JPS6015598A - Heat exchanger for direct core cooling system - Google Patents

Heat exchanger for direct core cooling system

Info

Publication number
JPS6015598A
JPS6015598A JP58122331A JP12233183A JPS6015598A JP S6015598 A JPS6015598 A JP S6015598A JP 58122331 A JP58122331 A JP 58122331A JP 12233183 A JP12233183 A JP 12233183A JP S6015598 A JPS6015598 A JP S6015598A
Authority
JP
Japan
Prior art keywords
heat exchanger
core
reactor
cooling system
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58122331A
Other languages
Japanese (ja)
Inventor
手塚 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP58122331A priority Critical patent/JPS6015598A/en
Publication of JPS6015598A publication Critical patent/JPS6015598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野] 本発明は高速増殖炉にお番プる原子炉停止後の炉容器内
の自然循環による炉心の崩壊熱除去機能を備えた直接炉
心冷却系用熱交換器に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention is for use in a direct core cooling system for a fast breeder reactor, which has a function of removing decay heat from the core through natural circulation within the reactor vessel after reactor shutdown. Regarding heat exchangers.

[発明の技術的背景コ 一般に、液体金属冷却系のループ型高速増殖炉において
、原子炉停止後の炉心の崩壊熱除去は主−次冷却系主循
環ポンプのポニモーターを運転して一次冷却材を強制循
環することにより行なわれる。しかしながら、全電源喪
失時、及び主−次冷却配管系内の多重リーク時等の場合
は、上記主−次冷却系のボニモーターの運転が起動不能
となったり、また炉容器内の冷ム1j拐の液位が炉容器
の出口ノズル位置を下廻って主冷却系ループ内にカバー
ガスを巻ぎ込みループ循環除熱機能が喪失することが考
えられる。このようなケースに対しても、炉心燃料要素
の健全性を維持して崩壊熱を除去するため、原子炉容器
内−次冷却材中に直接熱交換器を装荷した直接炉心冷却
系装置が提案されている。
[Technical Background of the Invention] In general, in a loop-type fast breeder reactor with a liquid metal cooling system, decay heat from the core is removed after the reactor is shut down by operating the Ponymotor of the main circulation pump in the main-primary cooling system. This is done by forcing the circulation of However, in the event of a total power loss or multiple leaks in the main and secondary cooling piping systems, the operation of the Boni motor in the main and secondary cooling systems may become impossible, and the cold air 1j in the reactor vessel may become inoperable. It is possible that the liquid level of the reactor drops below the outlet nozzle position of the reactor vessel and entrains the cover gas into the main cooling system loop, causing the loop circulation heat removal function to be lost. Even in such cases, in order to maintain the integrity of the core fuel elements and remove decay heat, we have proposed a direct core cooling system in which a heat exchanger is loaded directly into the secondary coolant inside the reactor vessel. has been done.

この直接炉心冷却系熱交換器は、原子炉停止後の炉心か
ら上部プレナム丙に流出した高温の冷却材を本装置によ
り熱除去させる機能を有し、駆動力として炉容器内の自
然循環力を利用している。
This direct core cooling system heat exchanger has the function of using this device to remove heat from the high-temperature coolant that has flowed from the reactor to the upper plenum C after the reactor is shut down, and uses the natural circulation force within the reactor vessel as the driving force. We are using.

[背景技術の問題点] ところで、最近提案されて、いる直接炉心冷却系熱交換
器は、炉容器内の通常運転時液位(NSL)の近傍下部
、及び炉容器出口ノズルの下端近傍よりやや下方の2つ
のレベルに、炉容器内の高温の冷却材を導く入口間口部
を備えており、にだ炉心構成要素の頂部近傍、もしくは
炉心部側面の中間プレナム領域において、熱交換後の低
温冷却材を流出させる出口開口部を備えた構造となって
いる。
[Problems in the background art] By the way, the recently proposed direct core cooling system heat exchanger has a heat exchanger that is located below the normal operating liquid level (NSL) in the reactor vessel and slightly below the lower end of the reactor vessel outlet nozzle. The lower two levels are equipped with inlet openings for guiding the high-temperature coolant inside the reactor vessel, allowing for low-temperature cooling after heat exchange near the top of the Nida core components or in the mid-plenum region on the sides of the core. It is constructed with an exit opening for the material to flow out.

