JPS59119874A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS59119874A
JPS59119874A JP57228917A JP22891782A JPS59119874A JP S59119874 A JPS59119874 A JP S59119874A JP 57228917 A JP57228917 A JP 57228917A JP 22891782 A JP22891782 A JP 22891782A JP S59119874 A JPS59119874 A JP S59119874A
Authority
JP
Japan
Prior art keywords
type
film
layer
transparent conductive
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57228917A
Other languages
Japanese (ja)
Other versions
JPS6323672B2 (en
Inventor
Yoshihiro Hamakawa
圭弘 浜川
Hisao Kawai
河合 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP57228917A priority Critical patent/JPS59119874A/en
Publication of JPS59119874A publication Critical patent/JPS59119874A/en
Publication of JPS6323672B2 publication Critical patent/JPS6323672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve conversion efficiency, and to reduce the variance of the efficiency by interposing a film mainly comprising one kind or more platinum, niobium, palladium and rhodium between a-Si:H or a-SiC:H of an a-Si semiconductor layer and a transparent conductive film or a light-shielding conductive substrate. CONSTITUTION:The film 9 mainly comprising one kind or more of platinum, niobium, palladium and rhodium is interposed between the transparent conductive film 20 of the solar cell in which the transparent conductive film 20 and the a-Si semiconductor layer 60, in which P type, I-type and N type each layer 30, 40, 50 satisifies a-Si:H or at least one of the P type and N type layers satisfies a-SiC:H and the I-type layer 40 satisifies a-Si:H, are formed on a light-transmitting insulating substrate 10 and a-Si:H or a-SiC:H 30. Or the film 9 the same as mentioned above is interposed between the light-shielding conductive substrate 13 of the solar cell, in which an a-Si semiconductor layer 61 the same as mentioned above and the transparent conductive film 20 are formed, and the transparent conductive film 20 or said semiconductor layer 60 on the light-shielding conductive substrate 13.

Description

【発明の詳細な説明】 本発明は、水素化アモルファスシリコン(以下ra−8
i:HJという。)又は水素化アモルファスシリコンカ
ーバイト(以下「a−8iC:1−IJという。)を用
いた太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to hydrogenated amorphous silicon (hereinafter referred to as RA-8
i: My name is HJ. ) or hydrogenated amorphous silicon carbide (hereinafter referred to as "a-8iC:1-IJ").

従来、この太陽電池の代表例としては、第1図に示すよ
うにガラス等の透光性絶縁基板1上に、真空蒸着法、ス
パッタ法又はCVD法等により酸化インジリム等の透明
導電膜2と、グロー放電分解法によりp型a −si 
:He3.r型a−3j:1」層4及びn型a−3i:
l−1層5からなるアモルファスシリコン半導体層(以
下「a−3i半導体層」という。)6と、真空蒸着法等
によりアルミニウム等の金属電極7とを積層している。
Conventionally, as a typical example of this solar cell, as shown in FIG. 1, a transparent conductive film 2 such as indirim oxide is deposited on a transparent insulating substrate 1 made of glass or the like by vacuum evaporation, sputtering, CVD, etc. , p-type a-si by glow discharge decomposition method
:He3. R-type a-3j: 1'' layer 4 and n-type a-3i:
An amorphous silicon semiconductor layer (hereinafter referred to as "a-3i semiconductor layer") 6 consisting of an l-1 layer 5 and a metal electrode 7 made of aluminum or the like are laminated by a vacuum evaporation method or the like.

そして、光8は、透光性絶縁基板1の側から入射し、主
としてi型a−8i層4内で吸収されて透明導電PIA
2と金属電極7との間で起電力を発生させる。
The light 8 enters from the side of the transparent insulating substrate 1 and is mainly absorbed within the i-type a-8i layer 4 to form a transparent conductive PIA.
An electromotive force is generated between the metal electrode 2 and the metal electrode 7.

このような太陽電池の変換効率と、a−8i半導体層6
の作成条件については多くの研究がなされているが、透
明導電膜2とa−3i:l−1層3との界面については
未だ解明されておらず、現状では変換効率を向上させる
にも限界を来たしており、またそのバラツキが大きい欠
点があった。
The conversion efficiency of such a solar cell and the a-8i semiconductor layer 6
Although much research has been conducted on the conditions for forming the transparent conductive film 2 and the a-3i:l-1 layer 3, the interface between the transparent conductive film 2 and the a-3i:l-1 layer 3 has not yet been elucidated, and there are currently limits to improving the conversion efficiency. There was also a drawback that there was a large variation in the results.

