JPS5834390A - Liquid metal cooled type fast breeder - Google Patents

Liquid metal cooled type fast breeder

Info

Publication number
JPS5834390A
JPS5834390A JP56132099A JP13209981A JPS5834390A JP S5834390 A JPS5834390 A JP S5834390A JP 56132099 A JP56132099 A JP 56132099A JP 13209981 A JP13209981 A JP 13209981A JP S5834390 A JPS5834390 A JP S5834390A
Authority
JP
Japan
Prior art keywords
inner cylinder
fast breeder
reactor
liquid metal
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56132099A
Other languages
Japanese (ja)
Other versions
JPH0338558B2 (en
Inventor
笹沼 克巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP56132099A priority Critical patent/JPS5834390A/en
Publication of JPS5834390A publication Critical patent/JPS5834390A/en
Publication of JPH0338558B2 publication Critical patent/JPH0338558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はたとえば液体す) IJウムを冷却材とするル
ープ型高速増殖炉における炉容器の上部プレナム内のミ
キシングを促進し、炉容器および出口ノズルを熱衝撃お
よび熱変形から保護した液体金属冷却形高速増殖炉に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention promotes mixing in the upper plenum of the reactor vessel in a loop fast breeder reactor using liquid IJ as a coolant, and prevents thermal shock and thermal deformation of the reactor vessel and outlet nozzle. Relating to a liquid metal cooled fast breeder reactor protected from

さらに詳しく言えば本発明は原子炉スクラム時に炉心出
口冷却材温度が急激に低下し、流量がポンプコーストダ
ウンに伴い低流量となり、上部プレナム内のNa温度は
上部が高温で、下部が低温の状態となりその結果、出口
ノズル部では、内筒へ炉容器間アニユラス部からの冷却
材とフローホールからの冷却材の温度差により熱応力が
非常に厳しくなるため、そ扛ヲ緩和させるためのフロー
ホールを有する内筒を設けたことを特徴とする原子炉を
提供することである。
More specifically, the present invention deals with a situation in which during a reactor scram, the core outlet coolant temperature drops rapidly, the flow rate becomes low as the pump coasts down, and the Na temperature in the upper plenum is high at the top and low at the bottom. As a result, thermal stress becomes extremely severe at the outlet nozzle due to the temperature difference between the coolant flowing into the inner cylinder from the annulus section between the furnace vessels and the coolant flowing from the flow hole. It is an object of the present invention to provide a nuclear reactor characterized in that it is provided with an inner cylinder having the following characteristics.

従来、ループ型原子炉の炉容器内の上部プレナムには炉
内計装に必要な炉心上部機構と、炉容器の内側に内筒が
設置さ扛ている。内筒は上部プレナム内の冷却材のミキ
シングを促進し、過渡運転時に生じる可能性のある炉容
器及び出口配管(出口ノズル)の熱衝撃および熱変形を
緩和させる機能を有する。これは上部プレナム部の冷却
材の流動が、炉心上部から炉容器出口配管部へ直接導か
れる炉容器出口配管の高さに位置した複数個の内筒フロ
ーホールを通過する流路と、炉心集合体出口部から炉心
上部機構下部を経て放射状に上昇するか、または内筒内
側面に沿って上昇した後、内筒頂部とカバーガス液面の
間を炉容器内壁に向って流量、その後、内筒と炉容器の
間のアニユラス部を下降して炉容器出口配管へ導か扛る
流路の2つのルートに分けら扛る。こ扛は、原子炉のス
クラム直後等に炉心燃料集合体の出口部冷却材温度が急
変する場合、原子炉容器壁および炉容器出口配管の熱衝
撃および熱変形を緩和させる作用を有している。
Conventionally, an upper core mechanism necessary for in-core instrumentation is installed in the upper plenum inside the reactor vessel of a loop-type nuclear reactor, and an inner cylinder is installed inside the reactor vessel. The inner cylinder has the function of promoting mixing of the coolant in the upper plenum and mitigating thermal shock and thermal deformation of the reactor vessel and outlet piping (outlet nozzle) that may occur during transient operations. This consists of a flow path in which the flow of coolant in the upper plenum passes through a plurality of inner cylinder flow holes located at the height of the reactor vessel outlet piping, which are directly guided from the upper part of the core to the reactor vessel outlet piping, and a core assembly. After rising radially from the body outlet through the lower part of the upper core mechanism or rising along the inner surface of the inner cylinder, the flow rate flows between the top of the inner cylinder and the cover gas liquid level toward the inner wall of the reactor vessel, and then inside. The annulus section between the cylinder and the furnace vessel is divided into two routes: a flow path that descends and leads to the outlet piping of the furnace vessel. This has the effect of alleviating thermal shock and thermal deformation of the reactor vessel wall and reactor vessel outlet piping when the coolant temperature at the outlet of the core fuel assembly changes suddenly, such as immediately after a reactor scram. .

