JPS59116357A - Metal having low melting point - Google Patents

Metal having low melting point

Info

Publication number
JPS59116357A
JPS59116357A JP22377382A JP22377382A JPS59116357A JP S59116357 A JPS59116357 A JP S59116357A JP 22377382 A JP22377382 A JP 22377382A JP 22377382 A JP22377382 A JP 22377382A JP S59116357 A JPS59116357 A JP S59116357A
Authority
JP
Japan
Prior art keywords
melting point
during solidification
less
chip
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22377382A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamada
山田 俊宏
Asao Nishimura
西村 朝雄
Motohiro Sato
佐藤 元宏
Hiroaki Doi
土居 博昭
Tatsuji Sakamoto
坂本 達事
Takahiro Oguro
崇弘 大黒
Fumiyuki Kobayashi
小林 二三幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22377382A priority Critical patent/JPS59116357A/en
Publication of JPS59116357A publication Critical patent/JPS59116357A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy having a low m.p., a low expansion coefft. during solidification and superior heat conductivity by alloying Ga with In and Sn in a specified ratio. CONSTITUTION:Each semiconductor chip 2 is attached to a substrate 4 ith solder 3, and a heat conductor 1 made of liq. metal is interposed between the chip 2 and a cover 5 so as to release heat generated in the chip 2 during operation. An alloy having a composition consisting of, by weight, <60% Ga, 25-50% In and 18-40% Sn or further contg. <2% Zn and <0.4% Bi or <0.5% Pb and <0.4% Cd is used as the heat conductor 1. The alloy has 9-10 deg.C low m.p. and undergoes little change in the volume at the melting starting temp. and during solidification, so no load is placed on the chip 2 and the solder 3 by expansion during solidification.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体冷却装置、特に配線基板上に装着された
半導体チップを冷却する際に使用される熱伝導媒体(低
融点金属)に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor cooling device, and particularly to a heat conductive medium (low melting point metal) used when cooling a semiconductor chip mounted on a wiring board. .

〔従来技術〕[Prior art]

液体金属熱伝導体を用いた半導体冷却装置としては第1
図に示すように、基板4上に半田3を介して半導体チッ
プ2を装着し、この半導体チップ2とカバー5との間に
液体金属熱伝導体1を介在させ、カバー5の表面を2次
冷却体により冷却するように構成し、前記半導体チップ
2の稼動時に発生する熱を液体金属熱伝導体1により吸
収するものが提案されている。
The first semiconductor cooling device using a liquid metal thermal conductor
As shown in the figure, a semiconductor chip 2 is mounted on a substrate 4 via a solder 3, a liquid metal thermal conductor 1 is interposed between the semiconductor chip 2 and a cover 5, and the surface of the cover 5 is A device has been proposed in which the semiconductor chip 2 is configured to be cooled by a cooling body, and the heat generated during operation of the semiconductor chip 2 is absorbed by the liquid metal thermal conductor 1.

上記液体金属熱伝導体として用いることが可能であって
、常温付近で液体状態の金属または合金は2〜3種類あ
って、その代表的なものは水銀である。ところが、この
水銀は融点が一40Cで、かつ蒸気圧が1.3X10−
3陥Hg(20t?)と高いため、取扱いの困難である
欠点がある。
There are two to three types of metals or alloys that can be used as the liquid metal heat conductor and are in a liquid state at around room temperature, and a typical one is mercury. However, this mercury has a melting point of 140C and a vapor pressure of 1.3X10-
It has the disadvantage of being difficult to handle because it is as high as 3 Hg (20 tons?).

そこで、水銀に比べて融点は高いが、常温付近で液体と
なる可能性を有する金属としては、ガリワムおよびセジ
ュウムがあり、これらの金属の融点は約30Cである。
Therefore, metals that have a higher melting point than mercury but have the possibility of becoming liquid at around room temperature include galliwaum and cedium, and the melting point of these metals is about 30C.

しかし、セシュウムは蒸気圧が高く、かつ取扱いが困難
であるばかりでなく、基礎データもないから問題が多い
However, cesium has a high vapor pressure and is difficult to handle, and there are many problems because there is no basic data.

一方、ガリウムは融点が30t?で、かつ蒸気圧も著し
く低い(10””wnHg)から取扱いが容易である。
On the other hand, gallium has a melting point of 30t? Moreover, the vapor pressure is extremely low (10''wnHg), making it easy to handle.

またガリウムに関する基礎研究(は十分でないけれども
、かなりのデータの存在により諸性質が明らかになって
いる。現在知られているガリウム合金で最も融点の低い
ものは、その成分組成がガリウム(Ga)二62%、イ
ンジウム(In)=22%、錫(Sn):16%からな
り、その融点は約11tl’である。
Although basic research on gallium is not sufficient, various properties have been clarified due to the existence of a considerable amount of data.The currently known gallium alloy with the lowest melting point has a composition of gallium (Ga2). 62%, indium (In): 22%, tin (Sn): 16%, and its melting point is approximately 11 tl'.

