JPH03177382A - Surface modification of aluminum nitride substrate - Google Patents

Surface modification of aluminum nitride substrate

Info

Publication number
JPH03177382A
JPH03177382A JP1313511A JP31351189A JPH03177382A JP H03177382 A JPH03177382 A JP H03177382A JP 1313511 A JP1313511 A JP 1313511A JP 31351189 A JP31351189 A JP 31351189A JP H03177382 A JPH03177382 A JP H03177382A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride substrate
oxide
surface modification
ain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1313511A
Other languages
Japanese (ja)
Inventor
Masayuki Ishii
石井 正之
Nobuhiko Fujita
藤田 順彦
Seisaku Yamanaka
山中 正策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1313511A priority Critical patent/JPH03177382A/en
Publication of JPH03177382A publication Critical patent/JPH03177382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Abstract

PURPOSE:To obtain the title substrate improved in heat releasability and the wettability for resins by forming an oxide ceramic layer on the surface of an aluminum nitride substrate. CONSTITUTION:At least one surface of an aluminum nitride substrate cleaned by putting the surface to ion bombardment is provided with an oxide ceramic layer of 0.02-1mum thickness by electron beam vapor deposition or sputtering technique.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高集積回路や高電力消費回路を有する半導体
装置に用いる窒化アルミニウム基板の表面改質方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for surface modification of an aluminum nitride substrate used in a semiconductor device having a highly integrated circuit or a high power consumption circuit.

[従来の技術] 熱伝導性と電気絶縁性に優れ、しかも熱膨脹係数がSi
単結晶の値に近い材料は、半導体素子の実装基板などに
古くから望まれていた。この要求を満足する材料は従来
存在せず、アルミナ、ベリリア、ダイヤモンド、Cu−
W合金が使用されてきた。この中、アルミナは熱伝導率
が小さく、熱膨脹係数がSi単結晶の約1.5倍と大き
く、ベリリアは熱伝導率は大きいが熱膨脹係数がSi単
結晶の約2倍もある。又、ダイヤモンドは高価である上
に大きな形状のものが得られないなどの欠点がある。C
u−W合金は熱伝導率が高く、熱膨脹係数がAl2O3
絶縁基板と合致する特許な基板材料ではあるが、導電性
をもつ欠点がある。又、新しいセラミックスとしてSi
Cセラミックスが開発され、実装基板に使用されている
。このものは、熱伝導率、熱膨脹係数が小さく、半導体
チップ材のSi単結晶に近い値をもっている。しかしな
がら、実装材料としては、誘電率、誘電損失が小さいこ
と、又、比較的機械加工性が良好で板厚を薄くできる等
による軽量化が図れることなどが要求特性としである。
[Conventional technology] It has excellent thermal conductivity and electrical insulation, and has a coefficient of thermal expansion similar to that of Si.
Materials with values close to those of single crystals have long been desired for use in substrates for mounting semiconductor devices. There are currently no materials that meet this requirement, such as alumina, beryllia, diamond, Cu-
W alloy has been used. Among these, alumina has a low thermal conductivity and a high thermal expansion coefficient of about 1.5 times that of a Si single crystal, while beryllia has a high thermal conductivity but a thermal expansion coefficient of about twice that of a Si single crystal. Further, diamond has drawbacks such as being expensive and not being able to be produced in large shapes. C
u-W alloy has high thermal conductivity and thermal expansion coefficient of Al2O3
Although it is a proprietary substrate material compatible with insulating substrates, it has the disadvantage of being electrically conductive. In addition, Si as a new ceramic
C ceramics have been developed and are used for mounting substrates. This material has low thermal conductivity and coefficient of thermal expansion, and has values close to those of Si single crystal of semiconductor chip material. However, the required characteristics of the mounting material include low dielectric constant and low dielectric loss, relatively good machinability, and the ability to reduce weight by making the board thinner.