本発明の目的は、上記した欠点を除去し、変換効率を向
上させ、かつそのバラツキの少ない太陽電池を提供する
ことである。
An object of the present invention is to eliminate the above-mentioned drawbacks, improve conversion efficiency, and provide a solar cell with less variation.

このような目的を達成させるために、本発明は、(1)
透光性絶縁基板上に、透明導電膜と、p型。
In order to achieve such an objective, the present invention provides (1)
A transparent conductive film and a p-type film are formed on a transparent insulating substrate.

i型及びn型の各層がa−3i:l−(であり又はp型
及びn型のうちいずれか少なくとも一方の層がa−3i
C:Hであってi型の層がa−8i:l−1であるa−
3i半導体層とを具備しに太陽電池において、前記透明
導電膜と前記a−3i:l−1又はa−3iC:Hとの
間に白金、ニオブ、パラジウム及びロジウムのうち少な
くとも1種を主体とする膜を介在していることを特徴と
する太陽電池、並びに〈2〉遮光性導電基板上に、p型
、i型及び11型の各層がa−81:H又はp型及びn
型のうちいずれか少なくとも一方の層がa−3i(::
Hであってi型の層がa−3iニド1からなるa −8
i半導体層と、透明導電膜とを具備した太陽電池におい
て、前記遮光性導電基板と前記a−3i:H又はa−8
iC:Hとの間、あるいは前記a−8i:H又はa−3
iC:l−1と前記透明導電膜との間に白金、ニオブ、
パラジウム及びロジウムのうち少なくとも1種を主体と
する膜を介在していることを特徴とする太陽電池である
Each of the i-type and n-type layers is a-3i:l-(or at least one of the p-type and n-type layers is a-3i
a- where C:H and the i-type layer is a-8i:l-1
3i semiconductor layer, wherein at least one of platinum, niobium, palladium, and rhodium is mainly present between the transparent conductive film and the a-3i:l-1 or a-3iC:H. <2> A solar cell characterized in that each of p-type, i-type and 11-type layers has a-81:H or p-type and n
At least one layer of the mold is a-3i (::
a-8 which is H and has an i-type layer consisting of a-3i nide 1
i A solar cell comprising a semiconductor layer and a transparent conductive film, wherein the light-shielding conductive substrate and the a-3i:H or a-8
between iC:H or a-8i:H or a-3
Platinum, niobium,
This solar cell is characterized by having a film mainly composed of at least one of palladium and rhodium interposed therebetween.

ここで゛、「透光性絶縁基板」は、ガラス、フィルムな
ど透光性絶縁材料からなる基板である。
Here, the "transparent insulating substrate" is a substrate made of a transparent insulating material such as glass or film.

「透明導電膜」は、酸化インジウム又は酸化スズを主成
分とする膜、あるいはこれらの多層膜からなる。「白金
、ニオブ、パラジウム及びロジウムのうち少なくとも1
種を主体とする膜Jは、白金等を真空蒸着法、スパッタ
法又はイオンブレーティング法等の成膜法により成膜し
たものであるが、その質量膜厚く単位面偵当りの膜質量
をその膜(白金)の比重(21(+ /CC)で割った
ものをいう。
The "transparent conductive film" is a film whose main component is indium oxide or tin oxide, or a multilayer film thereof. "At least one of platinum, niobium, palladium and rhodium
The seed-based film J is formed by depositing platinum or the like by a film forming method such as a vacuum evaporation method, a sputtering method, or an ion blating method. It is divided by the specific gravity of the membrane (platinum) (21(+/CC)).

)については、本発明の変換効率を考慮して好しくは1
〜30人であって、このような薄い膜の場合には島状の
ような不連続膜になっていると考えられる。「遮光性導
電基板」は、ステンレス等の金属性基板又はガラスもし
くは有機樹脂等の基板上にステンレス、クロム等の金属
膜をff1liたちのである。
) is preferably 1 in consideration of the conversion efficiency of the present invention.
~30 people, and in the case of such a thin film, it is considered to be a discontinuous film like an island. A "light-shielding conductive substrate" is a metal film made of stainless steel, chromium, etc. on a metallic substrate such as stainless steel, or a substrate made of glass or organic resin.

以下、本発明を実施例をもって詳細に説明する。Hereinafter, the present invention will be explained in detail using examples.