ところが、純ガリウム(100%)は凝固時に体積膨張
を示す代表的な金属であり、その膨張量は約3%程度で
あるので、このガリウムを前記冷却装置の熱伝導媒体1
として用いた場合、凝固時の膨張により荷重がチップ2
および半田3に付加されるため、チップ2寸たけ半田3
に著しく悪影響を与える恐れがある。したがって前記熱
伝導媒体1は極力融点の低く、かつ凝固時の膨張量の少
ないものが望ましい。
However, pure gallium (100%) is a typical metal that exhibits volumetric expansion during solidification, and the amount of expansion is approximately 3%, so this gallium is used as the heat transfer medium 1 of the cooling device.
When used as a chip, the load increases due to expansion during solidification.
and solder 3, so the chip 2 inch thick solder 3
may have a significant negative impact on. Therefore, it is desirable that the heat transfer medium 1 has a melting point as low as possible and a small amount of expansion upon solidification.

〔発明の目的〕[Purpose of the invention]

本発明は上記要望を満足させる液体金属の熱伝導媒体、
すなわち融点の低く、かつ凝固時の膨張量の少ない低融
点金属を提供することを目的とするものである。
The present invention provides a liquid metal thermal conductive medium that satisfies the above requirements;
That is, the object is to provide a low melting point metal that has a low melting point and a small amount of expansion during solidification.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、重量比でガリウム
(Qa):60%以下、インジウム(In):25〜5
0%、錫(Sn):18〜40%および残部は不純物か
らなる成分組成を有するようにしたことを特徴とするも
のである。
In order to achieve the above object, the present invention has a weight ratio of gallium (Qa): 60% or less, indium (In): 25 to 5%.
0%, tin (Sn): 18 to 40%, and the remainder consisting of impurities.

〔発明の実施例〕[Embodiments of the invention]

以F本発明の実施例について詳述する。 Hereinafter, embodiments of the present invention will be described in detail.

ガリウム合金の製造時に添加される添加元素の凝固時の
収縮量は下記の第1表(金属データブック記載)に示す
とおりである。
The amount of shrinkage during solidification of additional elements added during the production of gallium alloys is as shown in Table 1 below (described in the Metal Data Book).

第   1   表 上記ガリウム(Ga)は含有量を減少させると、凝固時
の膨張量が減少すると考えられる。しかしガリウム合金
の低融点化をはかるためには、ある程度以上のカリウム
含有量を必要とし、またはガリウムーインジュウムー錫
の三元合金のようにインジュウムおよび錫を添加しなけ
ればならない。
Table 1 It is thought that when the content of the above gallium (Ga) is reduced, the amount of expansion during solidification is reduced. However, in order to lower the melting point of a gallium alloy, it is necessary to have a potassium content above a certain level, or it is necessary to add indium and tin, such as in a ternary alloy of gallium-indium-tin.

実用上基本となるガリウムーインジュウムー錫の三元合
金において、前記目的を達成させるためには、ガリウム
含有量を減少させ、このカリウム減少量をインジウムお
よび錫で補足する必要がある。さらにビスマスおよび亜
鉛などの低融点化元素を添加することにより、溶融開始
温度および凝固時の膨張量をより一層に低減させること
が可能である。
In order to achieve the above objective in the ternary alloy of gallium-indium-tin, which is the basis for practical use, it is necessary to reduce the gallium content and supplement this reduced amount of potassium with indium and tin. Furthermore, by adding elements that lower the melting point such as bismuth and zinc, it is possible to further reduce the melting start temperature and the amount of expansion during solidification.

本発明は上述した理念に基づいて種々研究および実験を
行った結果より、重量比でガリウム=60%以下、イン
ジュウム=25〜50%、錫=18〜40%および残部
は不純物からなる成分組成とするか、または前記成分の
他に重量比で亜鉛:2%以下、ビスマウス二0.4%以
下を添加した成分組成とするか、または後者の成分の他
に鉛:0.5%以下、カドミウム=0.4%以下を添加
した成分組成としたものである。
Based on the results of various studies and experiments based on the above-mentioned concept, the present invention has a composition in which gallium is 60% or less, indium is 25 to 50%, tin is 18 to 40%, and the remainder is impurities. Or, in addition to the above ingredients, zinc: 2% or less and bismuth 20.4% or less are added, or in addition to the latter component, lead: 0.5% or less, cadmium. = 0.4% or less of the component composition.

