JPS582449B2 - Control method for minority carrier diffusion length - Google Patents

Control method for minority carrier diffusion length

Info

Publication number
JPS582449B2
JPS582449B2 JP52122644A JP12264477A JPS582449B2 JP S582449 B2 JPS582449 B2 JP S582449B2 JP 52122644 A JP52122644 A JP 52122644A JP 12264477 A JP12264477 A JP 12264477A JP S582449 B2 JPS582449 B2 JP S582449B2
Authority
JP
Japan
Prior art keywords
diffusion length
minority carrier
carrier diffusion
ion implantation
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52122644A
Other languages
Japanese (ja)
Other versions
JPS5455371A (en
Inventor
井上忠昭
高木悛公
富田孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP52122644A priority Critical patent/JPS582449B2/en
Publication of JPS5455371A publication Critical patent/JPS5455371A/en
Publication of JPS582449B2 publication Critical patent/JPS582449B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体基板中にプロトン、ヘリウム等の軽元素
から成るイオンを注入することにより、所望の深さにキ
ャリアの再結合中心を導入し、少数キャリアの拡散長を
短縮する少数キャリア拡散長の制御方法に関するもので
ある。
Detailed Description of the Invention The present invention introduces carrier recombination centers at a desired depth by implanting ions made of light elements such as protons and helium into a semiconductor substrate, thereby increasing the diffusion length of minority carriers. This invention relates to a method of controlling the minority carrier diffusion length to shorten it.

イオン注入法は所望の深さに所望の濃度の不純物を導入
し得る有用な方法として一部半導体工業分野では従来の
熱拡散法に置き代わるまでに実用化されている。
The ion implantation method is a useful method for introducing impurities at a desired concentration to a desired depth, and has been put into practical use in some areas of the semiconductor industry to the extent that it replaces the conventional thermal diffusion method.

しかし、この方法はイオン化した不純物原子を高電界中
で加速して強制的に半導体基板中に打込むことによる必
然的結果として、入射エネルギーを失って静止するまで
の過程で基板構成原子と衝突してこれらを結晶格子位置
よりはじき出し、多量の空格子を誘起する。
However, this method accelerates ionized impurity atoms in a high electric field and forcibly implants them into the semiconductor substrate, resulting in them colliding with the substrate atoms in the process of losing incident energy and coming to rest. This forces them out of the crystal lattice position and induces a large amount of vacancies.

アニールの過程でこれらの空格子は互いに結びついたり
、基板構成原子、或いは不純原子と結合して空格子対空
格子一基板原子対、空格子一不純物原子対、等の複合欠
陥を形成する。
During the annealing process, these vacancies are combined with each other or with atoms constituting the substrate or with impurity atoms to form complex defects such as a vacancy-to-vacant lattice-substrate atom pair, a vacancy-impurity atom pair, and the like.

これらの欠陥は禁制帯内に種々のエネルギー準位をつく
り、キャリアのトラップ準位、或いは再結合中心となる
ことが予想される。
These defects create various energy levels within the forbidden band, and are expected to become carrier trap levels or recombination centers.

本発明はイオン照射損傷によって発生した再結合中心を
積極的に利用して,少数キャリア拡散長を短縮する方法
を提供するものである。
The present invention provides a method of shortening the minority carrier diffusion length by actively utilizing recombination centers generated by ion irradiation damage.

この再結合中心の空間的分布は欠陥分布、換言すれば、
原子核衝突過程で放出されるエネルギーの分布と第一近
似的に同じ形をとると考えられる。
This spatial distribution of recombination centers is the defect distribution, in other words:
It is thought that, to a first approximation, it takes the same form as the distribution of energy released in the nuclear collision process.

イオン注入時の欠陥密度分布の形状はイオン種、入射エ
ネルギー、ならびに基板構成原子と密度により異なるが
、一般に軽原子イオンが注入された場合には第1図に例
示した如く、欠陥分布は基板表面より内部に入るにつれ
て徐々に増加し、一次入射イオンの投影飛程(RP)よ
りわずかに浅い部分(RD)で最大値をとった後、急激
に減少する。
The shape of the defect density distribution during ion implantation differs depending on the ion species, the incident energy, and the substrate constituent atoms and density, but generally when light atom ions are implanted, the defect distribution is similar to the substrate surface, as illustrated in Figure 1. It gradually increases as it goes deeper into the interior, reaches its maximum value at a portion (RD) slightly shallower than the projected range (RP) of the primary incident ions, and then rapidly decreases.