第2図は、透光性絶縁基板を用いた太陽電池における本
発明の一実施例を示し、第1図と同一構成部分は同一記
号を付している(以下同様)。
FIG. 2 shows an embodiment of the present invention in a solar cell using a transparent insulating substrate, and the same components as in FIG. 1 are given the same symbols (the same applies hereinafter).

10はソーダライムガラスから成形されたガラス基板で
あり、このガラス基板10上にスズを不純物として含ん
だ酸化インジウム(以下rlTOJという。)膜20(
膜厚ニア00人、シート抵抗:約30Ω/口)を真空蒸
着法により成膜し、このITO膜2膜上0上金膜9(質
量膜厚:約10A)を真空蒸着により成膜する。この白
金膜9は非常に薄いものであるから、必ずしも連続膜に
ならず、島状構造のような不連続膜になっていると予想
される。
10 is a glass substrate molded from soda lime glass, and on this glass substrate 10 is formed an indium oxide (rlTOJ) film 20 (hereinafter referred to as rlTOJ) containing tin as an impurity.
A film with a film thickness of about 0.00 mm, sheet resistance: about 30 Ω/mouth) is formed by vacuum evaporation, and a gold film 9 (mass film thickness: about 10 A) is formed on top of the ITO film 2 by vacuum evaporation. Since this platinum film 9 is very thin, it is not necessarily a continuous film, but is expected to be a discontinuous film such as an island structure.

この白金膜9による光の吸収は、波長550nmの光に
対して約4%であった。次に、この白金膜9上にp型a
−3iC:l−1層30(膜厚:100人)、i型a−
3iニド1層40(膜厚: 5000人)及びn型a−
81ニド1層50からなるa−3i半導体層60をグロ
ー放電分解法により成膜し、このa−3i半導体層60
上に金属電極としてアルミニウム電極70を真空蒸着法
により付着させて、太陽電池を製作した。なお、本発明
の効果を評価するために、比較例として、第2図に示し
た実施例中、ITO膜2膜上0上金膜9を成膜せずに、
直接a−3i半導体層60を積層し、次いでアルミニウ
ム電極70を付着した太陽電池を製作した。
The absorption of light by this platinum film 9 was approximately 4% for light having a wavelength of 550 nm. Next, on this platinum film 9, a p-type a
-3iC: l-1 layer 30 (thickness: 100), i type a-
3i nide 1 layer 40 (film thickness: 5000 layers) and n type a-
An a-3i semiconductor layer 60 consisting of one layer 50 of 81 oxide was formed by glow discharge decomposition method, and this a-3i semiconductor layer 60
An aluminum electrode 70 was deposited thereon as a metal electrode by vacuum evaporation to produce a solar cell. In order to evaluate the effects of the present invention, as a comparative example, the gold film 9 was not deposited on the ITO film 2 in the example shown in FIG.
A solar cell was fabricated in which an a-3i semiconductor layer 60 was directly stacked and then an aluminum electrode 70 was attached.

このような実施例及び比較例による太陽電池の電流電圧
特性は、AMI(エアマス1)に調整された光を照射し
たときの電流電圧特性を測定した結果、それぞれ第3図
の曲線11及び12で示される。
The current-voltage characteristics of the solar cells according to the examples and comparative examples are as shown by curves 11 and 12 in Figure 3, respectively, as a result of measuring the current-voltage characteristics when AMI (air mass 1) is irradiated with adjusted light. shown.

また、下表に実施例及び比較例による太陽電池の緒特性
を示す。なお、同表の数値は比較例の個々の特性を雄準
にして規格化している。
Further, the table below shows the characteristics of solar cells according to Examples and Comparative Examples. Note that the numerical values in the same table are standardized using the individual characteristics of the comparative example as a standard.

