JPS59115545A - Semiconductor element mounting substrate - Google Patents

Semiconductor element mounting substrate

Info

Publication number
JPS59115545A
JPS59115545A JP57225240A JP22524082A JPS59115545A JP S59115545 A JPS59115545 A JP S59115545A JP 57225240 A JP57225240 A JP 57225240A JP 22524082 A JP22524082 A JP 22524082A JP S59115545 A JPS59115545 A JP S59115545A
Authority
JP
Japan
Prior art keywords
semiconductor element
substrate
base metal
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225240A
Other languages
Japanese (ja)
Inventor
Nobuo Ogasa
小笠 伸夫
Akira Otsuka
昭 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57225240A priority Critical patent/JPS59115545A/en
Priority to DE8383112658T priority patent/DE3379928D1/en
Priority to EP83112658A priority patent/EP0113088B1/en
Publication of JPS59115545A publication Critical patent/JPS59115545A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Abstract

PURPOSE:To obtain a semiconductor element mounting substrate which has preferable heat sink instead of ceramic substrate by uniformly dispersing Cu of the prescribed amount, powder sintering an Mo alloy in which thermal expansion coefficient and thermal conductivity are specified as a base metal, and covering the surface with a coating formed of an inorganic material of the prescribed thickness having electric insulation. CONSTITUTION:5-30wt% of Cu is uniformly dispersed, an Mo alloy in which its thermal expansion coefficient is specified to 5.0-8.0X10<-6>cm/cm. deg.C and its thermal conductivity is specified to 0.38cal/cm.sec. deg.C or larger is powder sintered as a semiconductor element mounting base metal 1. Then, an Al2O3 layer 2 of 0.2-20mum of thickness is covered by ion plating on the upper and side faces of the base metal as an element mounting substrate 3. Subsequently, a semiconductor element 6 is secured onto the substrate 3 through a metallized layer 4 and an Au plating layer 5. Thus, the thermal expansion coefficient is particularly set similarly to the GaAs element, thereby coping with high density and large size.

Description

【発明の詳細な説明】 本発明は、集積回路装置の半導体素子搭載用基板に関す
るものであり、半導体素子に発生する熱を効率よく放熱
し得ると共に基板材料本来の特性である素子との熱膨張
係数が近似し、電気絶縁性を有する半導体素子塔載用基
板を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate for mounting a semiconductor element of an integrated circuit device, which is capable of efficiently dissipating heat generated in a semiconductor element, and also reduces thermal expansion with the element, which is an inherent property of the substrate material. The present invention provides a substrate for mounting a semiconductor element having similar coefficients and having electrical insulation properties.

集積回路のうち、高信頼性を必要とするものには、低融
点ガラス、セラミックパッケージや多層セラミックパッ
ケージなどのパッケージ法が従来から用いられている。
For integrated circuits that require high reliability, packaging methods such as low-melting glass, ceramic packages, and multilayer ceramic packages have traditionally been used.

この場合半導体素子はセラミック基板の上に接着の為の
メタルライジング層やメッキ層を介して塔載されるのが
一般的である。
In this case, the semiconductor element is generally mounted on the ceramic substrate via a metal rising layer or a plating layer for adhesion.

この基板は、それ自体気密封止機能、を果すパッケージ
材料の一部としての特性のみでなく、電気絶縁性や半導
体素子との熱膨張係数のミスマツチが小さいことなどの
特性が要求されている。このため従来はA 1120 
a 、B e O,2M g O、S Io 2等の焼
結セラミック材料が広く用いられている。
This substrate is required not only to have properties as part of a package material that itself performs a hermetic sealing function, but also to have properties such as electrical insulation and a small mismatch in thermal expansion coefficient with the semiconductor element. For this reason, conventionally A 1120
Sintered ceramic materials such as a, B e O, 2M g O, and S Io 2 are widely used.