上部プレナム内の流量は炉心集合体を流出した冷却材が
炉心上部機構下部を経て放射状に、また内筒に沿って上
方に向って流れる。冷却材の大部分は、内筒の上端から
内筒と炉容器内壁との間のアニユラス部を通り出口ノズ
ルに向う。さらに冷却材の一部は出口ノズルに対面して
内筒の腹部に設けであるフローホールを通り抜け、上部
アニユラス部からの冷却材と混合し、出口ノズルから流
出する。
The flow rate in the upper plenum is such that the coolant that has flowed out of the core assembly flows radially through the lower part of the upper core mechanism and upward along the inner cylinder. Most of the coolant flows from the upper end of the inner cylinder to the outlet nozzle through the annulus between the inner cylinder and the inner wall of the reactor vessel. Further, a portion of the coolant passes through a flow hole provided in the abdomen of the inner cylinder facing the outlet nozzle, mixes with the coolant from the upper annulus, and flows out from the outlet nozzle.

この冷却材は熱交換器、循環ポンプ等を経て再び炉容器
の入口ノズルに戻るようになっている。
This coolant passes through a heat exchanger, a circulation pump, etc., and then returns to the inlet nozzle of the furnace vessel.

上記構造の原子炉において、スクラムした場合等、冷却
材流量は次第に減少し、定格運転時の約10%流量とな
る。炉心集合体からの冷却材温度はスクラム後、急変す
る場合がある。前述したように温度の低い(または高い
)冷却材が、内筒フローホールから直接流出していくも
のと、内筒内側面に沿って上昇し、内筒と炉容器間アニ
ユラス部に沿って降下して出口ノズルに到るという2通
りのルートがあり、この2通りのルートは冷却材が出口
ノズルに達するまでに時間的なす扛がある。
In a nuclear reactor having the above structure, the coolant flow rate gradually decreases when there is a scram, and the flow rate becomes about 10% of the rated operation. The temperature of the coolant from the core assembly may change suddenly after a scram. As mentioned above, coolant with a low (or high) temperature flows out directly from the inner cylinder flow hole, and rises along the inner surface of the inner cylinder and descends along the annulus between the inner cylinder and the furnace vessel. There are two routes for the coolant to reach the outlet nozzle, and there is a time gap between these two routes until the coolant reaches the outlet nozzle.

このとき、出口ノズル近辺に急激な温度変化および温度
ゆらぎを生じるとともに大きな温度差をもつ部分が生じ
、このため構造材は熱衝撃および熱変形を生じる欠点が
ある。
At this time, rapid temperature changes and temperature fluctuations occur in the vicinity of the outlet nozzle, as well as areas with large temperature differences, which has the drawback of causing thermal shock and thermal deformation of the structural material.

本発明は上記欠点を除去するためになさ′n−たもので
、従来設けらnている内筒フローホールの直径を小さく
しかつ炉容器出口ノズル位置より上方に内筒フローホー
ルを多段に複数個設置することにより、炉心燃料集合体
から流出した冷却材がフローホールから出口ノズルに直
接流出していくのを防止し、上部の70−ホールからの
流出流量割合を太きくし、アニユラス部内でのミキシン
グを良くすることにより、出口ノズル付近での急激な温
度変化を和らげ構造材の熱衝撃および熱変形を防ぐこと
ができる液体金属冷却形高速増殖炉を提供する事にある
The present invention has been made in order to eliminate the above-mentioned drawbacks.The present invention has been made to reduce the diameter of the conventionally provided inner cylinder flow hole and to form a plurality of inner cylinder flow holes in multiple stages above the furnace vessel outlet nozzle position. By installing these separately, it is possible to prevent the coolant flowing out from the core fuel assembly from directly flowing out from the flow hole to the outlet nozzle, increase the proportion of the flow rate from the upper 70-hole, and increase the flow rate within the annulus. It is an object of the present invention to provide a liquid metal cooled fast breeder reactor that can moderate rapid temperature changes near an outlet nozzle and prevent thermal shock and thermal deformation of structural materials by improving mixing.

