JPS59112664A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59112664A
JPS59112664A JP57223172A JP22317282A JPS59112664A JP S59112664 A JPS59112664 A JP S59112664A JP 57223172 A JP57223172 A JP 57223172A JP 22317282 A JP22317282 A JP 22317282A JP S59112664 A JPS59112664 A JP S59112664A
Authority
JP
Japan
Prior art keywords
layer
film
type
growth
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57223172A
Other languages
Japanese (ja)
Inventor
Susumu Yamazaki
進 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57223172A priority Critical patent/JPS59112664A/en
Publication of JPS59112664A publication Critical patent/JPS59112664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds

Abstract

PURPOSE:To prevent the characteristic of a semiconductor device from being deteriorated by protecting an InP by an InGaAs until the second growth is started when providing a multilayer structure of InP/InGaAsP series, vanishing it by a melting back, and superposing the second layer. CONSTITUTION:After an n type InP buffer layer 12, an N type In0.67Ga0.33As0.76 P0.30 light absorption layer 13 and an N type InP multiplier layer 14 are superposed on an N type InP substrate 11, an In0.53Ga0.47As film 21 is formed on the surface shortly in approx. one second under the prescribed conditions. A resist mask is covered on a laminate, to which the film 21 is attached, Si ions are implanted to a region 14', and annealed. The layer 14 is protected due to the presence of the film 21 against contamination or deterioration of the surface upon heat treating. Then, after it is sufficiently cleaned with organic solvent, the upper layers of the film 21 and the layer 14 are melt back by selecting the conditions, an N type InP film 15 is superposed, a P<+> type layer 15 is formed, and a P-N junction of a photoreceptor is formed. An SiO2 film 16 is covered, a positive electrode 18 is attached to the entire back surface of a negative electrode 17 and a substrate 1 to complete it. According to this structure, a multilayered semiconductor device can be obtained without causing undesired crystal state.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置の製造方法に関する。詳しくは、イ
ンソウムリン(InP)/インシウムカリウムヒ素IJ
ン(InGaAsP)系の層構造を有する半導体装置の
製造方法において、所望の層構造が2回に分割された成
長工程をもって形成され、かつ、その2回の成長工程の
間に、第1回成長によって形成された層の表面が外気に
晒されることとなるような他の工程が介在する場合、こ
の成長中断にもとづ(層界面の劣化が防止され、良好な
層構造が実現されうる方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. For details, see Insoum Phosphorus (InP)/Insium Potassium Arsenic IJ
In a method for manufacturing a semiconductor device having an InGaAsP-based layer structure, a desired layer structure is formed in two divided growth steps, and between the two growth steps, the first growth step is performed. If there is another process that exposes the surface of the layer formed by the process to the outside air, there is a method that can prevent deterioration of the layer interface and realize a good layer structure based on this interruption of growth. Regarding improvements.

(2)技術の背景 液相エピタキンヤル成長法(以下LPE法という。)を
使用して、インンウムリン(InP)/インジウムカリ
ウムヒ素リン(InGaAsP ) 系の多層構造より
なる半導体装置を製造する際、装置の構造上の要求から
成長を2回に分割して行なう必要が生ずる場合がある。
(2) Background of the technology When manufacturing a semiconductor device with a multilayer structure of indium phosphide (InP)/indium potassium arsenide phosphide (InGaAsP) using the liquid phase epitaxy epitaxy method (hereinafter referred to as LPE method), the device Due to structural requirements, it may be necessary to divide the growth into two parts.

例えば、多層構造を有する特定の半導体層内部に選択的
に高濃度領域を形成する必要のある場合等である。この
場合、当然のことながら、1回目のLPE法による成長
工程で、所望の数の層を形成したのら、一旦成長工程を
中断して、イオン注入等の不純物の導入を行ない、しか
るのち、再びL P g法による2回目の成長工程をも
って多層構造を完成することとなる。したがって、この
ような成長工程の中断、及び、その中断期間中になされ
る別の工程によって、1回目の成長工程で形成された積
層体の最上層、及び2回目の成長工程で形成される層に
劣化が生じやすいが、この劣化の発生は極力防止するこ
とが望ましい。
For example, there is a case where it is necessary to selectively form a high concentration region inside a specific semiconductor layer having a multilayer structure. In this case, as a matter of course, after the desired number of layers have been formed in the first LPE growth process, the growth process is temporarily interrupted, impurities are introduced by ion implantation, etc. The multilayer structure is completed by a second growth step using the L Pg method again. Therefore, due to such interruption of the growth process and another process performed during the interruption period, the top layer of the stack formed in the first growth process and the layer formed in the second growth process are However, it is desirable to prevent this deterioration as much as possible.