従って、イオン注入直後の再結合中心の密度分布は第1
図の欠陥密度分布に相似する。
Therefore, the density distribution of recombination centers immediately after ion implantation is
This is similar to the defect density distribution in the figure.

これに伴って少数キャリア拡散長の深さ方向分布は表面
より内部に入るにつれて減少し、RD位置で最短値をと
った後、増加して最終的にはイオン未注入時の値となる
Along with this, the depth distribution of the minority carrier diffusion length decreases from the surface to the inside, and after taking the shortest value at the RD position, increases and finally reaches the value when ions are not implanted.

次にアニールを行った場合について述べる。Next, the case where annealing is performed will be described.

アニールによって欠陥は消滅していくが、その過程は第
1図の欠陥密度の小さな部分より除々に進行し、RD位
置でその過程を終える。
Defects disappear through annealing, but the process progresses gradually starting from the portion of FIG. 1 where the defect density is small, and the process ends at the RD position.

従って、適当なアニール条件の設定によりRD位置にの
み再結合中心を残して、そこでの少数キャリア拡散長の
みを短縮することができる。
Therefore, by setting appropriate annealing conditions, it is possible to leave a recombination center only at the RD position and shorten only the minority carrier diffusion length there.

更に、多段イオン注入法を採用して、入射エネルギーと
注入量を制御することにより、RD位置と、そこでの再
結合中心密度を連続的に変化せしめ、所望の深さ方向少
数キャリア拡散長分布を得ることができる。
Furthermore, by adopting a multi-stage ion implantation method and controlling the incident energy and implantation amount, the RD position and the recombination center density there can be continuously changed, and the desired depth direction minority carrier diffusion length distribution can be achieved. Obtainable.

第2図はN型GaAS0.62 po.38基板に20
0KeVのH+イオンを注入し、その後種々のアニール
を施して得られた基板のRD近傍で測定された正孔拡散
長を示したものである。
Figure 2 shows N-type GaAS0.62 po. 20 on 38 boards
This figure shows the hole diffusion length measured near the RD of a substrate obtained by implanting 0 KeV H+ ions and then performing various annealing operations.

基板はTeドープGaAsO.62 P0.33(10
0)気相エビタキシャルウエハーであり、電気濃度は1
.9X1016Cm−3,移動度は4150cm2/V
・secであった。
The substrate is Te-doped GaAsO. 62 P0.33 (10
0) It is a gas phase epitaxial wafer, and the electrical density is 1
.. 9X1016Cm-3, mobility is 4150cm2/V
・It was sec.

この基板に200KeVのH+イオンを1×1013C
m−2注入する。
200KeV H+ ions are added to this substrate at 1×1013C.
Inject m-2.

この場合のRDは約1.5μでその位置での空格子密度
は約1.2X10cm−3と推定される。
In this case, RD is estimated to be about 1.5 μ, and the vacancy density at that position is estimated to be about 1.2×10 cm −3 .

次に該基板をN2気流中で200〜500℃、約:5分
間のアニールを行う。
Next, the substrate is annealed at 200 to 500° C. for about 5 minutes in a N2 stream.

当然予想される如く、アニール温度の上昇に伴って欠陥
の消滅、即ち、再結合中心の減少が進行し、少数キャリ
アである正孔の拡散長は増加してい匂第2図はその様子
を示したもので、H十注入直後は0.61μであつた拡
散長が200℃,300℃,500℃と温度上昇につれ
て、それぞれ0.89μ,0.99μ,1.09μと増
加し、更に高温のアニールで未注入時の値2.20μに
近づくものと思われる。
As expected, as the annealing temperature increases, defects disappear, that is, the number of recombination centers decreases, and the diffusion length of holes, which are minority carriers, increases. The diffusion length, which was 0.61μ immediately after H0 injection, increased to 0.89μ, 0.99μ, and 1.09μ as the temperature rose to 200℃, 300℃, and 500℃, respectively. It is thought that by annealing, the value approaches the value of 2.20μ when not implanted.

以上は200KeVのH+を1×1013cm−2注入
した場、合の結果である。
The above results are obtained when 1×10 13 cm −2 of 200 KeV H+ is implanted.

適当な入射エネルギー,注入量、ならびにアニール条件
を選択することにより、所望の深さで所望の値にまで少
数キャリア拡散長を短縮できることは云うまでもない。
It goes without saying that by selecting appropriate incident energy, implantation amount, and annealing conditions, the minority carrier diffusion length can be shortened to a desired value at a desired depth.

