床板13下方の低温冷却材8bは第2図に矢印で示す
ように原子炉容器5の周壁と外側円筒体24との間の低
温冷却材上昇流路25内にその下方より流入し、外側円
筒体24の上端を回シ込んで、冷却配管28*、28b
に接触しながら低温冷却材下降流路27内を下降する。
A part of the coolant 8 discharged into the diagonal grid 15 from the outlet of the circulation pump 10 flows into the lower part of the floor plate 13 through a communication hole 13a provided in a part of the floor plate 13. The low-temperature coolant 8b below the floor plate 13 flows from below into the low-temperature coolant ascending channel 25 between the peripheral wall of the reactor vessel 5 and the outer cylindrical body 24 as shown by the arrow in FIG. Rotate the upper end of the cylindrical body 24 and connect the cooling pipes 28*, 28b.
The low-temperature coolant descends in the downflow path 27 while contacting the coolant.

そして内側円筒体26の下端を通過した低温冷却材8b
は中間熱交換器9の一次冷却材出口21より流出する低
温冷却材8bと合流し、循環ポンf1oにその人口22
より吸込まれる。そして以上の経路で循環する低温冷却
材8bは、低温冷却材上昇流路25を上昇する際に原子
炉容器5の内周面より除熱する。したがって、原子炉容
器5は高温冷却材8aの熱影響を受けず、その健全性が
維持されることになる。
The low temperature coolant 8b passed through the lower end of the inner cylindrical body 26.
is combined with the low temperature coolant 8b flowing out from the primary coolant outlet 21 of the intermediate heat exchanger 9, and its population 22 is transferred to the circulation pump f1o.
It's more absorbing. The low temperature coolant 8b circulating through the above route removes heat from the inner circumferential surface of the reactor vessel 5 when rising through the low temperature coolant ascending channel 25. Therefore, the reactor vessel 5 is not affected by the heat of the high-temperature coolant 8a, and its integrity is maintained.

また循環ポンプ10がトリップした場合などの非常時に
は低温冷却材上昇流路25および低温冷却材下降流路2
7内における低温冷却材8bの流通が停止してしまい、
原子炉容器5の周壁を冷却することが困難となるが、こ
のような場合には第3図に示す如く冷却機構29の切換
用開閉弁36.3B、40.41を閉弁するとともに、
他の切換開閉弁35,37.39を開弁して冷却媒体を
供給配管35、外側冷却配管28a1内側冷却配管28
b1戻し配管33の経路で循環させる。これによって低
温冷却材下降流路27内上部の冷却材が冷却されるので
、この部分の冷却材の密度が太きくなシ、密度が大きく
なった冷却材は低温冷却材下降流路27内を下降する。
In addition, in an emergency such as when the circulation pump 10 trips, the low-temperature coolant ascending channel 25 and the low-temperature coolant descending channel 2
The flow of low-temperature coolant 8b in 7 has stopped,
Although it becomes difficult to cool the peripheral wall of the reactor vessel 5, in such a case, as shown in FIG. 3, the switching valves 36.3B and 40.41 of the cooling mechanism 29 are closed, and
The other switching valves 35, 37, and 39 are opened to supply cooling medium to the pipe 35, the outer cooling pipe 28a1, the inner cooling pipe 28
It is circulated through the path of the b1 return pipe 33. As a result, the coolant in the upper part of the low-temperature coolant downflow path 27 is cooled, so the density of the coolant in this area is not thick, and the coolant with increased density flows inside the low-temperature coolant downflow path 27. descend.

このため、低温冷却材上昇流路25内の冷却材は外側円
筒体24の上端を回シ込んで低温冷却材下降流路27に
連続的に流入するようになシ、低温冷却材上昇流路25
および低温冷却材下降流路27内の冷却材の流通は維持
される。このようにして、循環ポンプ1゜のトリ、プ時
においても原子炉容器6の冷却が行なわれ、原子炉容器
5の健全性が確保されることになる。
Therefore, the coolant in the low-temperature coolant ascending flow path 25 passes through the upper end of the outer cylindrical body 24 and continuously flows into the low-temperature coolant descending flow channel 27. 25
And the flow of the coolant in the low temperature coolant downflow path 27 is maintained. In this way, the reactor vessel 6 is cooled even when the circulation pump 1° is tripped, and the integrity of the reactor vessel 5 is ensured.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

たとえば原子炉停止時における冷却材の循環経路は異な
らせてもよい。
For example, the circulation path of the coolant during nuclear reactor shutdown may be different.