(3)従来技術と間魅点 上記の製造工程を有する半導体装置の具体的−例をあげ
れば、アバランシフォトダイオード(以下A P I)
という。)がある。第1図は、APDの基本構造の−例
を示す断面図である。図において、jは口型インジウム
リン(口1口P)よりなる基板であり、2はn型インジ
ウムリン(口InP)よりなるバッファ層であり、3は
0型インジウムガリウムヒ素す:/ (n1nGaAs
P )よりなる光吸収層であり、4.5はn型インジウ
ムリン(ninP)よりなるキャリア増倍層であり、4
′は層4において受光部に対応する領域に形成されたn
型高濃度領域であり、5′は拡散により形成されたρ車
高濃度領域であり、受光部を構成し、5′と5との界面
にρn接合が形成される。又、6は二酸化シリコン(8
7υ2)よりなる絶縁膜であり、7.8はそれぞれ負、
正電極である。
(3) Comparative advantages with conventional technology A specific example of a semiconductor device having the above manufacturing process is an avalanche photodiode (hereinafter referred to as API).
That's what it means. ). FIG. 1 is a sectional view showing an example of the basic structure of an APD. In the figure, j is a substrate made of mouth-type indium phosphide (mouth 1 mouth P), 2 is a buffer layer made of n-type indium phosphide (mouth InP), and 3 is 0-type indium gallium arsenide: / (n1nGaAs
4.5 is a carrier multiplication layer made of n-type indium phosphide (ninP);
' is formed in the region corresponding to the light receiving part in layer 4.
5' is a ρ high concentration region formed by diffusion, which constitutes a light receiving section, and a ρn junction is formed at the interface between 5' and 5. Also, 6 is silicon dioxide (8
7υ2), where 7.8 is negative,
It is a positive electrode.

従来技術において、この層構造1.2.3.4.4′、
5.5′を実現するために、まず、LPE法を使用して
基板1上にバッファ層2、光吸収層3、キャリア増倍層
の下層4を形成し1回目の成長工程を終了し、一旦、L
Pg装置より基板を取り出して、最上層である・1型イ
ンンウムリン(nInP)よりなるキャリア増倍層の下
層4の表面から選択的にシリコン(Si)のイオン注入
を行なってn型高濃度領域4′を形成し、しかるのち、
再びLPE法を使用して2回目の成長工程を美行し11
型インジウムリン(−nlnP)よりなる増倍層の上層
5を形成し、更にこの層5に対してp型不純物の拡散を
行ない受光部を構成するp型高濃度領域5′を形成する
方法が使用されていた。
In the prior art, this layer structure 1.2.3.4.4',
In order to realize 5.5', first, the buffer layer 2, the light absorption layer 3, and the lower layer 4 of the carrier multiplication layer are formed on the substrate 1 using the LPE method, and the first growth process is completed. Once, L
The substrate is taken out from the Pg apparatus, and silicon (Si) ions are selectively implanted from the surface of the lower layer 4 of the uppermost layer, a carrier multiplication layer made of type 1 indium phosphide (nInP), to form an n-type high concentration region 4. ′ and then,
The second growth process was performed using the LPE method again.
There is a method in which an upper layer 5 of a multiplication layer made of type indium phosphide (-nlnP) is formed, and a p-type impurity is further diffused into this layer 5 to form a p-type high concentration region 5' constituting a light receiving section. It was used.

ところが、上記の製造方法において、1回目の成長工程
終了後に最上層となっているn型イ/ノウムリン(n 
InP)よりなるキャリア増倍層の下層4の表面はイオ
ン注入に伴うマスク付は等の工程期間中に汚染さ4また
り、注入されたイオンの活性化を行なうためのアニール
工程期間中に劣化したり、あるいは、2回目の成長工程
に先立つ昇温工程においてリン(P)が昇華して結晶中
に空孔を生ずる等の悪い影響を受ける場合が多い。この
とき、そのままの状態で2回目成長工程を実施すると1
回目成長工程終了後の最上層、(上記の場合はキャリア
増倍層の下層4)と2回目成長工程開始時の第1層(上
記の場合は増倍層の上層5)との界面が不良となり特性
に悪影響を及ぼすこととなり、更に、2回目成長工程終
了後の最終層の表面状態も必ずしも良好でないという欠
点を有する。
However, in the above manufacturing method, after the first growth step, the top layer of n-type i/noumrin (n
The surface of the lower layer 4 of the carrier multiplication layer (InP) becomes contaminated during the masking process associated with ion implantation, and deteriorates during the annealing process to activate the implanted ions. Or, in many cases, phosphorus (P) is sublimated in the temperature raising step prior to the second growth step, resulting in negative effects such as creating vacancies in the crystal. At this time, if the second growth process is performed in the same state, 1
The interface between the top layer after the second growth process (lower layer 4 of the carrier multiplication layer in the above case) and the first layer (upper layer 5 of the multiplication layer in the above case) at the start of the second growth process is defective. This has an adverse effect on the properties, and furthermore, the surface condition of the final layer after the second growth step is not necessarily good.