上記の通り、入口開口部が2つのレベルに設置された理
由は、崩壊熱除去機能として、全電源喪失事故等の主二
次冷却系以降の除熱喪失の場合と、主−次冷却系配管多
重漏洩事故等の主−次冷却系除熱喪失の場合の2種類の
想定事故に退逃したものである。すなわち、炉容器内・
の冷却材の液位は、前者の場合、通常運転時の液位(N
s L)とほぼ同一であり、後者の場合、配管漏洩によ
り液位低下か炉容器出口ノズル下端にまでに到達するこ
とを考虞して、それぞれ炉容器内自然循環流路を確保す
るため設けられている。
As mentioned above, the reason why the inlet openings were installed at two levels is to provide a decay heat removal function in the case of heat removal from the main secondary cooling system onward, such as in the case of a total power loss accident, and to This is based on two types of hypothetical accidents in which heat removal is lost in the main-subcooling system due to multiple leakage accidents, etc. In other words, inside the furnace vessel
In the former case, the liquid level of the coolant is the liquid level during normal operation (N
s L), and in the latter case, in order to prevent the liquid level from dropping due to piping leakage or reaching the lower end of the furnace vessel outlet nozzle, each pipe is provided to ensure a natural circulation flow path within the furnace vessel. It is being

しかし、上記2つのレベルに間口部を有する直接炉心冷
却熱交換器においては、特に多重配管漏洩時のように炉
容器液位が低下して炉容器出口ノズル下端を下廻る場合
には、この熱交換器内の2次系伝熱管を内#iする内管
内の液位も、炉容器液位と同一レベルまで低下するため
、伝熱面積がその割合に沿って減少する欠点がある。
However, in a direct core cooling heat exchanger that has openings at the two levels mentioned above, especially when the reactor vessel liquid level drops and flows below the lower end of the reactor vessel outlet nozzle, as in the case of multiple pipe leaks, this heat Since the liquid level in the inner tube #i of the secondary heat transfer tube in the exchanger also falls to the same level as the furnace vessel liquid level, there is a drawback that the heat transfer area decreases in proportion to this.

また炉容器的自然循環力を利用するこの直接炉心冷却系
熱交換器においては、発熱中心としての炉心部中心から
除熱中心としての熱交換器内伝熱中心までの水頭差が、
液位低下に従って減少するため自然循環除熱能力がその
割合で大ぎく低下する欠点がある。
In addition, in this direct core cooling system heat exchanger that utilizes the natural circulation force of the reactor vessel, the water head difference between the center of the core, which is the heat generation center, and the heat transfer center in the heat exchanger, which is the heat removal center, is
Since it decreases as the liquid level decreases, there is a drawback that the natural circulation heat removal capacity decreases significantly at that rate.

[発明の目的コ 本発明の目的は上記欠点を除去するためになされたもの
で、原子炉停止後の炉容器内の崩壊熱除去機能を炉内自
然循環力によって十分病めることが出来、特に、炉容器
内の冷ム11材の液位が主−次冷却系出ロノズル下端を
下廻る想定事象に対しても、炉容器内の液・位が通常運
転時の液位にある場合と同゛程度の除熱機能を有する直
1x炉心冷却系熱交換器を提供す゛ることにある。
[Object of the Invention] The object of the present invention was to eliminate the above-mentioned drawbacks, and the decay heat removal function in the reactor vessel after the reactor is shut down can be sufficiently impaired by the natural circulation force within the reactor, and in particular, Even for a hypothetical event in which the liquid level of the cold 11 material in the reactor vessel falls below the lower end of the main and secondary cooling system outlet nozzle, the liquid level in the reactor vessel is the same as when it is at the liquid level during normal operation. The purpose of the present invention is to provide a direct 1x core cooling system heat exchanger that has a heat removal function of approximately 100%.