しかし乍ら、近年集積回路素子の高密度化及び大型化が
進行し、これにエリ半導体素子からの発熱量の増大を招
き、基板材料に対する放熱性の要求がますます大きくな
りつつある。この為、レジンモールドクイブのICに用
いられるリードフレームにはその素材がNi合金からC
u合金に変換されつつある。低融点ガラスセラミックパ
ッケージや多層セラミックパッケージの集積回路につい
ても同様に放熱性の要求が強いが、A7!203や2M
70るが、これは高価である上に毒性を有するという難
点がある。又最も多用されているAβ、03  はその
成型、焼結時に混入するUより発生するα線による半導
体素子への照射効果によって起る集積回路の誤動作がこ
の高性能、高信頼性化の要求の強まる中で、大きな問題
になりつつある。
However, in recent years, integrated circuit elements have become denser and larger, leading to an increase in the amount of heat generated from the semiconductor elements, and demands on substrate materials for heat dissipation are becoming greater. For this reason, the material of the lead frame used in the IC of the resin mold quib varies from Ni alloy to carbon.
It is being converted to u-alloy. Heat dissipation performance is similarly strongly required for integrated circuits in low-melting point glass-ceramic packages and multilayer ceramic packages, but A7!203 and 2M
However, this method has the drawbacks of being expensive and toxic. In addition, Aβ,03, which is the most commonly used material, has malfunctions in integrated circuits caused by the irradiation effect on semiconductor elements due to the alpha rays generated from U mixed in during molding and sintering, and this demand for high performance and high reliability has been met. As the situation continues to grow, it is becoming a major problem.

本発明はかかる欠点を解消し、従来の七ラミック基板に
替る放熱性良好な半導体素子搭載用基板を提供せんとす
るものである。
The present invention aims to eliminate such drawbacks and provide a substrate for mounting semiconductor elements with good heat dissipation properties, which can be used as an alternative to the conventional heptadramic substrate.

すなわち本発明はCuを5〜30wt% 含有し、熱膨
張係数が5.0〜8.0X10 ’cm/ctn、’G
、熱伝導率が0.38 cal 7cm 、 sec 
10以上のMo合金から成るベースメタルの少なくとも
表面の一部に電気絶縁性を有する無機物質から成る0、
1〜20μm の被覆層を有することを特徴とする半導
体素子搭載用基板である。
That is, the present invention contains 5 to 30 wt% of Cu and has a thermal expansion coefficient of 5.0 to 8.0 x 10'cm/ctn,'G
, thermal conductivity is 0.38 cal 7cm, sec
0, which is made of an inorganic substance having electrical insulation properties on at least a part of the surface of a base metal made of a Mo alloy of 10 or more;
This is a substrate for mounting a semiconductor element, characterized by having a coating layer of 1 to 20 μm.

第1図は本発明の基板を用いて半導体素子を塔載した半
導体装置の断面図であり、lは素子の熱膨張係数に近似
した金属板であり、2はその表面に被覆された被覆層で
、両者で基板3を形成する。
FIG. 1 is a cross-sectional view of a semiconductor device on which a semiconductor element is mounted using the substrate of the present invention, l is a metal plate whose thermal expansion coefficient approximates that of the element, and 2 is a coating layer coated on the surface of the metal plate. Then, the substrate 3 is formed by both.

4はメタルライジング層、5はAu メッキ層で、これ
を介して半導体素子6が塔載されている。
4 is a metal rising layer, 5 is an Au plating layer, and a semiconductor element 6 is mounted thereon.

本発明においてベースメタルの熱膨張係数を5.0〜8
.0X10−6と限定したのは搭載半導体素子であるS
i 及びGaAsや、組み合せて用いられることが多い
、他の外囲器材料であるAl2O3七ラミック(熱膨張
係数6.5〜7.0X10  ’)と熱膨張係数を近似
させ、熱膨張の不整合に起因する応力の影響を小さくす
るためである。
In the present invention, the thermal expansion coefficient of the base metal is 5.0 to 8.
.. The reason for limiting it to 0X10-6 is the mounted semiconductor element S.
i and GaAs, as well as other envelope materials that are often used in combination, such as Al2O3 heptaramic (thermal expansion coefficient 6.5-7.0X10'), to approximate the thermal expansion coefficient, and to eliminate thermal expansion mismatch. This is to reduce the influence of stress caused by.