(4)発明の目的 本発明の目的は、この欠点を解消することにあり、イン
/ラムリン(fnP)/インジウムガリウムヒ素リン(
InGaAs P )系の多層構造を2回の成長工程を
もって、好ましくない結晶状態を生起することなく製造
する工程を含む半導体装置の製造方法を提供することに
ある。
(4) Purpose of the Invention The purpose of the present invention is to eliminate this drawback.
An object of the present invention is to provide a method for manufacturing a semiconductor device including a step of manufacturing an InGaAs P )-based multilayer structure in two growth steps without causing an undesirable crystalline state.

(5)発明の構成 上記の目的は、(イ)上層がインジウムリン層であるイ
ンジウムリン層の第1の半導体層を形成する第1の工程
と、前記第1の半導体層上にインジウムリン層の第2の
半導体層を形成する第2の工程とを含む半導体装置の製
造方法において、11」記第1の工程の最終段にインン
ウムガリウムヒ素系の薄層を形成する工程、該上層に選
択的に不純物をイオン注入する工程、前記第2の工程の
当初に前記インフラムガリウムヒ素系薄層及び所望によ
り前記上層の上部がメルトバックされる工程を有するこ
とによって達成され、(ロ)上記(イ)の構成において
前記半導体装置は受光素子であり、前記上層は増倍層で
あり、前記第1の工程終了後に前記増倍層の一部領域に
選択的に不純物を尋人するイオン注入工程を有すること
により、A P D等に適用しうる。
(5) Structure of the Invention The above objects are (a) a first step of forming a first semiconductor layer of an indium phosphide layer whose upper layer is an indium phosphide layer; and a step of forming an indium phosphide layer on the first semiconductor layer. a second step of forming a second semiconductor layer, a step of forming an indium gallium arsenide thin layer at the final stage of the first step, the upper layer (b) The inflamm gallium arsenide thin layer and, if desired, the upper part of the upper layer are melted back at the beginning of the second step. In the configuration (a) above, the semiconductor device is a light receiving element, the upper layer is a multiplication layer, and ions are selectively added to a partial region of the multiplication layer after the first step. By including an injection process, it can be applied to APD, etc.

本発明の発明者は、従来技術において上記の欠点が生ず
る原因は、1回目の成長工程終了後、別の工程が実行さ
れている期間中、最上層であるインジウムリン(Ir+
P)層が表面に露出した状態となっていることにあると
考え、1回目の成長工程終了後から2回目の成長開始時
までの間、このインジウムリン(InP)層を何らかの
手段を講じて保護することとなせば、上記の欠点を解消
しうるとの着想を得た。
The inventor of the present invention believes that the reason for the above-mentioned drawbacks in the prior art is that after the first growth step, during the period when another step is being performed, the top layer of indium phosphide (Ir+
We believe that this is due to the fact that the P) layer is exposed on the surface, so we took some measures to remove this indium phosphide (InP) layer from the end of the first growth process until the start of the second growth process. I came up with the idea that the above drawbacks could be overcome by protecting it.

この着想を具体化するために、上記のインジウムリン(
InP)層を保護する手段として、この層の表面に形成
された保護膜として機能する薄層を使用し、又、この薄
層をなす材料として、リンの混晶比の小さいインシウム
カリウムヒ素リン(InGa As P )を使用し、
更にこの薄層は、2回目成長工程の開始と共にメルトバ
ックされて消失することとなせば、成長中断に伴う界面
劣化は有効に防止され、1工程をもって同一の多層構造
を実現した場合に劣らない良好な特性が得られることを
実験的に確認し°C本発明を完成した。
In order to embody this idea, we developed the above indium phosphide (
As a means of protecting the InP) layer, a thin layer is used that functions as a protective film formed on the surface of this layer, and as a material for forming this thin layer, incium potassium arsenide phosphorus, which has a small mixed crystal ratio of phosphorus, is used. (InGaAsP) is used,
Furthermore, if this thin layer is melted back and disappears at the start of the second growth process, interface deterioration due to interruption of growth can be effectively prevented, and it is as good as achieving the same multilayer structure in one process. It was experimentally confirmed that good characteristics could be obtained and the present invention was completed at °C.