[発明の概要] 本発明に係る直接炉心冷却系熱交換器は、炉心を収納し
た原子炉容器内の高温の上部プレナム冷却材中に、炉容
器の上部開口を閉塞する遮蔽プラグを貫通して配設され
、高温の一次冷却材を流入する入口窓が前記炉容器の出
口配管の下端近傍よりやや下方に位置し前記入口窓から
流入した冷却材を外管と内管の間のアニユラス部を上界
させて、炉容器の通常液位レベル近傍下部の高さに位置
するように設けた上部ヘッダーに導き、その上部ヘッダ
ーから二次冷却系伝熱管群を内蔵する内管内を下降させ
ることで一次冷却材を除熱させ、該外商の底部に設けた
出口窓から低温の冷却材を流出させるように流路を構成
したことを特徴としたものである。
[Summary of the Invention] The direct core cooling system heat exchanger according to the present invention provides a direct core cooling system heat exchanger that penetrates a shielding plug that closes an upper opening of the reactor vessel into the high-temperature upper plenum coolant in the reactor vessel housing the reactor core. An inlet window through which high-temperature primary coolant flows is located slightly below the vicinity of the lower end of the outlet pipe of the furnace vessel, and the coolant flowing through the inlet window flows through the annulus between the outer pipe and the inner pipe. The liquid is guided to an upper header located at a height near the normal liquid level of the reactor vessel, and then descended from the upper header through the inner tube containing the secondary cooling system heat transfer tube group. It is characterized by a flow path configured to remove heat from the primary coolant and allow the low-temperature coolant to flow out from an exit window provided at the bottom of the chamber.

本発明による熱交換器では、炉容器の液位が仮りに出口
配管の下端を切った場合でも、熱交換器内は一次冷却材
はザイボン効果にJ:り常に充填され、二次系伝熱管群
による除熱面積は、通常液位の場合と同一であり9月ら
炉容器内の自然循環流量は、従来例に比較して格段に確
保されるため、炉内崩壊熱除熱機能は、炉心燃料健全性
確保の上で十分病めることが可能となる。
In the heat exchanger according to the present invention, even if the liquid level in the furnace vessel were to cut the lower end of the outlet pipe, the heat exchanger would always be filled with the primary coolant due to the Xybon effect, and the secondary heat exchanger tube would The heat removal area by group is the same as in the case of normal liquid level, and the natural circulation flow rate in the furnace vessel is much more ensured than in the conventional example, so the in-furnace decay heat heat removal function is It will be possible to sufficiently cause illness while ensuring the integrity of the reactor fuel.