これらの諸特性をバランスよく満足する材料としてAI
Nセラミックスが注目を浴びており、最も広い用途が期
待されている。すなわち、AINセラミックスはCuな
みの高い熱伝導率をもつだけでなく、熱膨脹係数がSi
単結晶に近い、誘電率か低い、比重が小さく、軽量、曲
げ強度か大きいといった特徴がある。史には大型チップ
でもダイ付けしやすい特徴もある。
AI is a material that satisfies these properties in a well-balanced manner.
N-ceramics are attracting attention and are expected to have the widest range of applications. In other words, AIN ceramics not only has a high thermal conductivity comparable to Cu, but also has a coefficient of thermal expansion similar to that of Si.
It has characteristics such as being close to a single crystal, having a low dielectric constant, low specific gravity, light weight, and high bending strength. Fumi also has features that make it easy to attach die even with large chips.

[発明が解決しようとする課題] AINセラミックスは、放熱用の金属体あるいはシリコ
ンチップと熱伝導性の良好な樹脂と接合して使用される
が、AINセラミックスと樹脂とは虞れ性が悪く、樹脂
を硬化させて接合しても密着性が悪いため、シリコンチ
ップで発生した熱を効率よく放熱用金属体に放散できな
くなり、熱の蓄積によって半導体装置の誤動作を招く等
の欠点があった。
[Problems to be Solved by the Invention] AIN ceramics are used by bonding a metal body or silicon chip for heat dissipation with a resin having good thermal conductivity. Even when the resin is cured and bonded, the adhesion is poor, making it impossible to efficiently dissipate the heat generated by the silicon chip to the heat dissipating metal body, resulting in drawbacks such as heat accumulation leading to malfunction of the semiconductor device.

最近、ICを中心とする半導体チップの高集積化及び小
型軽量化の傾向に伴ない、パッケージは薄く、小型にな
り、半導体チップの発熱量は益々僧大しているので、放
熱性は重要な課題である。
Recently, with the trend toward higher integration, smaller size, and lighter weight of semiconductor chips, mainly ICs, packages have become thinner and smaller, and the amount of heat generated by semiconductor chips is increasing, so heat dissipation is an important issue. be.

そこで、本発明は放熱性に富むAINセラミックス基板
を提供することを特徴とする特に、大きな発熱を伴うも
ので放熱を水冷式で行う大型コンピュータ用のチップ搭
載基板に適するAINセラミックス基板の提供か目的で
ある。
SUMMARY OF THE INVENTION Therefore, the present invention is characterized by providing an AIN ceramic substrate with excellent heat dissipation properties.In particular, an object of the present invention is to provide an AIN ceramic substrate suitable for a chip-mounted substrate for a large-sized computer that generates a large amount of heat and uses a water-cooled method for heat dissipation. It is.

[課題を解決するための手段] 本発明は、少なくとも片面に電子ビーム蒸着法、イオン
プレーティング法及びスパッタリング法のいずれかの方
性により酸化物セラミックス層を形成する窒化アルミウ
ム基板の表面改質方法である。
[Means for Solving the Problems] The present invention provides a method for surface modification of an aluminum nitride substrate in which an oxide ceramic layer is formed on at least one surface by one of electron beam evaporation, ion plating, and sputtering. It is.

上記電子ビーム蒸着法、イオンプレーティング法及びス
パッタリング法は従来技術をそのまま適用することがで
きる。減圧CVD法や常圧CVD法により酸化物セラミ
ックス薄膜層を形成することもできるが、この方性で作
成した膜はAINセラミックス材との密着力が悪く好ま
しくない。
Conventional techniques can be applied as they are to the electron beam evaporation method, ion plating method, and sputtering method. Although the oxide ceramic thin film layer can be formed by low pressure CVD method or normal pressure CVD method, the film formed by this method has poor adhesion with the AIN ceramic material and is not preferred.

