JPS59581B2 - Silver-added intermetallic compound TiAl-based heat-resistant alloy - Google Patents

Silver-added intermetallic compound TiAl-based heat-resistant alloy

Info

Publication number
JPS59581B2
JPS59581B2 JP613782A JP613782A JPS59581B2 JP S59581 B2 JPS59581 B2 JP S59581B2 JP 613782 A JP613782 A JP 613782A JP 613782 A JP613782 A JP 613782A JP S59581 B2 JPS59581 B2 JP S59581B2
Authority
JP
Japan
Prior art keywords
silver
tial
intermetallic compound
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP613782A
Other languages
Japanese (ja)
Other versions
JPS58123847A (en
Inventor
健紀 橋本
広雄 菅
得蔵 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP613782A priority Critical patent/JPS59581B2/en
Publication of JPS58123847A publication Critical patent/JPS58123847A/en
Publication of JPS59581B2 publication Critical patent/JPS59581B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は延性を改善した耐熱性の金属間化合物TiA1
基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a heat-resistant intermetallic compound TiA1 with improved ductility.
Regarding base alloys.

チタンとアルミニウム2元系にはアルミニウム含有量が
重量にして約34%から60%の範囲にわたって結晶構
造がL1oである金属間化合物相TiAI(以下TiA
l相と言う)が存在する。
The titanium-aluminum binary system has an intermetallic compound phase TiAI (hereinafter referred to as TiA
(referred to as l phase) exists.

このTiAl相は次の特徴をもつ。■ 軽い ■ 高温における耐酸化性がよい。This TiAl phase has the following characteristics. ■ Light ■ Good oxidation resistance at high temperatures.

■ 温度上昇と共に強度が増加し、約700℃で最大と
なる。
■ Strength increases as temperature rises and reaches its maximum at approximately 700°C.

■ 延性に乏しい。■ Poor ductility.

このため、TiAl相をベースとする合金は画期的な軽
量耐熱材料となる可能性を秘めており、数多くの研究が
なされている。
For this reason, alloys based on the TiAl phase have the potential to become innovative lightweight heat-resistant materials, and numerous studies are being conducted on them.

しかし現在までこの系の合金の延性の乏しい欠点を改善
することができず、TiA1基合金として実用化された
ものはない。本発明の目的は、TiAl相をベースとし
た金属間化合物TiA1基合金の延性を改善し、実用し
得るTiA1基耐熱合金を提供するにある。
However, until now, it has not been possible to improve the poor ductility of this type of alloy, and no TiA single-based alloy has been put to practical use. An object of the present invention is to improve the ductility of an intermetallic compound TiAl-based alloy based on a TiAl phase, and to provide a TiAl-based heat-resistant alloy that can be put to practical use.

本発明者は前記目的を達成せんと研究の結果、チタンと
アルミニウムを重量比で66:34〜40:60とする
結晶型がL1oである金属間化合物相TiAlをベース
とするものに銀または銀合金を添加すると、TiA1基
合金の延性が著しく向上し得られることを見出し、この
知見に基づいて本発明を完成した。本発明者の研究によ
れば、結晶型がLloである金属間化合物相TiAlと
銀は包晶反応を含む擬2元系を構成する。
As a result of research to achieve the above-mentioned object, the present inventors have found that silver or silver is added to an intermetallic compound phase TiAl having a crystal type L1o in which the weight ratio of titanium and aluminum is 66:34 to 40:60. It has been discovered that the ductility of a TiA single-base alloy can be significantly improved by adding an alloy, and the present invention has been completed based on this finding. According to the research of the present inventors, the intermetallic compound phase TiAl whose crystal type is Llo and silver constitute a pseudo-binary system including a peritectic reaction.

1例としてTiAl相中のTi含有量とAl含有量の重
量比が62.5:37.5である場合を第1図に示す。
As an example, FIG. 1 shows a case where the weight ratio of Ti content to Al content in the TiAl phase is 62.5:37.5.