[発明の実施例] 以下、第1図および第2図を参照しながら本発明の一実
施例を説明する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図において符号1はループ型高速増殖炉の炉容器を
示しており1、この炉容器1の下部側面には一次冷11
J材の入口配管2が、また中央部よりやや上方の側面に
一次冷却材の出口配管3がそれぞれ接続されている。ま
た、炉容器1の上端開口は遮蔽プラグ4で閉塞されてい
る。炉容器1内の中心部よりやや下方に燃料集合体を多
数本整列配置した炉心5が設けられ、この炉心5の外周
を収りかこんでブランケット6が設りられている。炉心
5およびブランケット6の下方には低圧プレナム7およ
び高圧プレナム8が炉心下部支持板9の下面に゛支えら
れて設けられでいる。炉心下部支持板9は炉容器1の内
面に接続され炉心5およびブランケット6を主に支持し
ている。ブランケット6の上部側面と炉容器1の内面と
の間には熱遮蔽体10が設けられ−Cいる。炉心5の上
方には遮蔽プラグ4を貫通した炉心上部機4i411が
配設されている。熱遮蔽体10上には内筒12が立設さ
れており、この内筒12には炉容器1内に収容された一
次冷lJI材の液位13よりやや下方の側面に内筒上部
フ1」−ホール14Aが設りられでおり、また熱遮蔽体
10が位置する面上つまり炉心構成要素の頂部近傍に内
筒下部フローホール14. Bが設りられている。
In FIG. 1, reference numeral 1 indicates a reactor vessel of a loop type fast breeder reactor.
An inlet pipe 2 of the J material is connected to the side surface slightly above the center, and an outlet pipe 3 of the primary coolant is connected to the side surface slightly above the center. Further, the upper end opening of the furnace vessel 1 is closed with a shielding plug 4 . A reactor core 5 in which a large number of fuel assemblies are arranged in an array is provided slightly below the center of the reactor vessel 1, and a blanket 6 is provided to enclose the outer periphery of the reactor core 5. A low pressure plenum 7 and a high pressure plenum 8 are provided below the core 5 and the blanket 6 and are supported by the lower surface of the core lower support plate 9. The core lower support plate 9 is connected to the inner surface of the reactor vessel 1 and mainly supports the reactor core 5 and blanket 6. A heat shield 10 is provided between the upper side surface of the blanket 6 and the inner surface of the furnace vessel 1. Above the core 5, a core upper machine 4i411 passing through the shielding plug 4 is disposed. An inner cylinder 12 is installed upright on the heat shield 10 , and an inner cylinder upper flap 1 is provided on the side surface of the inner cylinder 12 slightly below the liquid level 13 of the primary cooled lJI material housed in the furnace vessel 1 . ''-hole 14A is provided, and an inner cylinder lower flow hole 14A is provided on the surface where the heat shield 10 is located, that is, near the top of the core component. B is set up.

ざらに炉容器1の内面と内@12との間には前記遮蔽プ
ラグ4を貫通し熱遮蔽体1oにまで延在した長さの熱交
換器15が設けられている。
Roughly between the inner surface of the furnace vessel 1 and the interior 12, a heat exchanger 15 having a length that penetrates the shield plug 4 and extends to the heat shield 1o is provided.

熱交換器15は第2図に拡大して示したように入口窓1
6を下部側面に、底面に出口窓24を有する外管19と
、この外管19内にアニユラス部17を形成して設けら
れた内管20と、この内管20内に配設された二次冷却
材の入口配管21Aおよび出口配管21Bと、この入口
配管21Aおよび出口配管21Bに巻回された二次冷却
系伝熱管群とからなっている。そして、外管19内の上
方には仕切壁25によって形成される上部ヘッダー18
と、内筒20の下端を外管19の内壁に支持する支持体
26によって形成される下部ヘッダ23を有している。
The heat exchanger 15 is connected to the inlet window 1 as shown in an enlarged view in FIG.
6 on the lower side surface and an outlet window 24 on the bottom surface; It consists of an inlet pipe 21A and an outlet pipe 21B for the secondary coolant, and a group of secondary cooling system heat transfer tubes wound around the inlet pipe 21A and the outlet pipe 21B. An upper header 18 formed by a partition wall 25 is located above the outer tube 19.
and a lower header 23 formed by a support 26 that supports the lower end of the inner tube 20 on the inner wall of the outer tube 19.

ここで、上部ヘッダ18は炉容器1内の一次冷却材の通
常液位NsLよりやや下方に位置し、入口窓16は炉容
器1に接続された出口配管の冷却材の液位13よりやや
下方っまり内筒上部フロホール14Aの位置と対向した
位置に設けられる。
Here, the upper header 18 is located slightly below the normal liquid level NsL of the primary coolant in the furnace vessel 1, and the inlet window 16 is located slightly below the liquid level 13 of the coolant in the outlet pipe connected to the furnace vessel 1. It is provided at a position directly opposite to the position of the upper flow hole 14A of the inner cylinder.