次に、本発明に係る多段イオン注入法による少、数キャ
リア拡散長分布制御法について、実施例に基づき以下に
詳説する。
Next, a method for controlling the diffusion length distribution of small and few carriers using the multi-stage ion implantation method according to the present invention will be described in detail below based on examples.

本実施例は視感度特性フォトダイオードの製造に際し成
されたもので、以下、工程を追って説明する。
This example was created when manufacturing a photodiode with visibility characteristics, and will be explained step by step in the following.

SiドープN十型GaAs上に50μのTeドープN型
GaAsPo.38(n=1.9×10l6cm−3)
を気相エビタキシャル成長させた基板に通常のZn選択
拡散法、又は50Kev,Zn+イオンを1×1013
〜1×1014cm−2注入して、プレーナ型P−N接
合フォトダイオードを形成する。
50 μm of Te-doped N-type GaAs Po. on Si-doped N-type GaAs. 38 (n=1.9×10l6cm-3)
Ordinary Zn selective diffusion method or 50Kev, Zn + ion is 1×1013
˜1×10 14 cm −2 implant to form a planar PN junction photodiode.

これにより、0.1μ以下のP−N接合深さが実現する
がこのダイオードの分光感度特性は第3図で規格化して
示した曲線(a)の如く、長波長側に大きな感度を有し
、所期の目的とする人間の比視フ感度特性(曲線(b)
)とは大きく異なっていた。
As a result, a P-N junction depth of 0.1μ or less is achieved, but the spectral sensitivity characteristics of this diode have large sensitivity on the long wavelength side, as shown by the normalized curve (a) in Figure 3. , the desired target human visual sensitivity characteristics (curve (b)
) was very different.

P一N接合が極めて浅いにも拘わらず長波長感度が優勢
に現われる原因として(1),化合物半導体に特有な大
きな表面再結合によって短波長感度が伸びない、(2)
低濃度N型基板の採用により、空乏層が1N層側に大き
く拡がる、(3)N側での正孔拡散長が大きい(2.2
μ)、等が挙げられる。
The reasons why long wavelength sensitivity predominates despite the extremely shallow P-N junction are (1); short wavelength sensitivity does not increase due to the large surface recombination characteristic of compound semiconductors; (2)
By adopting a low-concentration N-type substrate, the depletion layer greatly expands to the 1N layer side, (3) the hole diffusion length on the N side is large (2.2
μ), etc.

そこで比視感度に近づける方法として不要な長波長感度
をカットすることが考えられるが、その為には原理上明
かな如く、N側での正孔の拡散長を短縮することが有効
となる。
Therefore, one possible way to approach the relative luminous efficiency is to cut off unnecessary long wavelength sensitivity, but as is obvious in principle, it is effective to shorten the diffusion length of holes on the N side.

ここで本発明を適用する。即ち、次に曲線(a)の分光
感度特性を有するプレーナ型ダイオード基板に高エネル
ギーH+イオンを多段注入する。
This is where the invention applies. That is, next, high-energy H+ ions are implanted in multiple stages into a planar diode substrate having the spectral sensitivity characteristic of curve (a).

H+イオンの注入条件としては長波長光感度(1例とし
て6400Å光に着目)を有効に1カットする目的で各
RD位置でのH十注入量が、その深さでの6400人光
でのキャリア生成率に比例するように設定した。
As for the implantation conditions for H+ ions, in order to effectively cut the long-wavelength photosensitivity (focusing on 6400 Å light as an example), the amount of H+ implanted at each RD position is set to 6400 Å carriers at that depth. It was set to be proportional to the production rate.

即ち、180KeVで4.3X10cm−2,200K
eVで3.2XIO12Cm2,240KeVで2.5
X1012cm−2と三段注入する。
That is, 4.3X10cm-2,200K at 180KeV
3.2XIO12Cm2 at eV, 2.5 at 240KeV
Inject in three stages at x1012cm-2.

然る後、各RD位置近傍にのみ再結合中心を残す目的で
N2気流中で5分間のアニールを行う。
After that, annealing is performed for 5 minutes in a N2 gas flow in order to leave recombination centers only near each RD position.