又、熱伝導率を0.38 cal/an、sec、’G
以上と限定したのは、消費電力が8Wを越える様な高速
ICに対しても、その特性を劣化させることのない熱抵
抗を得る為である。
Also, the thermal conductivity is 0.38 cal/an, sec, 'G
The reason for the above limitation is to obtain a thermal resistance that does not deteriorate the characteristics of a high-speed IC whose power consumption exceeds 8W.

又、ベースメタルとしてCu−Mo合金を用い、かつC
u O量を5〜30wt%としたのは、前記熱特性を得
ることが出き、かつ工業的に製造しうる合金だからであ
る。
In addition, Cu-Mo alloy is used as the base metal, and C
The reason why the amount of uO is set to 5 to 30 wt% is that the alloy can obtain the above-mentioned thermal properties and can be manufactured industrially.

ベースメタルは粉末冶金法により製造することが好まし
い。他の方法では融点および比重の差が大きい成分の合
金を製造することが困難だからである。
Preferably, the base metal is produced by powder metallurgy. This is because it is difficult to produce an alloy containing components with large differences in melting point and specific gravity using other methods.

また、Mo 中に存在するCuはMo中に均一に存在し
ていることが好ましい。加熱時のソリ等の特性上のバラ
ツキを防止する為であり、Mo粉末の として粒径0.5〜10μm の範囲を粉末を用いると
よい。
Further, it is preferable that Cu present in Mo is uniformly present in Mo. This is to prevent variations in properties such as warpage during heating, and it is preferable to use Mo powder with a particle size in the range of 0.5 to 10 μm.

伺、所定量のCu以外に諸特性を改善する為の次にベー
スメタルの表面に被覆される無機物質としては、BN、
A71203.AAN、Si3N、、Y、03゜2Mg
0.SiO,ダイヤモンド等が有効であり回路基板の要
求特性に応じて適宜選択組合せるとよい。
In addition to a certain amount of Cu, the next inorganic substances to be coated on the surface of the base metal to improve various properties are BN,
A71203. AAN, Si3N, , Y, 03゜2Mg
0. SiO, diamond, etc. are effective and may be appropriately selected and combined depending on the required characteristics of the circuit board.

ダイヤモンドやセラミックスを被覆する方法としては、
物理的蒸着(PVD)、化学的蒸着(CVD)などの気
相メッキ法を用いることが好ましい。
As a method of coating diamonds and ceramics,
Preferably, a vapor phase plating method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) is used.

又、被覆層を被覆するに際し、ベースメタルの表面状態
を均一、安定化する為に予め、N1  などの金属を薄
層コーティングすることも、被覆層の膜層厚を薄くした
り、層の質を向上させる為に有効である。
In addition, when applying the coating layer, it is also possible to coat the base metal with a thin layer of metal such as N1 in order to make the surface condition uniform and stable. It is effective for improving

被覆層の厚みを01〜20μm と限定したのは、これ
以下では所要の電気絶縁性を得ることができず、これ以
上になると被覆の為のコストが著しく大きくなり、経済
性の面で実用性が乏しいためである。
The reason why the thickness of the coating layer is limited to 0.1 to 20 μm is that if it is less than this, the required electrical insulation cannot be obtained, and if it is more than this, the cost for coating becomes extremely high, so it is not practical from an economic point of view. This is because there is a lack of

次に実施例について説明する。Next, an example will be described.

実施例 GaAs半導体素子を塔載するためのlI2O3薄膜を
被覆した半導体素子搭載用基板をイオンプレティング法
で以下の如く作製した。
EXAMPLE A substrate for mounting a semiconductor element coated with a lI2O3 thin film for mounting a GaAs semiconductor element was prepared by the ion plating method as follows.