この熱交換器15内での一次冷却材の流れは、高温の一
次冷却材は入口窓16から流入し、内筒20の外面に沿
って矢印のように上昇し、内筒20の上端から内筒20
の内面に沿って下降し出口窓24から流出する経路をた
どることになる。内筒20を下降する際・に二次冷却材
と熱交換され矢印のように流れて自然循環する。
The flow of the primary coolant inside the heat exchanger 15 is such that the high-temperature primary coolant flows in through the inlet window 16, rises along the outer surface of the inner cylinder 20 as shown by the arrow, and enters the inner cylinder from the upper end of the inner cylinder 20. Cylinder 20
It follows a path that descends along the inner surface of the window and flows out from the exit window 24. As it descends through the inner cylinder 20, it exchanges heat with the secondary coolant and flows as shown by the arrow, resulting in natural circulation.

しかして、上記構成の熱交換器では主−次冷iJI系配
管多重す−ク時、及び配管破損に他の各種故障が重なる
場合には、炉容器の液位13は、出口配管3の下端位置
まで下降し、主冷却系崩壊熱除去機能は喪失する。従っ
て、炉容器向流mは、液位が出口配管3を切る時点で零
流量となるが、しばらくすると発熱量の高い炉心5の領
域の冷!11 I、flと、炉心部周囲のブランケット
6の低発創1領域の冷却材間に有意な温度差が生じるこ
とににる炉内自然循環が発生する。この炉内自然循環に
にる冷却材の流れは、第1図の矢印の方向で示される。
However, in the heat exchanger with the above configuration, when the main and secondary cooling iJI system piping is multiplexed, or when piping breakage is combined with other various failures, the liquid level 13 in the furnace vessel will be lower than the lower end of the outlet piping 3. The decay heat removal function of the main cooling system is lost. Therefore, the counterflow m in the reactor vessel becomes zero flow rate when the liquid level cuts the outlet pipe 3, but after a while, the area of the core 5 with a high calorific value cools down! Natural circulation within the reactor occurs due to the significant temperature difference between the I, fl and the coolant in the low-injection region 1 of the blanket 6 around the reactor core. The flow of coolant in this natural circulation within the furnace is shown in the direction of the arrow in FIG.

つまり、炉心5の出口から流出した高温の冷却材は、液
位13のレベルまで上昇した後、系方向に拡大し、内筒
上部フローホール14Aを通過して、熱交換器15の入
口窓16へと流入し、その後第2図に示す通り外管19
と内管20の間のアニユラス部17を上昇して、上部ヘ
ッダ18に到達し、この上部ヘッダ18から二次系伝熱
管群22を有する内管20の内側を下降し、下部ヘッダ
23を介して熱交換器底部の出口窓24から流出する。
That is, the high-temperature coolant flowing out from the outlet of the core 5 rises to the liquid level 13, expands in the system direction, passes through the inner cylinder upper flow hole 14A, and passes through the inlet window 16 of the heat exchanger 15. and then into the outer tube 19 as shown in FIG.
and the inner tube 20 to reach the upper header 18, descend from the upper header 18 inside the inner tube 20 having the secondary heat transfer tube group 22, and pass through the lower header 23. and flows out through the outlet window 24 at the bottom of the heat exchanger.

このとき出口窓24から流出する冷却材は伝熱管群22
から除熱により十分低温度へと降下さぼられでいるため
、熱遮蔽板10の上面ぞいに内筒下部フローホール14
Bを通過して、炉心部周辺低発熱領域6の頂部から下部
へ逆流し、低圧プレナム7、高圧プレナム8を介して、
再び炉心部5へ流入する循環流路を形成する。
At this time, the coolant flowing out from the outlet window 24 is transferred to the heat exchanger tube group 22.
Because the temperature is lowered to a sufficiently low temperature by heat removal from
B, flows back from the top to the bottom of the low heat generation area 6 around the core, via the low pressure plenum 7 and the high pressure plenum 8,
A circulation flow path is formed that flows into the reactor core 5 again.