この表によれば、実施例の太陽電池は、比較例のものと
対比して変換効率を15%も向上させていることがわか
る。また、この変換効率のバラツキについては、実施例
の太陽電池が比較例のものよりも少ないことが確認され
た。なお、実施例の太陽電池は短絡電流が減少している
。これは白金膜9の内部での光吸収及びその表面での光
反射により有効に利用される光(4)が減少したためと
予想される。しかし、この短絡電流の減少分よりも開放
端電圧、フィルファクタの各増加分の方が大きいために
、結果としては前述したとおり変換効率を増加させてい
る。開放端電圧及びフィルファクタが増加した理由は現
時点では定かでないが、白金膜9をITO膜20とp型
a−8iC:8層30との間に介在させたことにより、
この白金7119が、グロー放電分解法によってp型a
−8iC:l−1層30を積層するときに発生する還元
性プラズマからITO膜20を保護し、抵抗性接触(オ
ーミックコンタクト)を改善したためであると予想され
る。
According to this table, it can be seen that the solar cells of the examples have improved conversion efficiency by as much as 15% compared to those of the comparative examples. Furthermore, it was confirmed that the variation in conversion efficiency was smaller in the solar cells of the examples than in the comparative examples. In addition, the short circuit current of the solar cell of the example is reduced. This is expected to be due to a decrease in the amount of effectively utilized light (4) due to light absorption inside the platinum film 9 and light reflection on its surface. However, since the increases in open circuit voltage and fill factor are larger than the decrease in short circuit current, the conversion efficiency is increased as described above. The reason why the open circuit voltage and fill factor increased is not clear at present, but by interposing the platinum film 9 between the ITO film 20 and the p-type a-8iC:8 layer 30,
This platinum 7119 was decomposed into p-type a by glow discharge decomposition method.
-8iC: This is expected to be because the ITO film 20 was protected from the reducing plasma generated when laminating the l-1 layer 30 and the resistive contact (ohmic contact) was improved.

次に、遮光性導電基板を用いた太陽電池におレプる本発
明の実施例を第4図、第5図及び第6図に示す。これら
の実施例はいずれも、ステンレス等の金属基板、又はガ
ラスもしくは有機樹脂等の基板上にステンレス、クロム
等の金属膜を付着した遮光性導電基板が使用可能であり
、本例ではステンレス基板13を使用し、またa−8i
半導体層61上にITO膜20を積層している。そして
a −3i半導体層61は、p型a−3i:8層31.
i型a−3i層40及びn型a−3i:)(層50より
構成されている。本発明の特徴となる白金膜9は、第4
図にてステンレス基板13とp型a−3i:l−(層3
1との間、第5図にてn型a −8!  : HFJ5
0とITO膜20との間、並びに第6図にてステンレス
基板13とp 型a −s r  : +−+i31と
の間及びn型a−8i:(−1層50とITO膜20と
の間にそれぞれ介在されている。いずれの実施例も前実
施例と同様な効果を奏した。以上の実施例では、白金膜
9を介在させたが、これに代えて、ニオブ、パラジウム
膜及びOジウム膜をそれぞれ介在したものについても白
金膜9と同様な効果を奏したので、本発明の特徴となる
介在物としては、白金、ニオブ、パラジウム及びロジウ
ムのうち少なくとも1種を主体とした膜であることにな
る。
Next, FIGS. 4, 5, and 6 show examples of the present invention applied to a solar cell using a light-shielding conductive substrate. In all of these embodiments, it is possible to use a metal substrate such as stainless steel, or a light-shielding conductive substrate in which a metal film such as stainless steel or chromium is adhered to a substrate such as glass or organic resin. and a-8i
The ITO film 20 is laminated on the semiconductor layer 61. The a-3i semiconductor layer 61 is a p-type a-3i:8 layer 31.
It is composed of an i-type a-3i layer 40 and an n-type a-3i layer 50.The platinum film 9, which is a feature of the present invention, is
In the figure, stainless steel substrate 13 and p-type a-3i:l- (layer 3
1, n-type a -8 in Figure 5! : HFJ5
0 and the ITO film 20, and in FIG. Each of the examples had the same effect as the previous example. In the above examples, the platinum film 9 was interposed, but in place of this, niobium, palladium film and O Since the same effect as platinum film 9 was obtained with each intervening film of gold, the inclusions that are the feature of the present invention are films mainly composed of at least one of platinum, niobium, palladium, and rhodium. It turns out that there is.