上記のように各成分組成をそれぞれ限定した理由につい
て説明するに、ガリウム(Ga)id第1表に示すよう
に凝固時に膨張する金属であるので、本発明品の凝固時
の膨張量を少くするためには60%以下が好ましい。イ
ンジュウム(In)および錫(Sn)の含有量をそれぞ
れ25〜50%および18〜40%の範囲としたのは、
その範囲外であると、冷却時に固相の量が増加して好ま
しくないからである。
To explain the reason for limiting the composition of each component as described above, gallium (Ga) is a metal that expands during solidification as shown in Table 1, so the amount of expansion during solidification of the product of the present invention is to be reduced. Therefore, it is preferably 60% or less. The content of indium (In) and tin (Sn) was set to be in the range of 25 to 50% and 18 to 40%, respectively.
This is because if it is outside this range, the amount of solid phase increases during cooling, which is undesirable.

亜鉛およびビスマスはガリウムーインジュウムー錫の三
元合金の融点を低下させるために特に有効な元素である
が、前者の亜鉛は2%以上添加しても、常温では晶出し
て固溶量が2%付近が限界であシ、後者のビスマスは第
1表に示すようにガリウムと同様に凝固時に膨張する金
属であるので、本発明品の凝固時の膨張量を少くするた
めには0.5%以下が好ましい。
Zinc and bismuth are particularly effective elements for lowering the melting point of the ternary alloy of gallium-indium-tin, but even if the former zinc is added in an amount of 2% or more, it will crystallize at room temperature and the amount of solid solution will decrease. The limit is around 2%, and as shown in Table 1, the latter bismuth is a metal that expands during solidification like gallium, so in order to reduce the amount of expansion during solidification of the product of the present invention, it should be set at 0. It is preferably 5% or less.

純ガリウムからなる試料A1および本発明品の試料屋3
〜4の成分組成、溶融開始温度および凝固時の体積変化
率は下記に示す第2表のとおりである。
Sample A1 made of pure gallium and sample shop 3 of the product of the present invention
The component composition, melting start temperature, and volume change rate during solidification of 4 to 4 are as shown in Table 2 below.

上記の表より明らかなように本発明品の試料A3〜A5
は、溶融開始温度が8〜10C1凝固時の体積変化率が
1.2%以下であり、試料A1の純ガリウムに比べて溶
融開始温度は大幅に低下し、かつ体積変化率は半分以下
に減少する。また公知試料A2と比較しても、溶融開始
温度および体積変化率は、より一層に小さくなることが
明らかである。
As is clear from the table above, samples A3 to A5 of the products of the present invention
The melting start temperature is 8 to 10C1, and the volume change rate during solidification is 1.2% or less, and the melting start temperature is significantly lower than that of pure gallium of sample A1, and the volume change rate is reduced to less than half. do. Furthermore, it is clear that the melting start temperature and volume change rate are even smaller when compared with known sample A2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、溶融開始温度を1
0′C以下となし、かつ凝縮時の体積膨張量を少なくす
ることができるので、万一、凝固した場合でも半導体チ
ップにほとんどストレスを付加しない熱伝導媒体(冷却
媒体)をうることができる。
As explained above, according to the present invention, the melting start temperature is reduced to 1
Since the temperature can be kept at 0'C or less and the amount of volumetric expansion during condensation can be reduced, it is possible to obtain a thermally conductive medium (cooling medium) that hardly applies stress to the semiconductor chip even if it solidifies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体冷却装置の概略断面図である。 第 1[12 秦野市堀山下1番地株式会社日 立製作所神奈川工場内 FIG. 1 is a schematic cross-sectional view of a semiconductor cooling device. No. 1 [12 Nippon Co., Ltd., 1 Horiyamashita, Hadano City Inside Tachi Seisakusho Kanagawa Factory

Claims (1)

【特許請求の範囲】 1、成分組成が重量比でガリワム(Ga):60%以下
、インジュウム(In):z5〜50%、錫(Sn)=
18〜40%および残部は不純物からなることを特徴と
する低融点金属。 2、 重量比で亜鉛(Zn):2%以下、ビスマウス(
13i):0.4%以下を添加したことを特徴とする特
許請求の範囲第1項記載の低融点金属。 3、重量比で鉛(Pb):0.5%以下、カドミウム(
Cd):0.4%以下を添加したことを特徴とする特許
請求の範囲第2項記載の低融点金属。
[Claims] 1. Component composition in terms of weight ratio: Galiwam (Ga): 60% or less, Indium (In): z5 to 50%, Tin (Sn) =
A low melting point metal characterized by comprising 18 to 40% and the remainder consisting of impurities. 2. Zinc (Zn): 2% or less by weight, bismouth (
13i): The low melting point metal according to claim 1, wherein 0.4% or less of the metal is added. 3. Lead (Pb): 0.5% or less, cadmium (by weight)
Cd): The low melting point metal according to claim 2, characterized in that 0.4% or less is added.
JP22377382A 1982-12-22 1982-12-22 Metal having low melting point Pending JPS59116357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22377382A JPS59116357A (en) 1982-12-22 1982-12-22 Metal having low melting point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22377382A JPS59116357A (en) 1982-12-22 1982-12-22 Metal having low melting point