酸化物セラミックス層の膜厚は0.02〜1μmの範囲
が適当である。10mを超えると実際使用時のヒートサ
イクルによる熱衝撃によりクラックを発生したり、成膜
時の内部応力により膜ハガレが生成し、信頼性にかける
原因となる。
The appropriate thickness of the oxide ceramic layer is in the range of 0.02 to 1 μm. If the length exceeds 10 m, cracks may occur due to thermal shock due to heat cycles during actual use, and film peeling may occur due to internal stress during film formation, which may impair reliability.

又、膜厚が0.02μm未満では、樹脂との濡れ性を改
善することはできない。特に好ましい範囲は0.05〜
0.5 μmである。
Furthermore, if the film thickness is less than 0.02 μm, the wettability with the resin cannot be improved. A particularly preferable range is 0.05 to
It is 0.5 μm.

又、酸化物セラミックス層の膜厚が厚くなると熱伝導率
がAINに比べて小さいために、ICチップでの発熱を
熱伝導性樹脂あるいは放熱用金属体に伝えることができ
なくなり、熱の蓄積により半導体装置の誤動作を招くこ
とがあり好ましくない。
Furthermore, as the thickness of the oxide ceramic layer increases, its thermal conductivity is lower than that of AIN, so the heat generated by the IC chip cannot be transferred to the thermally conductive resin or the heat dissipating metal body, resulting in heat accumulation. This is undesirable as it may cause malfunction of the semiconductor device.

[作 用] 非酸化物系のAINセラミックスは、酸化物粒子が混合
物として添加している樹脂とはべれ性が悪い。ここでい
う戊れ性とは接合直後だけでなく、実際に使用中でも安
定した接合状態を保持する性質のことを指す。
[Function] Non-oxide-based AIN ceramics have poor compatibility with resins to which oxide particles are added as a mixture. The term "breakability" here refers to the property of maintaining a stable bonded state not only immediately after bonding but also during actual use.

通常樹脂中には樹脂だけでなく、フィラーとして熱膨脹
係数や熱伝導性を調整するために、酸化物系セラミック
ス粉末が混合されているのが普通である。
Usually, in addition to resin, oxide-based ceramic powder is mixed as a filler in order to adjust the coefficient of thermal expansion and thermal conductivity.

本発明で得られる基板はAINセラミックス表面に酸化
物セラミックス層が形成されており、これが前記樹脂中
の酸化物と同様成分であるために、必然的に酸化物セラ
ミックスが形成されていないAINセラミックスより、
樹脂との濡れ性が非常に良好で、かつ、酸化物セラミッ
クスと樹脂との熱膨脹係数を近似させることができるた
め、極めて良好な密着強度が得られる。
The substrate obtained by the present invention has an oxide ceramic layer formed on the surface of the AIN ceramic, and since this is the same component as the oxide in the resin, it is naturally better than the AIN ceramic layer on which the oxide ceramic is not formed. ,
It has very good wettability with the resin and can approximate the thermal expansion coefficients of the oxide ceramic and the resin, so it can provide very good adhesion strength.

[実施例] 次に実施例並びに比較例によって本発明を具体的に説明
する。
[Example] Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例I AINセラミックス基板の放熱用金属体と熱伝導性樹脂
と接する側の表面を初期真空度8×10’ Torr、
導入A−rガス圧5X 10−’ Torrs基板温度
250℃にて高周波プラズマによるイオンボンバードメ
ントにより表面清浄化を行った後、続いて電子ビーム蒸
着法により成膜速度30X/seeで0.2μmの膜厚
になるよう制御して酸化ケイ素層を形成した。
Example I The surface of the AIN ceramic substrate in contact with the heat-dissipating metal body and the thermally conductive resin was kept at an initial vacuum level of 8×10' Torr,
After surface cleaning was performed by ion bombardment using high-frequency plasma at an introduced A-r gas pressure of 5X 10-' Torrs and a substrate temperature of 250°C, a film of 0.2 μm was then deposited by electron beam evaporation at a deposition rate of 30X/see. A silicon oxide layer was formed by controlling the film thickness.