状態図から判るように銀を含むTiA1基合金では、凝
固に際してTiAl相である結晶粒が銀の一次固溶体に
よって囲まれた組織となり、TiAl相同士の粒界は消
失する。これが銀を添加したTiA1基合金の延性が向
上する原因であると考えられる。TiA1相は他の多く
の元素、例えばニオブ、ジルコニウム、バナジウム、ク
ロム、タングステン、タンタルなどの元素を固溶する。
As can be seen from the phase diagram, in a TiAl-based alloy containing silver, during solidification, the crystal grains of the TiAl phase form a structure surrounded by a primary solid solution of silver, and the grain boundaries between the TiAl phases disappear. This is considered to be the reason why the ductility of the TiA mono-based alloy to which silver is added is improved. The TiA1 phase contains many other elements such as niobium, zirconium, vanadium, chromium, tungsten, and tantalum.

本発明において言う金属間化合物相TiAlとは、チタ
ンとアルミニウムが主成分であり、その結晶構造がLl
o型である限り、前記のような他の元素が固溶したもの
も含むものである。また銀は例えば銅、パラジウム、カ
ドミウム、ベリリウム、マグネシウム、マンガン、白金
、亜鉛などの多くの元素を固溶する。本発明においては
チタン、アルミニウム以外の元素を固溶しても、銀が主
成分である限り銀の一次固溶体と考える。他元素を固溶
したTiAl相と銀の一次固溶体の関%も第1図に示し
たと同様であり、前述した機構によりTiAl基合金の
延性を改善し得られる。したがって本発明はTiAl基
合金に対する添加剤が銀合金である場合を含むものであ
る。TiAl相の粒界に銀の一次固溶体が出現するのに
必要な合金中の銀の量は鋳造時の冷却速度や合金の組成
により変化する。
In the present invention, the intermetallic compound phase TiAl is mainly composed of titanium and aluminum, and its crystal structure is Ll.
As long as it is o-type, it also includes those in which other elements such as those mentioned above are dissolved. Silver also forms a solid solution with many elements, such as copper, palladium, cadmium, beryllium, magnesium, manganese, platinum, and zinc. In the present invention, even if elements other than titanium and aluminum are dissolved in solid solution, as long as silver is the main component, it is considered to be a primary solid solution of silver. The relationship between the TiAl phase in which other elements are dissolved and the primary solid solution of silver is also the same as shown in FIG. 1, and the ductility of the TiAl-based alloy can be improved by the mechanism described above. Therefore, the present invention includes the case where the additive to the TiAl-based alloy is a silver alloy. The amount of silver in the alloy necessary for the appearance of a primary solid solution of silver at the grain boundaries of the TiAl phase varies depending on the cooling rate during casting and the composition of the alloy.

いかなる条件であっても銀の一次固溶体が現われない限
界は銀含有量が0.5重量係、好ましくは1.0重量係
である。一方TiAl基合金の延性は銀含有量の増加と
共に向上する。しかし銀の量を多くすれば、TiAl基
合金のもつ軽量という利点は減退する。この意味におい
て銀含有量の上限は50重量係以下、好ましくは40重
量係以下であることがよい。銀添加により延性を改善し
たTiAl基合金は、TiAl相のもつ本来の特性が発
揮され、高温強度の優れた材料となる。
The limit at which a primary solid solution of silver does not appear under any conditions is a silver content of 0.5% by weight, preferably 1.0% by weight. On the other hand, the ductility of TiAl-based alloys increases with increasing silver content. However, increasing the amount of silver reduces the lightweight advantage of the TiAl-based alloy. In this sense, the upper limit of the silver content is preferably 50% by weight or less, preferably 40% by weight or less. A TiAl-based alloy whose ductility has been improved by adding silver exhibits the original characteristics of the TiAl phase and becomes a material with excellent high-temperature strength.

