JPS59108807A - Power generating engine - Google Patents

Power generating engine

Info

Publication number
JPS59108807A
JPS59108807A JP21681782A JP21681782A JPS59108807A JP S59108807 A JPS59108807 A JP S59108807A JP 21681782 A JP21681782 A JP 21681782A JP 21681782 A JP21681782 A JP 21681782A JP S59108807 A JPS59108807 A JP S59108807A
Authority
JP
Japan
Prior art keywords
flow rate
temperature
cooling medium
rate
generating engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21681782A
Other languages
Japanese (ja)
Inventor
Masahiko Fujita
雅彦 藤田
Masaharu Ishii
石井 雅治
Seigo Miyamoto
宮本 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21681782A priority Critical patent/JPS59108807A/en
Publication of JPS59108807A publication Critical patent/JPS59108807A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:In a power generating engine for collecting exhaust gas, to prevent cavitation by temporarily reducing refrigerant flow if the temperature falling speed of refrigerant is higher than predetermined level thereafter increasing gradually. CONSTITUTION:Temperature of refrigerant is detected by a sensor 10 while temperature varying speed is obtained at an operating section 11 and if it is higher than setting level, a flow regulating means 9 is operated through a signal generating section 12 to reduce refrigerant flow from a refrigerant carrying means 8 to a condenser 2 temporarily thereafter increase gradually. Through this operation, temperature falling speed of gas refrigerant flowing from an expander 1 into condenser 2 will never be extremely slower than condensation temperature falling speed to prevent temporal overcooling of condenser 2 thus to prevent cavitation in condensed liquid pump 3 for gas refrigerant.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は動力発生機関に係り、特に太陽熱、地熱、廃熱
などの代替エネルギから動力を回収するに好適な動力発
生機関に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a power generating engine, and particularly to a power generating engine suitable for recovering power from alternative energy such as solar heat, geothermal heat, and waste heat.

〔従来技術〕[Prior art]

従来の動力発生機関においては、凝m器に流入する冷却
媒体温度が低下しかつその低下速度が大きいとき1.あ
るいは温度が一定で流量が増加しその増7il]’4度
が太きいとき次に説明するような過程を経て液ボ/プの
キャビテーションを生じた。
In a conventional power generating engine, when the temperature of the cooling medium flowing into the condenser decreases and the rate of decrease is large, 1. Alternatively, when the temperature is constant and the flow rate increases and the increase is 7il]'4 degrees, cavitation of the liquid bubble occurs through the process described below.

■ 冷却媒体温度の急速な低下(冷却媒体流量の増加)
■ Rapid decrease in coolant temperature (increase in coolant flow rate)
.

■ #組液内作動媒体温度の急速な低下。■ Rapid decrease in the temperature of the working medium in the solution.

■ 凝縮圧力の急速な低下。■ Rapid decrease in condensing pressure.

■ 凝縮器入口側のガス媒体温度の低下速度が凝縮温度
の低下速度より遅く、凝縮器入口側過熱度が大きくなる
(2) The rate of decrease in the gas medium temperature on the condenser inlet side is slower than the rate of decrease in the condensing temperature, and the degree of superheating on the condenser inlet side increases.

■ 出口媒体の過冷却度低下(凝縮圧力の低下及び過熱
度の増大)。
■ Decreased subcooling of the outlet medium (decreased condensing pressure and increased superheat).

■ キャビテーションの発生。■ Occurrence of cavitation.

そしてこのキャビテーション現象によって液ポンプの寿
命は著しく縮められた。
This cavitation phenomenon significantly shortened the life of liquid pumps.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を解消し、冷却媒体温度が急
降下する場合るるいは冷却媒体流量が急増する場合にお
いても、キャビテーション発生を防ぐことができる動力
発生機関を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power generating engine that eliminates the above-mentioned drawbacks and can prevent cavitation even when the coolant temperature suddenly drops or the coolant flow rate increases rapidly.

〔発明の概安〕[Summary of the invention]

本発明は、冷却媒体に流量調節手段を設けたこと及び冷
却媒体温度を検出し、前記温度が低下しかつその低下速
度がある設定値よシ大きい場合に、冷却媒体流量を一旦
減少させ、次いで徐々に流量を増してこぐことを特徴と
する。
In the present invention, the cooling medium is provided with a flow rate adjusting means, the cooling medium temperature is detected, and when the temperature decreases and the rate of decrease is greater than a certain set value, the cooling medium flow rate is temporarily decreased, and then It is characterized by gradually increasing the flow rate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は第一の実施例を示すもので、膨張機1゜凝縮器
2.液ポンプ3.蒸気発生器4.Eltl力変換手段5
.負荷6.筒部媒体搬送手段7.冷却媒体搬送手段8よ
υなる動力発生機関において、冷却媒体流路に流!調節
手段9及び冷却媒体流量検出手段10、冷却媒体温度変
化速度演算部11.信号発生部12を設けたものである
。次いで第2図に第二の実施例を示す。これは冷却媒体
流量検出手段13、冷却媒体流量変化速度演算部14を
信号発生部12に接続したものである。さらに第三の実
施例としては、膨張機1の出口側から液ポンプ3の入口
までの低圧部に圧力検出手段15を設け、前記圧力変化
速度演算816を信号発生部12に接続したもの(第3
図)、最後に第四の実施例としてWm器出作偽に温度検
知手段17を設け、前記温度変化速度演算部18を信号
発生部12に接続したものがある(第4図)。なお第5
図に示すように流ta節手段9を媒体搬送手段8のバイ
パス路上に設けることも考えられる。
FIG. 1 shows the first embodiment, in which the expander 1° condenser 2. Liquid pump 3. Steam generator 4. Eltl force conversion means 5
.. Load 6. Cylindrical medium conveying means 7. In the power generating engine υ such as the cooling medium conveying means 8, the cooling medium flows into the flow path! Adjustment means 9, cooling medium flow rate detection means 10, cooling medium temperature change rate calculation section 11. A signal generator 12 is provided. Next, FIG. 2 shows a second embodiment. This has a cooling medium flow rate detecting means 13 and a cooling medium flow rate change rate calculating section 14 connected to a signal generating section 12. Furthermore, as a third embodiment, a pressure detecting means 15 is provided in the low pressure section from the outlet side of the expander 1 to the inlet of the liquid pump 3, and the pressure change rate calculation 816 is connected to the signal generating section 12 (a third embodiment). 3
Finally, there is a fourth embodiment in which a temperature detection means 17 is provided in the Wm generator, and the temperature change rate calculation section 18 is connected to the signal generation section 12 (FIG. 4). Furthermore, the fifth
It is also conceivable to provide the flow node means 9 on a bypass path of the medium conveyance means 8 as shown in the figure.