更に、上記の方法を使用してA P D等の受光素子を
製造する場合、保護膜として機能する薄層を構成する物
質の有ずべき要件は、(1)下層、及び上層をなすイン
/ラムリン(InP)と格子整合をなすことはもちろん
のこと、(2)成長中断時になされる選択1′リイオン
注入工程におけるレジスト膜の形成等が容易に行なわれ
ること、(3)2回目成長工程の当初において例えばイ
ンジウム(In)とリン(P)よりなる未飽和溶液を使
用して容易にメルトバックされて消失すること等である
。これらの条件を満足するものとして、リン(P)の混
晶比の小さいインジウムガリウムヒ素リン(InGaA
sP )が挙げられるが□、望ましくはインンウムカリ
ウムヒ素。
Furthermore, when manufacturing a light receiving element such as an APD using the above method, the following requirements must be met for the material constituting the thin layer that functions as a protective film: In addition to achieving lattice matching with Lamlin (InP), (2) the formation of a resist film in the selection 1' ion implantation step performed when the growth is interrupted, etc. can be easily performed, and (3) the formation of a resist film in the second growth step. For example, when an unsaturated solution of indium (In) and phosphorus (P) is used at the beginning, it is easily melted back and disappears. Indium gallium arsenide phosphide (InGaA), which has a small mixed crystal ratio of phosphorus (P), satisfies these conditions.
sP), preferably inium potassium arsenic.

(InGaAs)特にIn O,53Gap、 47A
sが有効である。
(InGaAs) especially InO, 53Gap, 47A
s is valid.

この様な1呆護膜を使用することにより、成長中断時の
\種々の工程において、最上層であるインジウムリン(
Ink)層は全(外気に晧されることな(、常に清浄な
状態を;呆っことかできるばかりでなく、2回目成長工
程開始に先立つ昇温過程において、リン(P )か昇華
することも有効に防止される等の利益も実現できる。
By using such a protective film, the top layer, indium phosphide (
The Ink) layer is not exposed to the outside air (and is always kept in a clean state; not only can it be removed, but also phosphorus (P) can be sublimated during the temperature increase process prior to the start of the second growth process). It is also possible to realize benefits such as effective prevention of

また、インジウムリン(InP)層を形成するための2
回目成長工程において、未飽和溶液としてイン/ラム(
in)とリン(1〕)とよりなるものを用いれば、この
リン(P)の嵐により未飽和度が調節可能であり、更に
、メルトバック時間を制御することにより、1呆U膜の
み2メルトバツクして除去したり、あるいは、1回目の
成長工程における最上層であるインジウムリン(InP
)層の表面に欠陥等がある場合は、その部分までも保護
膜と共にメルトバックして除去することも可能であり、
特性の向上に一層効果的である。
In addition, 2
In the second growth step, In/Ram (
In) and phosphorus (1), the degree of unsaturation can be adjusted by the storm of phosphorus (P), and furthermore, by controlling the meltback time, it is possible to control the degree of unsaturation by controlling the meltback time. Indium phosphide (InP), which is the top layer in the first growth step, can be removed by meltbacking or
) If there is a defect on the surface of the layer, it is possible to remove that part by melting it back together with the protective film.
It is more effective in improving characteristics.

(6)究明の実施例 以下回向を診照しつつ、本発明の一実施例に係る半導体
装置の製造方法につぃ°C説明し、本発明の構成と腸有
の効果とを明らかにする。−例として、ガードリング効
果を有し、1,3〔μIn〕の光を受光するプレーナ型
APDの製造工程について述べる。
(6) Example of Investigation Below, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be explained with reference to the present invention, and the structure of the present invention and the effect of having an internal structure will be clarified. do. - As an example, the manufacturing process of a planar APD that has a guard ring effect and receives light of 1.3 [μIn] will be described.