実施例として示した合金においても500なC以上にお
ける強度は代表的チタン合金であるTi− 6 % A
I− 4%Vをしのぐ。従来、航空機用エンジンなどに
おいてチタン合金が使用不能になる400℃から600
℃の温度では鉄基合金が用いられてきた。銀を含むTi
Al基合金はこのような温度における使用に好適である
と考えられる。鉄基合金をTiAl基合金で置きかえる
ことは航空機用エンジンの軽量化をもたらす。これは航
空機全体の著しい軽量化と高性能化を導く優れた効果を
有する。実施例 純度Ci9.7%のスポンジチタン、,14t99.9
9係のアルミニウム、純度99.9%の銀を使用して作
成したTiAl〜10重量係Ag合金(TiAl中のT
i含有量は62.5重量係、AI含有量は37.5重量
係)から大きさが3關角、高さ6.5顧の試験片を切り
出し、圧縮試験を行った。
Even in the alloy shown as an example, the strength at 500 C or higher is that of Ti-6% A, which is a typical titanium alloy.
I- Surpasses 4%V. Conventionally, titanium alloys have been heated at temperatures between 400°C and 600°C, which would make them unusable in aircraft engines, etc.
℃ temperatures, iron-based alloys have been used. Ti containing silver
Al-based alloys are considered suitable for use at such temperatures. Replacing iron-based alloys with TiAl-based alloys results in weight reduction of aircraft engines. This has the excellent effect of significantly reducing the overall weight of the aircraft and improving its performance. Example Sponge titanium with purity Ci 9.7%, 14t99.9
TiAl made using aluminum with a weight ratio of 9 and silver with a purity of 99.9% to Ag alloy with a weight ratio of 10 (T in TiAl)
A test piece having a size of 3 squares and a height of 6.5 squares was cut out from the sample (i content: 62.5 weight ratio, AI content: 37.5 weight ratio), and a compression test was performed.

その結果は第1表に示す通りであった。なお、合金作成
には、前記原料を所定量秤量し、プレスで径40mm,
高さ約50mmのプリケットとし、これを水冷銅ルツボ
、W電極、アルゴン雰囲気を用いてアーク溶解した。破
断強さとしては試験片にクラツクが生じた時の断面積で
荷重を除した値をとった。
The results were as shown in Table 1. In addition, to create the alloy, a predetermined amount of the raw material is weighed, and a diameter of 40 mm is prepared using a press.
A ricket with a height of about 50 mm was made, and this was arc melted using a water-cooled copper crucible, a W electrode, and an argon atmosphere. The breaking strength was determined by dividing the load by the cross-sectional area when a crack occurred in the test piece.

圧縮率としては次の値を用いた。〔(試験片の初期高さ
)一(クラツクが入った時の試験片の高さ))XIOO
÷(試験片の初期高さ)。比較のため、1300℃で1
時間焼鈍したTiAl合金(Ti含有量58.3重量係
、AI含有量41,7重量係)から試験片を作り、前記
と同様にして圧縮試験を行った。
The following values were used as the compression ratio. [(Initial height of test piece) - (Height of test piece when crack occurs))XIOO
÷ (initial height of specimen). For comparison, 1 at 1300℃
A test piece was made from a time-annealed TiAl alloy (Ti content: 58.3% by weight, AI content: 41.7% by weight), and a compression test was conducted in the same manner as described above.

その結果は第2表に示す通りであった。前記の第1表と
第2表に示す結果の比較から明らかなように、本発明の
銀添加による延性の向上は著しいことが分かる。
The results were as shown in Table 2. As is clear from the comparison of the results shown in Tables 1 and 2 above, it can be seen that the improvement in ductility due to the addition of silver in the present invention is remarkable.