[発明の効果] 本発明は、直接炉心冷却系熱交換器15の人口窓16が
出口配管3の下端近傍下部に位置づることから、サイホ
ンにより熱交換器15内は常に一次冷却材により充填さ
れているため、二次系伝熱管群22の除熱面積は、通常
液位(NS L)の場合と同一となる。さらに、上記流
路形成による自然循環駆動力となる炉心部発熱中心位置
と熱交換器伝熱中心位置の高低差は、通常)1に位(N
s L)の場合と同一であることから、炉心燃料要素の
健全性を一確保するに十分な自然循環除熱流量が常に安
定に得られることとなる。
[Effects of the Invention] In the present invention, since the artificial window 16 of the direct core cooling system heat exchanger 15 is located at the lower part near the lower end of the outlet pipe 3, the inside of the heat exchanger 15 is always filled with primary coolant by the siphon. Therefore, the heat removal area of the secondary heat exchanger tube group 22 is the same as that at the normal liquid level (NSL). Furthermore, the height difference between the core heat generation center position and the heat exchanger heat transfer center position, which is the natural circulation driving force due to the above-mentioned flow path formation, is usually about 1 (N
Since this is the same as in the case of s L), a natural circulation heat removal flow rate sufficient to ensure the integrity of the core fuel elements can always be stably obtained.

一万、通常液位(Ns L)にお(プる炉内自然循環除
熱に関しても、熱交換器15の入口窓16からの流入冷
却月は、アニユラス部17を上背する過程で、液面近傍
の炉上部プレナム高温の冷?jl Uによる熱交換器1
5の外管19を介し−Cの熱移行により、」−分R温化
されるため、従)1!、提案されている上部に間口窓を
有J°る熱交換器414j告に比べて除熱機能は差程低
下しない効果がある、。
10,000, the normal liquid level (Ns L) Heat exchanger 1 using high-temperature cooling of the upper furnace plenum near the surface
Due to the heat transfer of -C through the outer tube 19 of 5, the temperature is increased by ``-minR'', so 1! Compared to the proposed heat exchanger 414j with a frontage window at the top, the heat removal function does not deteriorate significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を説明づるため
の図で、第1図はループ型高速増殖炉の原子炉構造を示
す縦断面図、第2図は本発明に係る直接炉心冷却系用熱
交換器を示す縦断面図である。 1・・・原子炉容器 2・・・入口配管3・・・出口配
管 4・・・遮蔽プラグ5・・・炉心 6・・・プラン
クツ1〜7・・・低圧プレナム 8・・・高圧プレナム 9・・・炉心下部支持板 10・・・熱遮蔽体 11・・・炉心上部機構12・・
・内筒 13・・・炉容器液位14A・・・内筒上部フ
ローボール 14−B・・・内筒下部フローホール 15・・・直接炉心冷却系熱交換器 16・・・入口窓 17・・・アニユラス部18・・・
上部ヘッダ 19・・・外管20・・・内管 21A・・・二次冷却拐入ロ配管 21[3・・・二次冷却材出口配管 22・・・二次冷却系伝熱管群 23・・・下部ヘッダ 24・・・出L1窓 25・・・仕切壁26・・・支持
体 出願代理人 弁理士 菊 池 五 部
1 and 2 are diagrams for explaining one embodiment of the present invention. FIG. 1 is a vertical cross-sectional view showing the reactor structure of a loop fast breeder reactor, and FIG. FIG. 2 is a longitudinal sectional view showing a heat exchanger for a core cooling system. 1... Reactor vessel 2... Inlet piping 3... Outlet piping 4... Shielding plug 5... Reactor core 6... Planks 1 to 7... Low pressure plenum 8... High pressure plenum 9 ... Core lower support plate 10 ... Heat shield 11 ... Core upper mechanism 12 ...
・Inner cylinder 13...Furnace vessel liquid level 14A...Inner cylinder upper flow ball 14-B...Inner cylinder lower flow hole 15...Direct core cooling system heat exchanger 16...Inlet window 17.・Annuals Club 18...
Upper header 19...Outer tube 20...Inner tube 21A...Secondary cooling inlet pipe 21 [3...Secondary coolant outlet pipe 22...Secondary cooling system heat transfer tube group 23... ...Lower header 24...Exit L1 window 25...Partition wall 26...Support application agent Patent attorney Kikuchi Gobu