また冷却配管28m、28bは必ずしも螺旋状にする必
要はない。要は低温冷却材下降流路27内の上端部に配
設されるものであればよく、たとえば蛇行状としてもよ
い。また冷却配管は必ずしも外側冷却配管と内側冷却配
管とからなる二重配管構造とする必要はない。
Further, the cooling pipes 28m and 28b do not necessarily have to be spirally shaped. In short, it is sufficient that it is disposed at the upper end of the low-temperature coolant descending flow path 27, and may have a meandering shape, for example. Further, the cooling pipe does not necessarily have to have a double pipe structure consisting of an outer cooling pipe and an inner cooling pipe.

さらに、冷却機構29の構成も異ならせることができる
Furthermore, the configuration of the cooling mechanism 29 can also be varied.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明に係る高速増殖炉の熱遮蔽
装置によれば、原子炉運転時には低温冷却材上昇流路お
よび低温冷却材下降流路内に、循環ポンプより吐出され
る低温冷却材の一部を流通させるようにし、循環ポンプ
のトリ、プ時には低温冷却材下降流路内の上端部に配設
された冷却配管に冷却媒体を流通させてその部分の冷却
材を冷却し、その冷却された冷却材を密度の増大により
下降させることによって、低温冷却材上昇流路および低
温冷却材下降流路内の冷却材を流動させるようにしたこ
とにより、原子炉容器への高温冷却材による熱影響を緩
和することができる。
As detailed above, according to the heat shielding device for a fast breeder reactor according to the present invention, low-temperature cooling is discharged from the circulation pump into the low-temperature coolant ascending channel and the low-temperature coolant descending channel during reactor operation. When the circulation pump is activated, the coolant is passed through the cooling pipe installed at the upper end of the low-temperature coolant downflow passage to cool the coolant in that part. By lowering the cooled coolant by increasing its density, the coolant in the low-temperature coolant ascending flow path and the low-temperature coolant downflow flow path is made to flow, thereby transferring high-temperature coolant to the reactor vessel. It is possible to alleviate the thermal effects caused by

また、原子炉停止時には冷却配管内に冷却媒体を流通さ
せることによって、炉心よ多発生する崩壊熱を除去し、
かつ、原子炉容器周壁部の除熱を行なって、原子炉容器
の健全性を確保することができる。さらに従来のように
、原子炉容器内に補助冷却系を設ける必要がないので、
原子炉容器が大形になることもない。
In addition, when the reactor is shut down, a cooling medium is circulated through the cooling pipes to remove the decay heat generated in the reactor core.
In addition, the soundness of the reactor vessel can be ensured by removing heat from the peripheral wall of the reactor vessel. Furthermore, unlike conventional methods, there is no need to provide an auxiliary cooling system inside the reactor vessel.
There is no need for the reactor vessel to become large.

はタンク型高速増殖炉の縦断面図、第2図は熱tfJ装
置周辺部を拡大して示す縦断面図、第3図は熱遮蔽装置
の概略構成図である。
2 is a vertical cross-sectional view of a tank-type fast breeder reactor, FIG. 2 is a vertical cross-sectional view showing an enlarged view of the vicinity of the thermal TFJ device, and FIG. 3 is a schematic configuration diagram of a thermal shielding device.

5・・・原子炉容器、7・・・炉心、8・・・冷却材、
10・・・循環ポンプ、18・・・温源プレナム、19
・・・低温プレナム、23・・・熱遮蔽装置、24・・
・外側円筒体、25・・・低温冷却材上昇流路、26・
・・内側円筒体、27・・・低温冷却材下降流路、28
a。
5... Reactor vessel, 7... Reactor core, 8... Coolant,
10... Circulation pump, 18... Heat source plenum, 19
...Low temperature plenum, 23...Heat shielding device, 24...
・Outer cylindrical body, 25...Low temperature coolant ascending channel, 26・
...Inner cylindrical body, 27...Low temperature coolant descending flow path, 28
a.

28b・・・冷却配管、29・・・冷却機構。28b... Cooling pipe, 29... Cooling mechanism.