以下図面を参照しながら本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

すなわち、本発明に係る高速増殖炉は第1図に示される
ように冷却材の入口配管(入口ノズル)1及び出口配管
(出口ノズル)2を備えた炉容器3の下部に炉心支持構
造物4の支持板5を水平に設け、この支持板5の下位に
位置した炉容器3に入口プレナム6を設けている。
That is, the fast breeder reactor according to the present invention, as shown in FIG. A supporting plate 5 is provided horizontally, and an inlet plenum 6 is provided in the furnace vessel 3 located below the supporting plate 5.

また上記支持板5の上位にブランケット燃料集合体7お
よび燃料集合体を装荷する炉心8ai設置し、上記流出
口2の近傍に位置する炉容器3に冷5− 却材の出口プレナム9を設けている。
Further, a blanket fuel assembly 7 and a reactor core 8ai for loading the fuel assemblies are installed above the support plate 5, and an outlet plenum 9 for cooling material is provided in the reactor vessel 3 located near the outlet 2. There is.

さらに、上記炉心8aの上位の出口プレナム9にカバー
ガス10ヲ充填したしゃへいプラグ11ヲ密閉して設け
、このしゃへいプラグ11にディップドブレート12及
び継胴13ヲ有するじゃへい炉心上部機構14を上記出
口プレナム9の冷却材に浸漬するように垂設している。
Furthermore, a shielding plug 11 filled with cover gas 10 is provided in an airtight manner in the outlet plenum 9 above the core 8a, and the shielding core upper mechanism 14 having a dipped plate 12 and a joint shell 13 is attached to the shielding plug 11. It is installed vertically so as to be immersed in the coolant of the outlet plenum 9.

炉容器3の内側には内筒17が設けら扛ており、この内
筒17には第2図および第3図に部分的に拡大して示し
たように、出口配管2の流出ノズル2aと対面したやや
下方の位置にフローホール15およびその上方に該フロ
ーホール15よりも孔径が大きくかつ上列16aから下
列16dへ沿ってその孔数が次第に減少したフローホー
ル群16が設けられている。
An inner cylinder 17 is provided inside the furnace vessel 3, and as shown partially enlarged in FIGS. 2 and 3, this inner cylinder 17 has an outlet nozzle 2a of the outlet pipe 2 and a A flow hole 15 is provided at a slightly lower position facing each other, and a flow hole group 16 is provided above the flow hole 15, which has a hole diameter larger than that of the flow hole 15 and whose number gradually decreases from the upper row 16a to the lower row 16d.

こnらフローホール15およびフローホール群16が設
けられた内筒17は炉容器3内に立直して支持板5aに
固定されている。
The inner cylinder 17 provided with the flow holes 15 and the flow hole group 16 is erected inside the furnace vessel 3 and fixed to the support plate 5a.

なお、炉容器3の外側にはガードベッセル18が、入口
配管1および出口配管2にはそ扛ぞれガードパイプが設
けられている。炉容器3内には炉心8a6− の燃料集合体8を取換えるための燃料交換機加が遮蔽プ
ラグin貫挿して配設さnている。
Note that a guard vessel 18 is provided on the outside of the furnace vessel 3, and guard pipes are provided in the inlet pipe 1 and the outlet pipe 2, respectively. A fuel exchanger for replacing the fuel assembly 8 of the reactor core 8a6- is disposed in the reactor vessel 3 with a shield plug inserted therein.

しかして、上記構成において、原子炉運転中、スクラム
時にフローホール15から流出する低温度のナトリウム
と、内筒17と炉容器3間を流量る高温度のナトリウム
との温度ゆらぎはフローホール群を流nるナトリウムに
よって温度差が低減さ扛て減少する。
In the above configuration, during reactor operation, temperature fluctuations between the low-temperature sodium flowing out from the flow hole 15 during scram and the high-temperature sodium flowing between the inner cylinder 17 and the reactor vessel 3 affect the flow hole group. The flowing sodium reduces the temperature difference.