本発明は以上の実施例のとおりであるが、その他には、
a−3i半導体層60についてn型a−8i:8層50
をn型a−3iC:l−1層に変更し、p型a−3iC
:8層30とn型a−8i:H層5゜(又はn型a−8
’+ C:H層)を置換し、またa−3i半導体層61
についてp型a −8i  : )ljii50とf1
型a−8i:8層31のうち一方又は双方をそれぞれp
型a−3iC:H層とn型a−8iQH[1層に変更し
、D 型a −8i  : !−1850(又ハp 型
a−8iC:l−1層)とn型a−3i:)−1層31
(又は11型a−8iC:f−1層)を置換してもよい
。なお、a−8i c:H層はa−3i:l−1層と対
比してバンドギャップを大きくすることができ、短絡電
流及び開放端電圧を上界させる効果があり、変換効率が
高くなる利点をもっている。
The present invention is as described in the above embodiments, but in addition,
Regarding the a-3i semiconductor layer 60, the n-type a-8i: 8 layer 50
is changed to n-type a-3iC:l-1 layer, and p-type a-3iC
: 8 layer 30 and n-type a-8i: H layer 5° (or n-type a-8
'+C:H layer) and also a-3i semiconductor layer 61
For p-type a-8i: ) ljii50 and f1
Type a-8i: one or both of the eight layers 31 are p
Type a-3iC: H layer and n-type a-8iQH [changed to one layer, D type a-8i: ! -1850 (also hap type a-8iC:l-1 layer) and n-type a-3i:)-1 layer 31
(or type 11 a-8iC: f-1 layer) may be replaced. Note that the a-8i c:H layer can have a larger bandgap compared to the a-3i:l-1 layer, has the effect of raising the short circuit current and open circuit voltage, and increases the conversion efficiency. It has advantages.

また、ITO膜2oに代えて、酸化インジウム又は酸化
スス′を主成分とする透明導電膜、あるいはこれらの多
層膜構造の透明導電膜であってもよい。
Further, instead of the ITO film 2o, a transparent conductive film containing indium oxide or soot oxide as a main component, or a transparent conductive film having a multilayer structure of these may be used.

白金膜9等の成膜法として真空蒸着法の伯に、スパッタ
リング法等を使用してもよい。
As a method for forming the platinum film 9 and the like, a sputtering method or the like may be used instead of the vacuum evaporation method.

以上のとおり、本発明によれば、従来以上に太陽電池の
変換効率を向上させ、かつそのバラツキを少なくさせた
ことがら、その実用的価値は多大である。
As described above, according to the present invention, the conversion efficiency of solar cells is improved more than ever, and the variation thereof is reduced, so that the present invention has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池を示す断面図、第2図は本発明
による実施例を示す断面図、第3図は前実施例による太
陽電池の電流電圧特性図、並びに第4図、第5図及び第
6図は本発明に他の実施例を示す断面図である。 10・・・ガラス基板、13・・・ステンレス基板、2
0−−− ITO膜、3O−−−p型a−3iC:H層
、3l−−−p型a−3i:l−1層、4O−−−i型
a−3i:l−111,5O−−−n型a−8i:l−
1層、60.61  ・・・a−8i半導体層、70・
・・アルミニウム電極、8・・・光、9・・・白金膜f
f7’rt−−
FIG. 1 is a sectional view showing a conventional solar cell, FIG. 2 is a sectional view showing an embodiment according to the present invention, FIG. 3 is a current-voltage characteristic diagram of the solar cell according to the previous embodiment, and FIGS. 6 and 6 are cross-sectional views showing other embodiments of the present invention. 10...Glass substrate, 13...Stainless steel substrate, 2
0---ITO film, 3O---p type a-3iC:H layer, 3l---p type a-3i:l-1 layer, 4O---i type a-3i:l-111,5O ---n type a-8i: l-
1 layer, 60.61...a-8i semiconductor layer, 70.
...Aluminum electrode, 8...Light, 9...Platinum film f
f7'rt--

Claims (2)

【特許請求の範囲】[Claims] (1) 透光性絶縁基板上に、透明導電膜と、p型、i
型及び1)型の各層がa−3i:)−1であり又はp型
及び1)型のうちいずれか少なくとも一方の層がa−s
ic:hであってi型の層がa−3i:Hであるa−3
i半導体層とを具備した太陽電池において、前記透明導
電膜と前記a−3i:l−(又はa−3iC:l−1と
の間に白金、ニオブ、パラジウム及びロジウムのうち少
なくとも1種を主体とする膜を介在していることを特徴
とする太陽電池。
(1) A transparent conductive film, p-type, i
Each layer of the type and 1) type is a-3i:)-1, or at least one layer of the p type and 1) type is a-s.
a-3 where ic:h and the i-type layer is a-3i:H
i semiconductor layer, in which at least one of platinum, niobium, palladium, and rhodium is mainly present between the transparent conductive film and the a-3i:l- (or a-3iC:l-1); A solar cell characterized by having a film interposed therebetween.
(2) 遮光性導電基板上に、p型、1型及びn型の各
層がa−3i:)lであり又はp型及びn型のうちいず
れか少なくとも一方の層がa−3i C:Hであってi
型の層がa−3i:Hであるa −31半導体層と、透
明導電膜とを具備した太陽電池において、前記遮光性導
電基板と前記a−8i:H又はa−3iC:l−(との
間、あるいは前記a−Si ニド1又はa−3iC:l
−1と前記透明導電膜との間に白金、ニオブ、パラジウ
ム及びロジウムのうち少なくとも1種を主体とする膜を
介在していることを特徴とする太陽電池。
(2) On the light-shielding conductive substrate, each of the p-type, 1-type, and n-type layers is a-3i:)l, or at least one of the p-type and n-type layers is a-3i C:H. And i
In a solar cell comprising an a-31 semiconductor layer whose mold layer is a-3i:H and a transparent conductive film, the light-shielding conductive substrate and the a-8i:H or a-3iC:l-(and or the a-Si nide 1 or a-3iC:l
-1 and the transparent conductive film, a film mainly containing at least one of platinum, niobium, palladium, and rhodium is interposed between the solar cell and the transparent conductive film.
JP57228917A 1982-12-27 1982-12-27 Solar cell Granted JPS59119874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228917A JPS59119874A (en) 1982-12-27 1982-12-27 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228917A JPS59119874A (en) 1982-12-27 1982-12-27 Solar cell