第1図は、このようにして得た基板の実装例を示し、図
中 lはAINセラミックス、2は酸化ケイ素層、3は
放熱用金属体、4は熱伝導性樹脂、5はメタライジング
層、Bはシリコンチップである。
Figure 1 shows an example of mounting the board thus obtained, in which l is AIN ceramics, 2 is a silicon oxide layer, 3 is a metal body for heat dissipation, 4 is a thermally conductive resin, and 5 is a metallizing layer. , B are silicon chips.

実施例2 AINセラミックス基板の放熱用金属体(A1合金)と
熱伝導性樹脂と接する側の表面を、初期真空度2X 1
0’ Torr、導入02ガス圧4X to’ Tor
rs基板温度300℃、成膜速度35X/seeのイオ
ンプレーティング法で、0.3μ−の膜厚になるよう制
御してアルミナ層を形成した。
Example 2 The surface of the AIN ceramic substrate in contact with the heat dissipation metal body (A1 alloy) and the thermally conductive resin was heated to an initial degree of vacuum of 2×1.
0' Torr, introduction 02 gas pressure 4X to' Torr
An alumina layer was formed using an ion plating method at a rs substrate temperature of 300° C. and a film formation rate of 35×/see, controlling the film thickness to be 0.3 μm.

このようにして得た基板を第1図に示すように実装した
。ただし、この場合2はアルミナ層である。
The substrate thus obtained was mounted as shown in FIG. However, in this case, 2 is an alumina layer.

比較例 第2図に示すように第1図における酸化物(酸化ケイ素
、アルミナ)層2を備えていない従来例を比較例とした
Comparative Example As shown in FIG. 2, the conventional example shown in FIG. 1 without the oxide (silicon oxide, alumina) layer 2 was used as a comparative example.

以上の実施例1.2及び比較例の3種の試作品に気(口
中での熱衝!l(1サイクルニ一65℃×10分→25
℃×5分−150℃×lO分)を 200サイクル与え
たところ、比較例では、初期は何ともなかったが、サイ
クルをくり返すにつれて徐々に樹脂が放熱用金属体上に
流れ出し、AINセラミックス lと放熱用金属体3と
の間隙が不均一となる現象がみられた。200サイクル
後には、AINセラミックス1と放熱用金属体3との間
に樹脂のない空間が発生していた。これに対して、実施
例1.2の試作品では何の異常も認められなかった。
The above three prototypes of Example 1.2 and Comparative Example were heated (hot shock in the mouth! 1 cycle at 65°C x 10 minutes → 25
℃ × 5 minutes - 150℃ × 10 minutes) was applied for 200 cycles. In the comparative example, there was no problem at the beginning, but as the cycles were repeated, the resin gradually flowed onto the heat dissipation metal body, and the AIN ceramics l. A phenomenon was observed in which the gap with the heat dissipating metal body 3 became non-uniform. After 200 cycles, a space without resin was generated between the AIN ceramic 1 and the heat dissipation metal body 3. On the other hand, no abnormality was observed in the prototype of Example 1.2.