第2図参照 n型インジウムリン(nInP)よりなる基板11の(
100)面上にL P E法を使用して、(イ)n型不
純物を10 (cm  ) 程度含有するn型インジウ
ムリン(nine)よりなる厚さが3.4〔μlnl程
度であるバッファ層12、(ロ)n型不純物を5 X 
1015(can ”)程度含有するn型インンウムカ
リウムヒ素リン(nIn0.67Gao33Aso7o
Po3o)よりなり厚さが2.o〔μln〕程度である
光吸収層13、(ハ)n型不純物を5×1015〔cl
n−3〕程度含有するn型インジウムリン(nlnP)
よりなり厚さが1.0〔μmn〕程度である増倍層の下
層14を順次形成する。この工程において各層12.1
3.14の成長開始温度はそれぞれ656[’C)、6
48〔0C〕、646.5 (’CAテアリ、冷M’ 
速度i;! 0.71: ”C/ +n1n) テあっ
た。また、各層を得るために用いたメルトの過冷却度は
全て8〔°C〕である。
Refer to FIG. 2. The substrate 11 made of n-type indium phosphide (nInP) (
(a) A buffer layer made of n-type indium phosphide (nine) containing about 10 (cm) of n-type impurities and having a thickness of about 3.4 μlnl was formed on the 100) surface using the LPE method. 12, (b) n-type impurity 5X
n-type inium potassium arsenic phosphorus (nIn0.67Gao33Aso7o) containing about 1015 (can ”)
Po3o) and the thickness is 2. The light absorption layer 13 has a concentration of about 0 [μln], and
n-3] n-type indium phosphide (nlnP)
A lower layer 14 of the multiplication layer having a thickness of about 1.0 [μm] is sequentially formed. In this process each layer 12.1
The growth start temperatures of 3.14 are 656 ['C) and 6, respectively.
48 [0C], 646.5 ('CA Teari, cold M'
Speed i;! 0.71: "C/ +n1n)". Furthermore, the degree of supercooling of the melts used to obtain each layer was all 8 [°C].

続いて、本発明の要旨である、インジウムリウムヒX 
(1no5sGao47A、s)よりなる表面保護膜2
1を形成する。この成長条件を下記に示す。
Next, indium liumium
(1no5sGao47A,s) Surface protective film 2
form 1. The growth conditions are shown below.

溶液の、飽和温度  ’J’s = 650 [C〕成
長温度     TG = 646 [C]過冷却度 
    △’f’o = 4 CC〕成長時聞    
 t = l secこの条件において、成長時間は1
秒と非常に短く、これは成長溶液が積層体表面を通過す
るのみの時間に相当し、この結果得られた保護膜2Iの
厚さは300〔λ〕径程度なる。この層厚は、次工程に
おけるイオン注入が可能な厚さであり、これ以上厚くな
ると、イオン注入の妨げとなる。以上により、1回目の
成長工程を終了する。なお、上記のインジウムガリウム
ヒ素(Ino5a Gao47As)よりなる表面保護
膜21は、第1回成長終了後の冷却過程におけるイン/
ラムリン(InP)に対する保護膜としても機能する。
Saturation temperature of solution 'J's = 650 [C] Growth temperature TG = 646 [C] Degree of supercooling
△'f'o = 4 CC] Growth period
t = l sec Under this condition, the growth time is 1
This is a very short time of seconds, which corresponds to the time it takes for the growth solution to pass through the surface of the laminate, and the thickness of the resulting protective film 2I is about 300 [λ] diameter. This layer thickness is a thickness that allows ion implantation in the next step, and if it becomes thicker than this, ion implantation will be hindered. With the above steps, the first growth process is completed. Note that the surface protective film 21 made of indium gallium arsenide (Ino5a Gao47As) is free of indium/gallium arsenide (Ino5a Gao47As) during the cooling process after the first growth.
It also functions as a protective film against lamulin (InP).

第3図参照 上記により表面に保護膜21が形成された状態にある積
層体11.12.13.14.21を一旦成長装置から
取り出し、保護膜21が形成されたままの状態で増倍層
の下層14の受光部に相当する領域14′へのイオン注
入を行なう。すなわち、表面保護層21の全面にレノス
ト膜(図示せず)を形成したのちフォトリソグラフィー
法を使用して所望の領域すなわち受光部に対する領域に
開口を設け、残余のレノストをマスクとして、シリコン
(Sl)を3〜4X 10 [can−3]程度の濃度
となるようにイオン注入法を用いて領域14′へ尋人す
る。その後、注入イオンの活性化を行なうために、70
0〔0C〕程度で約1時間熱処理を実行する。
Refer to FIG. 3. The laminate 11.12.13.14.21 with the protective film 21 formed on the surface as described above is taken out of the growth apparatus, and the multiplication layer is Ion implantation is performed into a region 14' of the lower layer 14 corresponding to the light receiving portion. That is, after forming a renost film (not shown) on the entire surface of the surface protective layer 21, an opening is formed in a desired region, that is, a region for the light receiving part, using a photolithography method, and using the remaining renost as a mask, silicon (Sl) is formed. ) is implanted into the region 14' using an ion implantation method to a concentration of about 3 to 4×10 [can-3]. After that, in order to activate the implanted ions,
Heat treatment is performed at about 0 [0C] for about 1 hour.