よって、本発明によ扛ば炉容器3の内側に設けた内筒1
7に従来のフローホールよりも孔径の小さいフローホー
ル15ヲ設けるとともにそのフローホール15の上方に
孔径が大きいフローホール群16を設けてなるものであ
る。したがって、出口ノズル部2aの温度のゆらぎおよ
び炉容器3の軸方向温度勾配を小さくシ、もって構造材
の熱応力を低減できる効果がある。
Therefore, according to the present invention, the inner cylinder 1 provided inside the furnace vessel 3
7 is provided with a flow hole 15 having a smaller diameter than the conventional flow hole, and a group of flow holes 16 having a larger diameter is provided above the flow hole 15. Therefore, the temperature fluctuation of the outlet nozzle portion 2a and the axial temperature gradient of the furnace vessel 3 are reduced, thereby reducing the thermal stress of the structural material.

なお、本発明は上記実施例に限定されるものでなく、た
とえばフローホール群16に設ける孔の個数および配列
状態などは下方に設けたフローホール15の孔数と孔径
との割合から任意に設定することができる。
Note that the present invention is not limited to the above-mentioned embodiments, and for example, the number and arrangement of holes provided in the flow hole group 16 can be arbitrarily set based on the ratio of the number of holes and the hole diameter of the flow holes 15 provided below. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る高速増殖炉の一実施例全一部概略
的に示す断面図、第2図は第1図の要部を拡大して示す
断面図、第3図は第2図の要部をさらに拡大して示す斜
視図である。 1・・・入口配管、2・・・出口配管、3・・・炉容器
、4・・・炉心支持構造物、5・・・支持板、6・・・
入口プレナム、7・・・ブランケット燃料集合体、8・
・・炉心燃料集合体、8a・・炉心、9・・・出口プレ
ナム、1o・・カバーガス、11・・・しゃへいプラグ
、12・・・ディラブドプレート、13・・・継胴、1
4・・・炉心上部機構、15・・・フローホールペ16
・・・フローホール群、17・・・内筒、18・・・ガ
ード容器、19・・・ガードパイプ、2o・・・燃料交
換機。 出願代理人 弁理士  菊 池 五 部 手続補正書(方 式) 、、8ra5J・2.π2゜ 特許庁長官 島田春樹殿 l、事件の表示 昭和56年 特 許 願第1.3’2099  号2、
発明の名称 液体金属冷却形高速増殖炉3、 補正をす
る者 事件との関係   特許出願人 住所    神奈川県用崎市幸区堀用町72番地罠1′
基、ア船(307)東京芝浦電気株式会社(ほか 1 
名) 4、代理人 5、補正命令の日付  昭和57年1月26日(発送日
)6、 補正により増加する発明の数 7、補正の対象 図面の第2図および第3図 8、補正の内容 別紙の通り図面を補正する。
FIG. 1 is a sectional view schematically showing all parts of an embodiment of a fast breeder reactor according to the present invention, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIG. FIG. 2 is a perspective view showing a further enlarged main part. DESCRIPTION OF SYMBOLS 1... Inlet piping, 2... Outlet piping, 3... Reactor vessel, 4... Core support structure, 5... Support plate, 6...
Inlet plenum, 7... Blanket fuel assembly, 8.
... Core fuel assembly, 8a... Core, 9... Outlet plenum, 1o... Cover gas, 11... Shielding plug, 12... Dirubbed plate, 13... Joint shell, 1
4... Core upper mechanism, 15... Flow hole pe 16
...Flow hole group, 17...Inner cylinder, 18...Guard container, 19...Guard pipe, 2o...Fuel exchange machine. Patent Attorney Kikuchi, 5th Division Procedural Amendment (Format), 8ra5J・2. π2゜Mr. Haruki Shimada, Commissioner of the Japan Patent Office, Indication of Case 1982 Patent Application No. 1.3'2099 No. 2,
Title of the invention: Liquid metal cooled fast breeder reactor 3, Relationship to the amended person's case Patent applicant's address: 72 Horiyo-cho, Saiwai-ku, Yosaki-shi, Kanagawa Prefecture, Trap 1'
Base, A ship (307) Tokyo Shibaura Electric Co., Ltd. (and others 1
Name) 4. Agent 5. Date of amendment order: January 26, 1980 (shipment date) 6. Number of inventions increased by amendment 7. Figures 2 and 3 of the drawings subject to amendment 8. Revise the drawing as per the attached sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)炉容器内の上部プレナムに内筒が設けらtかつ該
内筒の側面に複数個のフローホールが設けら扛ている液
体金属冷却形高速増殖炉において、を特徴とする液体金
属冷却形高速増殖炉。
(1) In a liquid metal cooled fast breeder reactor in which an inner cylinder is provided in an upper plenum in the reactor vessel and a plurality of flow holes are provided in the side surface of the inner cylinder, the liquid metal cooled fast breeder reactor is characterized by: type fast breeder reactor.
(2)フローホール群は出口ノズル近傍に設けたフロー
ホールより孔径が大きくかつ上列から下列へ沿ってその
孔数が次第に減少して設けら扛てなることを特徴とする
特許請求の範囲第11項記載の液体金属冷却形高速増殖
炉。
(2) The flow hole group has a larger hole diameter than the flow holes provided near the outlet nozzle, and the number of holes gradually decreases from the upper row to the lower row. Liquid metal cooled fast breeder reactor according to item 11.
JP56132099A 1981-08-25 1981-08-25 Liquid metal cooled type fast breeder Granted JPS5834390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56132099A JPS5834390A (en) 1981-08-25 1981-08-25 Liquid metal cooled type fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56132099A JPS5834390A (en) 1981-08-25 1981-08-25 Liquid metal cooled type fast breeder