Publications (1)

Publication Number Publication Date
JPS59116357A true JPS59116357A (en) 1984-07-05

Family

ID=16803479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22377382A Pending JPS59116357A (en) 1982-12-22 1982-12-22 Metal having low melting point

Country Status (1)

Country Link
JP (1) JPS59116357A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248476A (en) * 1992-04-30 1993-09-28 The Indium Corporation Of America Fusible alloy containing bismuth, indium, lead, tin and gallium
US5455004A (en) * 1993-10-25 1995-10-03 The Indium Corporation Of America Lead-free alloy containing tin, zinc, indium and bismuth
US5800060A (en) * 1992-08-19 1998-09-01 Geraberger Thermometer Werk Gmbh Clinical thermometer
CN103740995A (en) * 2013-12-04 2014-04-23 曹帅 Gallium-based liquid alloy material and preparation method thereof
CN112941387A (en) * 2021-01-28 2021-06-11 燕山大学 Low-melting-point liquid metal and method for continuously reducing melting point of liquid metal from five elements to eight elements
CN116536547A (en) * 2023-07-06 2023-08-04 有研工程技术研究院有限公司 Plasticine-like metal material and preparation method and application thereof
WO2024029436A1 (en) * 2022-08-01 2024-02-08 千住金属工業株式会社 Metal and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248476A (en) * 1992-04-30 1993-09-28 The Indium Corporation Of America Fusible alloy containing bismuth, indium, lead, tin and gallium
JPH0617169A (en) * 1992-04-30 1994-01-25 Indium Corp Of America:The Readily fusible alloy containing bismuth, indium, lead, tin and gallium
US5800060A (en) * 1992-08-19 1998-09-01 Geraberger Thermometer Werk Gmbh Clinical thermometer
US6019509A (en) * 1992-08-19 2000-02-01 Geraberger Thermometerwerk Gmbh Low melting gallium, indium, and tin eutectic alloys, and thermometers employing same
US5455004A (en) * 1993-10-25 1995-10-03 The Indium Corporation Of America Lead-free alloy containing tin, zinc, indium and bismuth
CN103740995A (en) * 2013-12-04 2014-04-23 曹帅 Gallium-based liquid alloy material and preparation method thereof
CN103740995B (en) * 2013-12-04 2015-12-09 曹帅 A kind of gallium base fluid state alloy material and preparation method thereof
CN112941387A (en) * 2021-01-28 2021-06-11 燕山大学 Low-melting-point liquid metal and method for continuously reducing melting point of liquid metal from five elements to eight elements
WO2024029436A1 (en) * 2022-08-01 2024-02-08 千住金属工業株式会社 Metal and electronic device
CN116536547A (en) * 2023-07-06 2023-08-04 有研工程技术研究院有限公司 Plasticine-like metal material and preparation method and application thereof
CN116536547B (en) * 2023-07-06 2023-10-27 有研工程技术研究院有限公司 Plasticine-like metal material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Bumps et al. Titanium-aluminum system
US5569433A (en) Lead-free low melting solder with improved mechanical properties
JPH10291087A (en) High-strength lead-free solder
Gigliotti et al. Halo formation in eutectic alloy systems
JPS59116357A (en) Metal having low melting point
JP4191370B2 (en) High heat conduction pressure casting alloy and alloy casting
SU453818A3 (en) ALUMINUM SOLDER SOLUTION
JPS6158542B2 (en)
US3981724A (en) Electrically conductive alloy
KR890010256A (en) Alloy based on copper to obtain aluminum beta-brass containing particle-size reducing additives
JPS59581B2 (en) Silver-added intermetallic compound TiAl-based heat-resistant alloy
JPS63270442A (en) Magnesium alloy die cast product and its production
DE60232376D1 (en) LEAD-FREE TIN ZINC LOT AND SOLID PART
US4014688A (en) Contact material for high-power vacuum circuit breakers
US3948652A (en) Contact material for high-power vacuum circuit breakers
US3993481A (en) Contact material for high-power vacuum circuit breakers
JPS61179844A (en) Low melting point alloy
JPH0571656B2 (en)
Dobatkin Metastable Equilibria in Crystallization of Alloys.(Translation)
JPS6311418B2 (en)
JP2580889B2 (en) High temperature solder
SU454269A1 (en) Copper based alloy
JPS5511164A (en) Phosphorus-copper type brazing alloy and manufacture thereof
JPS6345339A (en) Copper alloy for high electrical conduction having low softening temperature
US2706679A (en) Lithium halide flux for treating magnesium-lithium alloys