Claims (1)

【特許請求の範囲】[Claims] ループ型高速Jj′i殖炉の炉容器内に遮蔽プラグを貫
通し炉心構成要素の頂部近傍まで延在しかつ炉容器と内
1シ】との間に設けられる外管内に二次冷J、11月の
伝熱管群を内蔵した内管を有し、前記外管と内管とで形
成されるアニユラス部を−次冷)41月が上貸し内管内
を下降して前記二次冷/、II 4Aと熱交換する直接
炉心冷却系用熱交換器にJ3いて、前記外管内に一次冷
却材を流入する入lj窓を前記炉容器に接続した出口配
管の下端よりやや一ト方に設け、かつ−次冷FJ祠を流
出する出L1窓を外管の底部に設けるとともに外向内の
上部ヘッダーを炉容器の通常液位レベルの高さの位置に
設けたことを特徴とJ”る直接炉心冷却系用熱交換器。
A secondary cooling pipe is installed in the outer pipe of the loop-type high-speed Jj'i breeder reactor, which penetrates the shielding plug into the reactor vessel and extends to the vicinity of the top of the core components, and is provided between the reactor vessel and the inner part. It has an inner tube containing a group of heat transfer tubes, and the annulus formed by the outer tube and the inner tube is lowered inside the upper inner tube to cool the second layer. In the direct core cooling system heat exchanger J3 that exchanges heat with II 4A, an inlet window through which primary coolant flows into the outer tube is provided slightly to one side from the lower end of the outlet pipe connected to the reactor vessel, This direct reactor core is characterized by having an exit L1 window for outflowing the next cooling FJ tank at the bottom of the outer tube, and an upper header on the outer side located at the height of the normal liquid level in the reactor vessel. Heat exchanger for cooling system.
JP58122331A 1983-07-07 1983-07-07 Heat exchanger for direct core cooling system Pending JPS6015598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122331A JPS6015598A (en) 1983-07-07 1983-07-07 Heat exchanger for direct core cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122331A JPS6015598A (en) 1983-07-07 1983-07-07 Heat exchanger for direct core cooling system

Publications (1)

Publication Number Publication Date
JPS6015598A true JPS6015598A (en) 1985-01-26

Family

ID=14833320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122331A Pending JPS6015598A (en) 1983-07-07 1983-07-07 Heat exchanger for direct core cooling system

Country Status (1)

Country Link
JP (1) JPS6015598A (en)

Similar Documents

Publication Publication Date Title
US4367194A (en) Emergency core cooling system
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US4382908A (en) After-heat removal system for a gas-cooled nuclear reactor
JPH0721545B2 (en) Reactor
JPS6015598A (en) Heat exchanger for direct core cooling system
US4175001A (en) Gas turbine power plant with closed gas circuit
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JPH0264499A (en) Cooling apparatus of nuclear reactor
JPS59178392A (en) Fast neutron reactor
JPS6130237B2 (en)
JPS6358291A (en) Fast breeder reactor
JPS59120993A (en) Reactor cooling device
JPS59150374A (en) Thermal shield device in fast breeder
JPH1123773A (en) Core cooling structure of fast breeder reactor
JPS6273191A (en) Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop
JPS60253995A (en) Fast breeder reactor
JPS5811892A (en) Reactor container
JPS58208694A (en) Loop type reactor structure
JPS60192290A (en) Tank type fast breeder reactor
JPS61133896A (en) In-pile fuel storage device
JPS62188994A (en) Thermal shielding device for fast breeder reactor
JPS61256294A (en) Tank type fast breeder reactor
JPS5810680A (en) Upper core mechanism
JPS61118694A (en) Light water cooling type reactor
JPS58171698A (en) Liquid metal cooled fast reactor