これによって深さ約1.3μで最も正孔拡散長が短く、
それより深部に行くに従って徐々に正孔拡散長が長くな
るような拡散長分布が得られる為、長波長光によってN
側深部で発生した正孔は拡散によって空間電荷によるド
リフト領域(表面より約1.2μ)に入るまでにほとん
ど再結合し、外部出力としては取り出されなくなる。
As a result, the hole diffusion length is the shortest at a depth of about 1.3μ,
Since a diffusion length distribution is obtained in which the hole diffusion length gradually increases as it goes deeper, long wavelength light
Most of the holes generated in the deep side are recombined by diffusion before entering the drift region (approximately 1.2 μm from the surface) due to space charges, and are no longer taken out as external output.

かくして得られたフォトダイオードの規格化分光感度を
第3図に曲線+ (C)として示してある。
The normalized spectral sensitivity of the photodiode thus obtained is shown in FIG. 3 as curve + (C).

第3図より明かな如く、短波長光での規格化感度をH十
未注入時の特性にほぼ保ち、およそ5300Å以上の長
波長感度を有効に減少せしめることができたため、従来
の特性(a)よりはるかに比視感度に近づけることがで
きた。
As is clear from Fig. 3, we were able to maintain the normalized sensitivity at short wavelengths almost at the same level as when H was injected, and effectively reduce the sensitivity at long wavelengths of about 5300 Å or more. ), we were able to get it much closer to the relative luminous efficiency.

ちなみに曲線(d)は200KeVのH+イオンを1×
1013Cm−2一段注入して得たフォトダイオードの
特性を示しており、比視感度との合致度(特に長波長側
)において、拡散長分布の制御を行った本実施例の素子
(曲線(C))が優れていることは図より明かである。
By the way, curve (d) shows 200KeV H+ ion at 1×
It shows the characteristics of a photodiode obtained by one-stage injection of 1013Cm-2, and the curve (C It is clear from the figure that )) is superior.

以上は通常のP−N接合型フォトダイオードに対する応
用例であるが、本発明が少数キャリアによる拡散電流成
分を制御(短縮)し得るという原理より、上記以外にア
バランシエフオトダイオード、或いは,トランジスタ等
の応答速度の改善等広く半導体デバイスに適用されるこ
とは云うまでもない。
The above is an application example to a normal P-N junction type photodiode, but based on the principle that the present invention can control (shorten) the diffusion current component due to minority carriers, it is possible to apply the present invention to an avalanche photodiode, a transistor, etc. It goes without saying that the present invention is widely applied to semiconductor devices, such as improving the response speed of semiconductor devices.

又、実施例はGaAs042 PO。38について述べ
たが、Si,Ge,GaAs,GaP等あらゆる半導体
材料に対し同様の効果が期待できる。
In addition, the example is GaAs042 PO. 38, similar effects can be expected for all semiconductor materials such as Si, Ge, GaAs, and GaP.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGaAsO,62 Po.38に200KeV
のプロトンを1×10cm−2注入した場合の空孔密度
分布、ならびにH原子の密度分布を示す。 同図でRpとRDはそれぞれH原子密度と空孔密度が最
大になる位置を示す。 第2図はプロトン注入N−GaAsg,62 P0,3
8に於ける正孔拡散長のアニール温度依存性を示す。 第3図は種々の方法で作製したGaAso,62 P0
.38フォトダイオードの等エネルギー光入射時の規格
化分光感度特性を示す。 曲線はそれぞれ以下の内容を示す。 (a) Z n+選択拡散法、又は、Zn+イオン注入
法によって形成した通常のCaASO.62 P0,3
87オトダイオードの分光感度特性、(b)比視感度特
性、(c)三段プロトン注入法により正孔拡散長分布を
制御したQaAsO.62 PO,38フオトダイオー
ドの分光感度特性、(d)一段のみのプロトン注入を行
って得られたGaAso.62 PO.38フオトダイ
オドの分光感度特性。
FIG. 1 shows GaAsO, 62 Po. 38 to 200KeV
The vacancy density distribution and the H atom density distribution when 1×10 cm −2 of protons are injected are shown. In the figure, Rp and RD indicate the positions where the H atom density and the hole density are maximum, respectively. Figure 2 shows proton-implanted N-GaAsg, 62 P0,3
8 shows the annealing temperature dependence of hole diffusion length in No. 8. Figure 3 shows GaAso,62 P0 prepared by various methods.
.. 38 shows the normalized spectral sensitivity characteristics of the No. 38 photodiode when equal energy light is incident. Each curve represents the following: (a) Ordinary CaASO. 62 P0,3
Spectral sensitivity characteristics of 87 Otodiode, (b) Specific luminous efficiency characteristics, (c) QaAsO. Spectral sensitivity characteristics of 62 PO, 38 photodiode, (d) GaAso. 62 P.O. Spectral sensitivity characteristics of 38 photodiode.