金属基板として、熱膨張係数をGaAsに近似させる為
に、20wt%Cu を含有させたCuMo合金(熱膨
張係数7.0X10  ’)を用いた。被覆層を形成す
る為のイオンブレーティングは、次の方法で実施した。
As the metal substrate, a CuMo alloy (thermal expansion coefficient 7.0×10′) containing 20 wt% Cu was used in order to approximate the thermal expansion coefficient to GaAs. Ion blasting for forming the coating layer was carried out by the following method.

即ち原料にはAl2O2焼結体を用い、電子ビーム加熱
により蒸発させた。酸素圧4X10 ’Torrで高周
波(13,56MHz)  100〜200W  を印
加して蒸発物質の一部をイオン化し、基板を200℃ 
に加熱してA[203を厚さ2.0μm 被覆した。
That is, an Al2O2 sintered body was used as the raw material and evaporated by electron beam heating. A high frequency (13,56 MHz) of 100 to 200 W is applied at an oxygen pressure of 4 x 10' Torr to ionize a part of the evaporated substance, and the substrate is heated to 200°C.
A[203] was heated to a thickness of 2.0 μm.

以上の結果300■ 以上の絶縁耐圧特性を有する透明
な絶縁体薄膜を密着性良く被覆した熱膨張係数が塔載す
るGaAs素子と近似し、熱放散性に優れた半導体素子
塔載用基板を得ることが出来た。
As a result of the above, a substrate for mounting a semiconductor element, which is coated with a transparent insulating thin film having a dielectric strength characteristic of 300 mm or more with good adhesion, has a thermal expansion coefficient similar to that of the GaAs element on which it is mounted, and has excellent heat dissipation properties. I was able to do it.

以上の如き一定のCu −M o 合金をベースメタル
とし、一定の層厚の無機物質を被覆した複合型基板は、
今後ますます増大する高密度かつ大型化する半導体素子
に対応でき、Si  集積回路に加えて今後実用化が進
むと考えられるGaAs集積回路の半導体素子搭載用基
板と[7ても使用でき、さらにGaAs 。
A composite substrate made of a certain Cu-Mo alloy as a base metal and coated with an inorganic material of a certain thickness is as follows:
In addition to Si integrated circuits, GaAs integrated circuits, which are expected to be put into practical use in the future, are compatible with the ever-increasing density and larger size of semiconductor devices. .

InPなどの光デバイスや太陽電池などの搭載用基板と
しても活用することができその効果は大きい。
It can also be used as a mounting substrate for optical devices such as InP and solar cells, and its effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による基板を用いた半導体装置の断面図
である。 1 : CuMo合金板、2:被覆層、3:半導体素子
搭載用基板、4αメタルライジング層、5:Auメッキ
層、6:半導体素子。
FIG. 1 is a sectional view of a semiconductor device using a substrate according to the present invention. 1: CuMo alloy plate, 2: Covering layer, 3: Semiconductor element mounting substrate, 4α metal rising layer, 5: Au plating layer, 6: Semiconductor element.

Claims (3)