また銀を含まないTiAl合金では材料の脆さのために
TiAl相の強度は十分発揮されていなく、本発明のも
のは破断強さも顕著に向上することが分かる。
Furthermore, in TiAl alloys that do not contain silver, the strength of the TiAl phase is not sufficiently exhibited due to the brittleness of the material, and it can be seen that the strength of the TiAl phase of the present invention is also significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTiAl−Ag擬2元系平衡状態図である。 FIG. 1 is an equilibrium diagram of the TiAl-Ag pseudo-binary system.

Claims (1)

【特許請求の範囲】[Claims] 1 チタンとアルミニウムを重量比で66:34〜40
:60とする結晶型がLI_0である金属間化合物相T
iAlをベースとし、これに銀を0.5〜50重量%添
加したものからなる金属間化合物TiAl基耐熱合金。
1 Titanium and aluminum weight ratio 66:34-40
:60, intermetallic compound phase T whose crystal type is LI_0
A heat-resistant alloy based on the intermetallic compound TiAl, which is based on iAl and has 0.5 to 50% by weight of silver added thereto.
JP613782A 1982-01-20 1982-01-20 Silver-added intermetallic compound TiAl-based heat-resistant alloy Expired JPS59581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP613782A JPS59581B2 (en) 1982-01-20 1982-01-20 Silver-added intermetallic compound TiAl-based heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP613782A JPS59581B2 (en) 1982-01-20 1982-01-20 Silver-added intermetallic compound TiAl-based heat-resistant alloy

Publications (2)

Publication Number Publication Date
JPS58123847A JPS58123847A (en) 1983-07-23
JPS59581B2 true JPS59581B2 (en) 1984-01-07

Family

ID=11630112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP613782A Expired JPS59581B2 (en) 1982-01-20 1982-01-20 Silver-added intermetallic compound TiAl-based heat-resistant alloy

Country Status (1)

Country Link
JP (1) JPS59581B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639891B2 (en) * 1985-04-02 1994-05-25 川崎重工業株式会社 Engine valve mechanism
JPS6442539A (en) * 1987-08-07 1989-02-14 Kobe Steel Ltd Ti-al metallic material having excellent hot workability
US5348595A (en) * 1988-05-13 1994-09-20 Nippon Steel Corporation Process for the preaparation of a Ti-Al intermetallic compound
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
DE19949541C2 (en) * 1999-10-14 2002-02-28 Forschungszentrum Juelich Gmbh Metallic component with layer and manufacturing process for such a layer

Also Published As

Publication number Publication date
JPS58123847A (en) 1983-07-23

Similar Documents

Publication Publication Date Title
JPS62215B2 (en)
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
Van Thyne et al. Influence of Oxygen, Nitrogen, and Carbon on the phase relationships of the Ti-Al system
JPS59581B2 (en) Silver-added intermetallic compound TiAl-based heat-resistant alloy
US4173469A (en) Magnesium alloys
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
JPH0578769A (en) Heat resistant alloy on intermetallic
EP0494900B1 (en) Strontium-magnesium-aluminum master alloy
EP2295608B1 (en) Aluminium-based grain refiner
JPH0432140B2 (en)
JPS5918457B2 (en) Magnesium-based alloy with high mechanical strength and low corrosion tendency
JPH0129858B2 (en)
US2221285A (en) Silver alloy
US4447392A (en) Ductile silver based brazing alloys containing a reactive metal and manganese or germanium or mixtures thereof
US2310094A (en) Electrical resistance element
JPS6024169B2 (en) magnesium alloy
US3615374A (en) Alloyed copper
JPH0432535A (en) High strength and high rigidity magnesium-lithium alloy
US3181946A (en) Columbium base alloys
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JPH11199955A (en) Titanium alloy for casting, excellent in impact resistance
US4606980A (en) Ductile aluminum based brazing foil containing reactive metals and copper
JPH0740458B2 (en) Temperature fuse alloy
JPS62243733A (en) Aluminum alloy for casting having superior neutron absorbing power
US3318693A (en) Alloy composition