[発明の効果] 本発明によれば、熱放散性にすぐれ、熱膨脹係数が半導
体チップのそれに近いAINセラミックスの性質を損う
ことなく、水冷放熱用の金属体と接合することが可能な
、樹脂との濡れ性の改善されたAIN基板を提供するこ
とができる。
[Effects of the Invention] According to the present invention, a resin that has excellent heat dissipation properties and can be bonded to a metal body for water-cooled heat dissipation without impairing the properties of AIN ceramics whose coefficient of thermal expansion is close to that of a semiconductor chip. It is possible to provide an AIN substrate with improved wettability with.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で得られた基板の実装例の説明図、第2
図は従来の実装例の説明図である。 1・・・AINセラミックス、 2・・・酸化物(酸化ケイ素、アルミナ)膜、3・・・
放熱用金属体、4・・・熱伝導性樹脂、5・・・メタラ
イジング層、6・・・シリコンチップ。
Figure 1 is an explanatory diagram of an example of mounting a board obtained by the present invention, Figure 2
The figure is an explanatory diagram of a conventional implementation example. 1...AIN ceramics, 2...Oxide (silicon oxide, alumina) film, 3...
Heat dissipation metal body, 4... thermally conductive resin, 5... metallizing layer, 6... silicon chip.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも片面に電子ビーム蒸着法、イオンプレ
ーティング法及びスパッタリング法のいずれかの方法に
より酸化物セラミック層を形成することを特徴とする窒
化アルミウム基板の表面改質方法。
(1) A method for surface modification of an aluminum nitride substrate, which comprises forming an oxide ceramic layer on at least one surface by any one of electron beam evaporation, ion plating, and sputtering.
(2)酸化物セラミック層の厚みが0.02〜1μmで
ある請求項(1)記載の窒化アルミニウム基板の表面改
質方法。
(2) The method for surface modification of an aluminum nitride substrate according to claim (1), wherein the oxide ceramic layer has a thickness of 0.02 to 1 μm.
(3)酸化物が酸化ケイ素又はアルミナである請求項(
1)又は(2)記載の窒化アルミニウム基板の表面改質
方法。
(3) Claim in which the oxide is silicon oxide or alumina (
The method for surface modification of an aluminum nitride substrate according to 1) or (2).
JP1313511A 1989-12-04 1989-12-04 Surface modification of aluminum nitride substrate Pending JPH03177382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313511A JPH03177382A (en) 1989-12-04 1989-12-04 Surface modification of aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313511A JPH03177382A (en) 1989-12-04 1989-12-04 Surface modification of aluminum nitride substrate

Publications (1)

Publication Number Publication Date
JPH03177382A true JPH03177382A (en) 1991-08-01

Family

ID=18042195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313511A Pending JPH03177382A (en) 1989-12-04 1989-12-04 Surface modification of aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JPH03177382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041720A (en) * 2003-07-24 2005-02-17 Noritake Co Ltd Porous ceramic film and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041720A (en) * 2003-07-24 2005-02-17 Noritake Co Ltd Porous ceramic film and method for producing the same

Similar Documents

Publication Publication Date Title
US7067903B2 (en) Heat spreader and semiconductor device and package using the same
TWI417005B (en) Methods and devices for cooling printed circuit boards
JPH0261539B2 (en)
JPS5815241A (en) Substrate for semiconductor device
WO2005091360A1 (en) Substrate for semiconductor device and semiconductor device
KR100981837B1 (en) Member for semiconductor device and semiconductor device
JPH03211860A (en) Semiconductor package
KR20130099790A (en) Heterostructure for heat dissipation and method of fabricating the same
JPS6022347A (en) Substrate for semiconductor element mounting
EP0113088B1 (en) Substrate for mounting semiconductor element
US5356661A (en) Heat transfer insulated parts and manufacturing method thereof
US5164885A (en) Electronic package having a non-oxide ceramic bonded to metal and method for making
JPH03177382A (en) Surface modification of aluminum nitride substrate
US5250327A (en) Composite substrate and process for producing the same
JPS58103156A (en) Substrate for semiconductor device
JP2007095716A (en) Complex, semiconductor manufacturing device susceptor provided therewith and power module
JPH03177375A (en) Surface modification of aluminum nitride substrate
JPS59115544A (en) Semiconductor element mounting substrate
JP2018142569A (en) Heat dissipation substrate
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPS60241239A (en) Semiconductor device
JPS59184586A (en) Circuit board for placing semiconductor element
KR101981934B1 (en) Thermal management system having nitride thick film
JPH05326762A (en) Heat dissipating plate for semiconductor element mounting device
JPH0547953A (en) Package for semiconductor device