この工程において、イオン注入が行なわれた領@ 14
’の表面からの深さは0.5Cμ+n、1程度であるが
、表面保護膜21の厚さはわずか300 [A)程度で
あるため、全く不利益は生じない。
In this process, the area where ion implantation was performed @ 14
Although the depth from the surface of ' is about 0.5Cμ+n,1, since the thickness of the surface protective film 21 is only about 300 [A], no disadvantage occurs at all.

また、この工程期間中、直接外気と接触しているのは保
護膜21であり、増倍層の下層14は常に保護されてい
るため、汚染や熱処理に伴う表面劣化等の悪い影響を受
けることはない。
Also, during this process, the protective film 21 is in direct contact with the outside air, and the lower layer 14 of the multiplication layer is always protected, so it is not affected by contamination or surface deterioration due to heat treatment. There isn't.

第4図参照 上記の工程終了後積層体を有様溶剤を用いて十分洗浄し
たのら、2回目成長工程を実行し、ll型不純物を5 
X 1015[cm ” ]程度含有するn型インノウ
ムリン(nInP)よりなる厚さ3 [μm]程度の増
倍層の上層15を形成する。この工程において、条件を
適切に選択することにより、表面保護膜21及び所望に
よりインジウムリン(InP)よりなる増倍層の下層1
4の上部をこのインジウム〔11〕)とリン(P)より
なる未飽和溶液によりメルトバックして除去することが
可能である。以下、本実施例において使用された第2回
目成長当初のメルトバック条件を示す。
Refer to Figure 4 After completing the above steps, the laminate is thoroughly washed with a specific solvent, and then a second growth step is performed to remove 5 ll-type impurities.
An upper layer 15 of a multiplication layer of about 3 [μm] in thickness is formed of n-type innoum phosphorus (nInP) containing about 1015 [cm''] of Lower layer 1 of the multiplication layer made of membrane 21 and optionally indium phosphide (InP)
It is possible to remove the upper part of 4 by melting it back with an unsaturated solution consisting of indium [11]) and phosphorus (P). The melt-back conditions at the beginning of the second growth used in this example are shown below.

溶液の飽和温度   ’L”S = 649 [、”J
メルトバック開始温度   TM = 653 ((:
3未飽和度      Th+−’L’s = 41:
 ’C)メルトバック時間  t  = 4secこの
条件によれば、メルトバックされた層の厚さは、イベン
ウムカリウムヒ素(Ino、5sUao47As )よ
りなる保護膜21及びその下層であるインジウムリン(
InP)よりなる増倍層の下層14の上部とを含めて0
.2〔μmr1〕程度である。なお、このメルトバック
される層の厚さは、未飽和度、メルトバック時間を制御
することにより所望の値とすることができることはいう
までもない。
Saturation temperature of solution 'L"S = 649 [,"J
Meltback start temperature TM = 653 ((:
3 Unsaturation degree Th+-'L's = 41:
'C) Meltback time t = 4sec According to this condition, the thickness of the melted back layer is the same as that of the protective film 21 made of Ibenium potassium arsenide (Ino, 5sUao47As) and the underlying layer indium phosphide (Ino, 5sUao47As).
0 including the upper part of the lower layer 14 of the multiplication layer made of InP)
.. It is about 2 [μmr1]. It goes without saying that the thickness of the layer to be melted back can be set to a desired value by controlling the degree of unsaturation and the meltback time.

メルトバック工程に続いて、0.7 (’C/+n1n
)の冷却速度をもってn型インジウムリン(nInP)
 層15を3〔μ+n]程度の厚さに成長させて2回目
成長工程を終了する。
Following the meltback step, 0.7 ('C/+n1n
) with a cooling rate of n-type indium phosphide (nInP)
The second growth step is completed by growing the layer 15 to a thickness of about 3 [μ+n].

最後に、公知の手法をもって0型インソウムリン(nl
、nP)層15にp型不純物として挙動するカドミウム
(Cd)を〕パ択的に拡散し、受光部であるp型高濃度
拡散層15′を形成して受光部のpn 接合を形成し、
さらに、二酸化シリコン(Si02)よりなる絶縁層1
6を形成したのち、pJ拡散/715’領域内に選択的
に負電極17を、また基板1の裏面全面に正電極18を
それぞれ形成してAPL)を完成する。
Finally, type 0 insoumlin (nl) was prepared using a known method.
, nP) layer 15] selectively diffusing cadmium (Cd), which behaves as a p-type impurity, to form a p-type high concentration diffusion layer 15', which is a light receiving part, and forming a pn junction in the light receiving part,
Furthermore, an insulating layer 1 made of silicon dioxide (Si02)
After forming 6, a negative electrode 17 is selectively formed in the pJ diffusion/715' region, and a positive electrode 18 is formed on the entire back surface of the substrate 1, thereby completing APL).