【特許請求の範囲】[Claims] (1)Cu を5〜30wt%含有し、熱膨張係数が5
.0〜8.0X10  ’cm/cTn、’G 、熱伝
導率が、0.38ca110n 、 sec 、’G以
上のMo合金から成るベースメタルの少なくとも表面の
一部に電気絶縁性を有する無機物質から成る0、1〜2
0pm の被覆層を有することを特徴とする半導体素子
搭載用基板。
(1) Contains 5 to 30 wt% of Cu and has a thermal expansion coefficient of 5
.. A base metal made of a Mo alloy having a thermal conductivity of 0 to 8.0X10'cm/cTn,'G or more than 0.38ca110n, sec,'G, and at least a part of the surface thereof is made of an inorganic material having electrical insulation properties. 0, 1-2
A substrate for mounting a semiconductor element, characterized by having a coating layer of 0 pm.
(2)ベースメタルが粉末焼結法により製造された合金
であることを特徴とする特許請求の範囲第(1)項記載
の半導体素子塔載用基板。
(2) The substrate for mounting a semiconductor element according to claim (1), wherein the base metal is an alloy manufactured by a powder sintering method.
(3)ベースメタル中のCu がMo 中に均一に存在
せしめられていることを特徴とする特許請求範囲2Mp
O0Si02.  ダイヤモンドのいずれか、又は、そ
れらの積層体であることを特徴とする特許請求範囲第(
1)項又は第(2)項又は第(3)項記載の半導体装置
用基板。
(3) Claim 2Mp characterized in that Cu in the base metal is uniformly present in Mo.
O0Si02. Claim No.
The substrate for a semiconductor device according to item 1), item (2), or item (3).
JP57225240A 1982-12-22 1982-12-22 Semiconductor element mounting substrate Pending JPS59115545A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57225240A JPS59115545A (en) 1982-12-22 1982-12-22 Semiconductor element mounting substrate
DE8383112658T DE3379928D1 (en) 1982-12-22 1983-12-15 Substrate for mounting semiconductor element
EP83112658A EP0113088B1 (en) 1982-12-22 1983-12-15 Substrate for mounting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225240A JPS59115545A (en) 1982-12-22 1982-12-22 Semiconductor element mounting substrate

Publications (1)

Publication Number Publication Date
JPS59115545A true JPS59115545A (en) 1984-07-04

Family

ID=16826188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225240A Pending JPS59115545A (en) 1982-12-22 1982-12-22 Semiconductor element mounting substrate

Country Status (1)

Country Link
JP (1) JPS59115545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194842A (en) * 1985-02-25 1986-08-29 Sumitomo Electric Ind Ltd Substrate for placing semiconductor element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062776A (en) * 1973-10-05 1975-05-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062776A (en) * 1973-10-05 1975-05-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194842A (en) * 1985-02-25 1986-08-29 Sumitomo Electric Ind Ltd Substrate for placing semiconductor element

Similar Documents

Publication Publication Date Title
JPS5815241A (en) Substrate for semiconductor device
US7067903B2 (en) Heat spreader and semiconductor device and package using the same
JPS5921032A (en) Substrate for semiconductor device
JP2006505951A (en) Semiconductor substrate having copper / diamond composite material and method of manufacturing the same
WO2005091360A1 (en) Substrate for semiconductor device and semiconductor device
EP0099570B1 (en) Coated ceramic substrates for mounting integrated circuits and methods of coating such substrates
JPH04152642A (en) Paste for adhesion use
EP0435603B1 (en) RF transistor package and mounting pad
EP0113088B1 (en) Substrate for mounting semiconductor element
KR100981837B1 (en) Member for semiconductor device and semiconductor device
JPS6022347A (en) Substrate for semiconductor element mounting
KR100292681B1 (en) Heat dissipator for semiconductors and manufacturing method thereof
JPS59115545A (en) Semiconductor element mounting substrate
JPS58103156A (en) Substrate for semiconductor device
JPS59115544A (en) Semiconductor element mounting substrate
JPH0754834B2 (en) Method for manufacturing diamond film semiconductor substrate
JPH0613494A (en) Substrate for semiconductor device
US20040157089A1 (en) Heat sink formed of diamond-containing composite material with a multilayer coating
JPS62232943A (en) Substrate material for semiconductor device and manufacture thereof
JPH03177382A (en) Surface modification of aluminum nitride substrate
JPS5867049A (en) Package for integrated circuit
JPS59121861A (en) Substrate for placing semiconductor element
JP3752440B2 (en) Package for storing semiconductor elements
JPH07169881A (en) Heat radiating board and ceramic package for semiconductor
JP3752447B2 (en) Package for storing semiconductor elements