Publications (2)

Publication Number Publication Date
JPS5834390A true JPS5834390A (en) 1983-02-28
JPH0338558B2 JPH0338558B2 (en) 1991-06-11

Family

ID=15073438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56132099A Granted JPS5834390A (en) 1981-08-25 1981-08-25 Liquid metal cooled type fast breeder

Country Status (1)

Country Link
JP (1) JPS5834390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963594A (en) * 1982-10-05 1984-04-11 三菱重工業株式会社 Fast breeder container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166097A (en) * 1979-06-12 1980-12-24 Tokyo Shibaura Electric Co Nuclear reactor cooling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166097A (en) * 1979-06-12 1980-12-24 Tokyo Shibaura Electric Co Nuclear reactor cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963594A (en) * 1982-10-05 1984-04-11 三菱重工業株式会社 Fast breeder container
JPH03590B2 (en) * 1982-10-05 1991-01-08 Mitsubishi Heavy Ind Ltd

Also Published As

Publication number Publication date
JPH0338558B2 (en) 1991-06-11

Similar Documents

Publication Publication Date Title
US3962032A (en) Fast nuclear reactor
JP2019012073A (en) Nuclear reactor module
US3186913A (en) Graphite moderated nuclear reactor
JP4101422B2 (en) Liquid metal cooled nuclear reactor and liquid metal cooled nuclear power plant
JPS5834390A (en) Liquid metal cooled type fast breeder
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JPS59114494A (en) Lmfbr type reactor
JPS59131801A (en) Secondary heat transmission circuit for liquid metal nuclearreactor
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
JP2554146B2 (en) Tank type fast breeder reactor
JPS5992395A (en) Fast breeder
JPS60154190A (en) Fast breeder reactor
JPS604883A (en) Upper mechanism of core
JPH01245192A (en) Core upper mechanism of fast breeder
Knights et al. IMPROVEMENTS IN OR RELATING TO NUCLEAR REACTOR SHIELDING
JPH0735882A (en) Liquid metal cooled fast reactor
JPS6123994A (en) Protective device for reactor vessel of fast breeder reactor
JPS6170486A (en) Fast breeder reactor
JPS5997086A (en) Fast breeder
JPS59150374A (en) Thermal shield device in fast breeder
Chevallier et al. Nuclear reactor.[Integrated pool-type]
Crambes et al. Integrated exchanger nuclear reactors
JPS60209199A (en) Device for supporting and feeding refrigerant
JP2000121774A (en) Reactor vessel structure for fast reactor
JPS63201599A (en) Natural circulation type nuclear reactor