上記へ工程において、2回目の成長工程終了後に積層体
の表面を顕微鏡により観察した結果、表面モポロシーは
非常に良好であり、わずかなメルトバックが1クエーハ
全而にわたり均一に行なわれていることが確認された。
In the above process, the surface of the laminate was observed under a microscope after the second growth process, and it was found that the surface morphology was very good, with slight meltback occurring uniformly over the entire quadrature. confirmed.

これに比して、従来技術における場合、すなわち、保護
膜を使用せずに2回目成長工程を実施した場合は、本実
施例と同一のメルトバック条件でメルトバックしても、
メルトバックは均一に行なわれず、2回目成長工程終了
後の表面モ不ロジーは劣化していることが確認された7
、 更に、上記の実施例において製造したAPDの逆方向暗
電流を測定したところ、ダイオード径100〔μm1旬
程度、ブレークダウン近傍の電圧において、従来技術に
おける値が1〔μA〕程度であるのに対し、本実施例に
おける値は10い】A〕径程度あり、大幅に改善されて
いることがわかった。
In contrast, in the case of the prior art, that is, when the second growth step was performed without using a protective film, even if meltback was performed under the same meltback conditions as in this example,
It was confirmed that meltback was not performed uniformly and the surface morphology deteriorated after the second growth process7.
Furthermore, when we measured the reverse direction dark current of the APD manufactured in the above example, it was found that when the diode diameter was about 100 [μm] and the voltage near breakdown, the value in the conventional technology was about 1 [μA]. On the other hand, the value in this example was approximately 10 [A] diameter, indicating a significant improvement.

なお、本実施例においては、成長面として(100)面
を用いた場合について述べたが、面方位はこれに限定さ
れず、他の面方位、例えば(111)A面、(111)
8面等を使用した場合についても、全く同様の効果が得
られることはいうまでもない。
In this example, the case where the (100) plane was used as the growth plane was described, but the plane orientation is not limited to this, and other plane orientations such as (111) A plane, (111)
It goes without saying that exactly the same effect can be obtained even when eight sides are used.

(力発明の詳細 な説明せるとおり、本発明によれば、インジウムリン(
Ink) /インンウムガリウムヒ素リン(InGaA
sP)系の多層構造を2回の成長工程をもって、好まし
くない結晶状態を生起することなく製造する工程を含む
半導体装置の製造方法を提供することができる。
According to the present invention, indium phosphide (
Ink) /InGaA
It is possible to provide a method for manufacturing a semiconductor device, which includes a step of manufacturing a multilayer structure based on sP) in two growth steps without causing an undesirable crystalline state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、A P I)の基本構造の一例を示す断面図
であり、第2図乃至第4図はA−発明の一実施例に係る
l\PDの製造方法における、各主要工程完了後の基板
断面1スである。 1.11・・・・・基板(nlnP) 、2.12・・
・・・・バッファ層(nInP) 、3.13・・・・
・・光吸収層(n1nGaAs P )、4.14・・
・・・増1g層の下層(nInP) 、4’、14′・
・・・・・増倍層の下層に形成された、受光部に相当す
るn型部濃度領域、5.15・・・・・・増倍層の上布
(nlnP)、5′、15′・・・・・・受光部をなす
p型高濃度領域、6.16・・・・・・絶縁層(Si(
J2) 、  7 、17・・・・・・負電極、8、I
8・・・、・・・正電極、21・・・・・・本実施例の
要旨である表面保設膜(Ino、s:+Gao41AS
)。 1    ・ 315
FIG. 1 is a sectional view showing an example of the basic structure of API), and FIGS. This is the next cross-section of the substrate. 1.11...Substrate (nlnP), 2.12...
...Buffer layer (nInP), 3.13...
...Light absorption layer (n1nGaAs P), 4.14...
・・・Lower layer of 1g layer (nInP), 4', 14'・
...N-type part concentration region corresponding to the light receiving part formed in the lower layer of the multiplication layer, 5.15 ... Multiplier layer upper cloth (nlnP), 5', 15'・・・・・・P-type high concentration region forming the light receiving part, 6.16 ・・・Insulating layer (Si(
J2), 7, 17... Negative electrode, 8, I
8...,...Positive electrode, 21...Surface maintenance film (Ino, s:+Gao41AS) which is the gist of this example
). 1 ・315

Claims (2)