出願人代理人  弁理士 鈴 江 武 産業1図 第2図 第3図Applicant agent Patent attorney Suzue Takeshi Sangyo 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)原子炉容器の内周面との間に低温冷却材上昇流路
を形成するように原子炉容器の内側に設けられその上端
を原子炉容器内の冷却材液面よりわずか下方に位置させ
るとともに、原子炉容器内の循環ポンプより吐出された
低温冷却材の一部を上記低温冷却材上昇流路内にその下
端より流入させる外側円筒体と、この外側円筒体との間
に低温冷却材下降流路を形成するように内側円筒体のさ
らに内側に設けられその上端を原子炉容器内の冷却材液
面より上方に位置させるとともに、上記低温冷却材下降
流路の下端を原子炉容器内の低温プレナムに連通させた
内側円筒体と、前記低温冷却材下降流路内の上端部に配
設された冷却配管と、原子炉容器の外部に設けられて前
記冷却配管内に冷却媒体を流通させる冷却機構とを具備
したことを特徴とする高速増殖炉の熱遮蔽装置。
(1) It is installed inside the reactor vessel so as to form a low-temperature coolant ascending flow path between the inner peripheral surface of the reactor vessel and its upper end is located slightly below the coolant liquid level within the reactor vessel. At the same time, a part of the low-temperature coolant discharged from the circulation pump in the reactor vessel flows into the low-temperature coolant ascending flow path from its lower end. The lower end of the low-temperature coolant downward flow path is located further inside the inner cylindrical body so as to form a low-temperature coolant downward flow path, and its upper end is located above the coolant liquid level in the reactor vessel. an inner cylindrical body communicating with the low-temperature plenum inside the reactor vessel, a cooling pipe disposed at the upper end of the low-temperature coolant downflow passage, and a cooling pipe disposed outside the reactor vessel for supplying a cooling medium into the cooling pipe. A heat shielding device for a fast breeder reactor, characterized in that it is equipped with a cooling mechanism for causing circulation.
(2)前記冷却配管を螺旋状に形成したことを特徴とす
る特許請求の範囲第1項記載の高速増殖炉の熱遮蔽装置
(2) The heat shielding device for a fast breeder reactor according to claim 1, wherein the cooling pipe is formed in a spiral shape.
(3)前記冷却配管は前記外側円筒体の内周面に沿って
配設された外側冷却配管と、前記内側円筒体の外周面に
沿って配設された内側冷却配管とからなることを特徴と
する特許請求の範囲第1項または第2項記載の高速増殖
炉の熱遮蔽装置。
(3) The cooling pipe is characterized by comprising an outer cooling pipe disposed along the inner circumferential surface of the outer cylindrical body and an inner cooling pipe disposed along the outer circumferential surface of the inner cylindrical body. A heat shielding device for a fast breeder reactor according to claim 1 or 2.
JP61030133A 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor Pending JPS62188994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030133A JPS62188994A (en) 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030133A JPS62188994A (en) 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor

Publications (1)

Publication Number Publication Date
JPS62188994A true JPS62188994A (en) 1987-08-18

Family

ID=12295275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030133A Pending JPS62188994A (en) 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS62188994A (en)

Similar Documents

Publication Publication Date Title
KR100597722B1 (en) Stable and passive decay heat removal system for liquid metal reator
JP2659632B2 (en) Passive cooling safety system for liquid metal cooled reactor
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US3996099A (en) Low temperature steam generator
JP4840627B2 (en) Corrosion mitigation system for liquid metal reactors with passive decay heat removal system
US4382908A (en) After-heat removal system for a gas-cooled nuclear reactor
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US4795607A (en) High-temperature reactor
JPH05196780A (en) Passive cooling system of liquid-metal cooled nuclear reactor
JPS62188994A (en) Thermal shielding device for fast breeder reactor
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JPH02210295A (en) Auxiliary reactor core cooling device
CN112420226B (en) Passive residual heat removal system based on annular air cooler
JP3110901B2 (en) Fast breeder reactor
CN116189933A (en) Submerged containment vessel with active water cooled heat sink
JPS59120993A (en) Reactor cooling device
CN116168857A (en) Submerged containment vessel with active and passive water-cooled heat traps
JPS5934994B2 (en) Emergency core cooling system for high temperature gas reactor
JPH1123773A (en) Core cooling structure of fast breeder reactor
JPS59150374A (en) Thermal shield device in fast breeder
JPH01142497A (en) Decay heat remover for nuclear reactor
JPS58145882A (en) Heat exchanger in nuclear reactor container
JPS62289794A (en) High-temperature gas cooling reactor
JPS60192290A (en) Tank type fast breeder reactor
JPS60192299A (en) Device for maintaining surface of liquid in nuclear reactor vessel