Claims (1)

【特許請求の範囲】 1 半導体基板中に軽元素イオンを入射エネルギー、注
入量等のイオン注入条件を複数設定して多段イオン注入
し少数キャリャ再結合中心となる空格子を導入し、アニ
ール処理を介して少数キャリャ再結合中心密度を連続的
若しくは略連続的に変化せしめて少数キャリャ拡散長分
布を規制することを特徴とする少数キャリャ拡散長の制
御方法。 2 イオン注入条件を複数設定して多段イオン注入する
ことにより、キャリア再結合中心密度を連続的に変化せ
しめた特許請求の範囲第1項記載の少数キャリア拡散長
の制御方法。
[Scope of Claims] 1 Light element ions are implanted into a semiconductor substrate in multiple stages by setting a plurality of ion implantation conditions such as incident energy and implantation amount to introduce vacancies that serve as minority carrier recombination centers, and then annealing is performed. 1. A method for controlling minority carrier diffusion length, comprising controlling minority carrier diffusion length distribution by continuously or substantially continuously changing minority carrier recombination center density. 2. The method of controlling minority carrier diffusion length according to claim 1, wherein the carrier recombination center density is continuously changed by setting a plurality of ion implantation conditions and performing multi-stage ion implantation.
JP52122644A 1977-10-12 1977-10-12 Control method for minority carrier diffusion length Expired JPS582449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52122644A JPS582449B2 (en) 1977-10-12 1977-10-12 Control method for minority carrier diffusion length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52122644A JPS582449B2 (en) 1977-10-12 1977-10-12 Control method for minority carrier diffusion length

Publications (2)

Publication Number Publication Date
JPS5455371A JPS5455371A (en) 1979-05-02
JPS582449B2 true JPS582449B2 (en) 1983-01-17

Family

ID=14841063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52122644A Expired JPS582449B2 (en) 1977-10-12 1977-10-12 Control method for minority carrier diffusion length

Country Status (1)

Country Link
JP (1) JPS582449B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3530065C2 (en) * 1984-08-22 1999-11-18 Mitsubishi Electric Corp Process for the production of a semiconductor
US5108935A (en) * 1990-11-16 1992-04-28 Texas Instruments Incorporated Reduction of hot carrier effects in semiconductor devices by controlled scattering via the intentional introduction of impurities
EP1484789A1 (en) * 1998-08-05 2004-12-08 MEMC Electronic Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US6828690B1 (en) 1998-08-05 2004-12-07 Memc Electronic Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
KR100498943B1 (en) * 1998-08-05 2005-07-04 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 Non-uniform minority carrier lifetime distributions in high performance silicon power devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTION ON NVCLEAR SCIENCE=1963 *

Also Published As

Publication number Publication date
JPS5455371A (en) 1979-05-02

Similar Documents

Publication Publication Date Title
Lee et al. Ion-implanted semiconductor devices
US3390019A (en) Method of making a semiconductor by ionic bombardment
KR100196488B1 (en) Application of electronic properties of germanium to inhibit n-type or p-type dopant diffusion in silicon
JPS582449B2 (en) Control method for minority carrier diffusion length
JP3165051B2 (en) Semiconductor element well formation method
US3416047A (en) Opto-pn junction semiconductor having greater recombination in p-type region
Lecrosnier Gettering by ion implantation
JPS5856481A (en) Germanium photodetector
US4003759A (en) Ion implantation of gold in mercury cadmium telluride
US4415372A (en) Method of making transistors by ion implantations, electron beam irradiation and thermal annealing
US3770516A (en) Monolithic integrated circuits
Pearton Ion implantation in GaAs
KR100215907B1 (en) Manufacturing method of a zener diode
KR19990059071A (en) Manufacturing Method of Semiconductor Device
JPS59106165A (en) Manufacture of semiconductor light receiving device
CA1088193A (en) Method of fabrication of optoelectric devices by ion implantation
JPH0541359A (en) Removal method of ion shock damage
JPS63261833A (en) Manufacture of semiconductor substrate
JP2618965B2 (en) Method for manufacturing semiconductor device
JPS5984422A (en) Manufacture of semiconductor device
SU447969A1 (en) The method of obtaining pn = transition in Germany p = type
JPH0244717A (en) Manufacture of semiconductor device
JPS6372155A (en) Formation of guard ring
JPS63273317A (en) Manufacture of semiconductor device
JPS6014435A (en) Forming method of p type region