Publications (2)

Publication Number Publication Date
JPS59119874A true JPS59119874A (en) 1984-07-11
JPS6323672B2 JPS6323672B2 (en) 1988-05-17

Family

ID=16883875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228917A Granted JPS59119874A (en) 1982-12-27 1982-12-27 Solar cell

Country Status (1)

Country Link
JP (1) JPS59119874A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199385A (en) * 1984-10-19 1986-05-17 Sanyo Electric Co Ltd Photoelectromotive force element
US4689438A (en) * 1984-10-17 1987-08-25 Sanyo Electric Co., Ltd. Photovoltaic device
JPH02111080A (en) * 1988-10-20 1990-04-24 Mitsubishi Heavy Ind Ltd Amorphous thin-film solar cell
WO2003061018A1 (en) * 2002-01-10 2003-07-24 Tdk Corporation Photovoltaic device
JP2009099643A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Thin-film solar cell element, and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149593A (en) * 1978-05-17 1979-11-22 Seiko Epson Corp Solar cell
JPS55127083A (en) * 1979-03-26 1980-10-01 Matsushita Electric Ind Co Ltd Semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149593A (en) * 1978-05-17 1979-11-22 Seiko Epson Corp Solar cell
JPS55127083A (en) * 1979-03-26 1980-10-01 Matsushita Electric Ind Co Ltd Semiconductor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689438A (en) * 1984-10-17 1987-08-25 Sanyo Electric Co., Ltd. Photovoltaic device
JPS6199385A (en) * 1984-10-19 1986-05-17 Sanyo Electric Co Ltd Photoelectromotive force element
JPH02111080A (en) * 1988-10-20 1990-04-24 Mitsubishi Heavy Ind Ltd Amorphous thin-film solar cell
WO2003061018A1 (en) * 2002-01-10 2003-07-24 Tdk Corporation Photovoltaic device
JP2009099643A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Thin-film solar cell element, and its manufacturing method
JP4619388B2 (en) * 2007-10-15 2011-01-26 三菱電機株式会社 Thin film solar cell element and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6323672B2 (en) 1988-05-17

Similar Documents

Publication Publication Date Title
US4162505A (en) Inverted amorphous silicon solar cell utilizing cermet layers
US20080047603A1 (en) Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
JPH05102511A (en) Solar cell module
JPH0582065B2 (en)
JPS59119874A (en) Solar cell
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH10190028A (en) High refractive index transparent conductive film and solar cell
JPH0658971B2 (en) Photovoltaic device manufacturing method
JPH01310578A (en) Photovoltaic device
JPS59202663A (en) Photoelectric converting member
JPS59119875A (en) Solar cell
JP2001257369A (en) Photoelectric transducer and its manufacturing method
JPS6024078A (en) Photovoltaic device
JPH0312973A (en) Amorphous thin film solar cell
JP2000340809A (en) Optoelectronic transducer element
JPS63194372A (en) Amorphous photoelectric conversion device
JPS62256481A (en) Semiconductor device
JPS6152992B2 (en)
JPH05145095A (en) Photovoltaic element
JPH0456170A (en) Manufacture of thin-film solar cell
JP2994716B2 (en) Photovoltaic device
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPS5975679A (en) Photoelectromotive force generating device
JPH06232430A (en) Manufacture of photovoltaic device
JPS61218177A (en) Amorphous silicon photoelectric conversion element