【特許請求の範囲】[Claims] (1)上層がインジウムリン層であるインンウムリン系
の第1の半導体層を形成する第1の工程と、前記第1の
半導体層上にインンウムリン系の第2の半導体層を形成
する第2の工程とを含む半導体装置の製造力l云におい
て、前記第1の工程の最終段にインジウムカリウムヒ素
リン薄層あるいはインンウムカリウムヒ素薄層を形成す
る工程、該上層に選択的に不純物をイオン注入する工程
、前記第2の工程の当初に前記インソウムカリウゝムヒ
素リン薄層あるいはインシウムカリウムヒ素薄層及び所
望により前記上層の上部がメルトバックされる工程を有
することを特徴とする、半導体装置の製造方法。
(1) A first step of forming a first indium phosphide semiconductor layer whose upper layer is an indium phosphide layer, and a second step of forming a second indium phosphide semiconductor layer on the first semiconductor layer. and a step of forming an indium potassium arsenide phosphide thin layer or an indium potassium arsenide thin layer at the final stage of the first step, and selectively implanting impurities into the upper layer. a step of melting back the indium potassium arsenide thin layer or the indium potassium arsenide thin layer and, if desired, the upper part of the upper layer at the beginning of the second step. Production method.
(2)前記半導体装置は受光素子であり、前記上層は増
倍層であり、前記第1の工程終了後に前記増倍層の一部
領域に選択的に不純物を導入するイオン注入工程を有す
る特許請求の範囲第1項記載の半導体装置の製造方法。
(2) A patent in which the semiconductor device is a light receiving element, the upper layer is a multiplication layer, and an ion implantation step of selectively introducing impurities into a partial region of the multiplication layer after the first step is completed. A method for manufacturing a semiconductor device according to claim 1.
JP57223172A 1982-12-20 1982-12-20 Manufacture of semiconductor device Pending JPS59112664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57223172A JPS59112664A (en) 1982-12-20 1982-12-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57223172A JPS59112664A (en) 1982-12-20 1982-12-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59112664A true JPS59112664A (en) 1984-06-29

Family

ID=16793925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57223172A Pending JPS59112664A (en) 1982-12-20 1982-12-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59112664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285477A (en) * 1985-10-09 1987-04-18 Hitachi Ltd Photosemiconductor device
JPH09148618A (en) * 1995-11-24 1997-06-06 Hamamatsu Photonics Kk Silicon avalanche photodiode
US6136628A (en) * 1997-03-26 2000-10-24 Nec Corporation Method for fabricating photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285477A (en) * 1985-10-09 1987-04-18 Hitachi Ltd Photosemiconductor device
JPH09148618A (en) * 1995-11-24 1997-06-06 Hamamatsu Photonics Kk Silicon avalanche photodiode
US6136628A (en) * 1997-03-26 2000-10-24 Nec Corporation Method for fabricating photodetector

Similar Documents

Publication Publication Date Title
Logan et al. Efficient green electroluminescent junctions in GaP
JPS5649587A (en) Semiconductor laser device
JP2006147604A (en) ZINC SOLID PHASE DIFFUSION METHOD OF INDIUM PHOSPHIDE (InP) SYSTEM LIGHT RECEIVING ELEMENT AND INDIUM PHOSPHIDE SYSTEM LIGHT RECEIVING ELEMENT
JPS59112664A (en) Manufacture of semiconductor device
JPH05234927A (en) Method of forming diffusion region of semiconductor device by solid-phase diffusion
JP2008060161A (en) Optical detector, and method of manufacturing optical detector
KR102245138B1 (en) Method for forming active area of photodiode and method for manufacturing phtodiode thereof
JPS61136225A (en) Method of diffusing impurity into inp
JPS5928391A (en) Hetero-junction type photodetector
JPS582449B2 (en) Control method for minority carrier diffusion length
JPS59106165A (en) Manufacture of semiconductor light receiving device
JP2691594B2 (en) Method for manufacturing silicon semiconductor wafer
JP2699838B2 (en) Infrared detector and manufacturing method thereof
JPH09260717A (en) Manufacture of photodiode
JP2503263B2 (en) Method for manufacturing semiconductor light emitting device
JPH04157769A (en) Manufacture of avalanche photodiode
JPH09232603A (en) Manufacture of infrared detector
JP2021077805A (en) Light receiving element and manufacturing method thereof
JPS63114274A (en) Manufacture of semiconductor photodetector
JP2689946B2 (en) Manufacturing method of infrared detector
KR890004430B1 (en) Constructure of photo diode
JPS5891687A (en) Manufacture of light-receiving element
JPS62198120A (en) Manufacture of semiconductor device
JPH02139975A (en) Manufacture of semiconductor photodetector
JPH09153639A (en) Photovoltaic infrared ray receiving device and manufacture of the same