次いで第6図を用いて第一の実施例の動作を説明する。Next, the operation of the first embodiment will be explained using FIG.

まず冷却媒体温度を検知し、その温度変化速度を求め温
度低下速度がある設定値より大きい場合には、冷却媒体
流量を減少させ、次いで保検に流量を増す。このときの
冷却媒体流量の変化を第7図に示す。以上の動作を行う
ことによって、凝縮器入口側のガス媒体温度の低下速度
が凝縮温度の低下速度に比して極端に遅いということが
なくなり、凝縮器における一時的な過冷却度の低下を防
ぐことができるので、キャビテーションの発生を防止す
ることができる。
First, the coolant temperature is detected, and the temperature change rate is determined. If the temperature decrease rate is greater than a certain set value, the coolant flow rate is decreased, and then the flow rate is increased for maintenance. FIG. 7 shows the change in the coolant flow rate at this time. By performing the above operations, the rate of decrease in the gas medium temperature on the condenser inlet side will not be extremely slow compared to the rate of decrease in the condensing temperature, thereby preventing a temporary decrease in the degree of supercooling in the condenser. Therefore, cavitation can be prevented from occurring.

なお冷却媒体の温度変化は小さいが流量が変動すること
が考えられる場合には、第二の実施例を採用し、第8図
に示すように流量の増加速度を検知して前記速度がある
設定値以上のときに、第6図に示したのと同じ動作を行
うとよい。ただしこのときには冷却媒体流tを以前の流
量にまで減少させ、以後徐々に増加させる。
If the temperature change of the cooling medium is small but the flow rate is likely to fluctuate, the second embodiment is adopted, and as shown in Fig. 8, the rate of increase in the flow rate is detected and the setting is made at a certain speed. When the value is greater than or equal to the value, it is preferable to perform the same operation as shown in FIG. However, at this time, the coolant flow t is reduced to the previous flow rate and then gradually increased.

また第三の実施例あるいは第四の実施例の場合には、第
9図に示すように低圧側圧力あるいは凝縮液温度の低下
速度を検出し、前記速度がある設定値以上の場合に第6
図に示したのと同様の動作を行う。
In addition, in the case of the third embodiment or the fourth embodiment, as shown in FIG.
Perform the same operation as shown in the figure.

また、第10図に示すように冷却媒体流量を減少させた
後に、第6図及び第9図において検出した温度あるいは
圧力の低下速度を検知して、上記速度がある設定値以下
となった後に徐々に冷却媒体流量を増加させることも考
えられる。このときの冷却媒体流量の変化を第11図に
示す。
In addition, after reducing the coolant flow rate as shown in Figure 10, the rate of decrease in temperature or pressure detected in Figures 6 and 9 is detected, and after the rate falls below a certain set value, It is also conceivable to gradually increase the coolant flow rate. FIG. 11 shows the change in the coolant flow rate at this time.

なお今まで述べた実施例では冷却媒体流路に流#調節:
l=段9を設けたが、冷却媒体搬送手段8の回転数を変
えて冷却媒体制御を行ってもよい。
In addition, in the embodiments described so far, the flow # is adjusted in the cooling medium flow path:
Although the stage 9 is provided, the cooling medium may be controlled by changing the rotation speed of the cooling medium conveying means 8.

〔発明の効果〕〔Effect of the invention〕

以上示したように、本発明によれば、冷却媒体温度が急
降下する場合にも、液ポンプのキャビテーション発生を
防止することができる。
As shown above, according to the present invention, cavitation in the liquid pump can be prevented even when the coolant temperature suddenly drops.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第一の実施例の系統図、第2図〜第4図は各々
他の実施例の狭部を示す図、第5図は流量調節手段の他
の設置方法を示すもの、第6図は第一の実施例の動作フ
ロー、第7図は第6図に対応する冷却媒体流量の時間変
化図、第8図は第二の実施例の動作フロー、第9図は第
三及び第四の実施例の動作フロー、第10図は第一、第
三及び第四の実施例の動作フローに付加しうる動作フロ
ー、第11図は第10図の動作フローに対応する冷却媒
体流量の時間変化図である。 1・・・膨張機、2・・・凝縮器、3・・・液ポンプ、
4・・・蒸気発生器、8・・・冷却媒体搬送手段、9・
・・流量調節手段。 ¥Jl  図 第 2 図 ¥]5 図 第6 口 第9 図 第 10  図 kfJII  図 fl      710
FIG. 1 is a system diagram of the first embodiment, FIGS. 2 to 4 are diagrams showing narrow parts of other embodiments, and FIG. 5 is a diagram showing another method of installing the flow rate regulating means. Fig. 6 is the operation flow of the first embodiment, Fig. 7 is a time change chart of the coolant flow rate corresponding to Fig. 6, Fig. 8 is the operation flow of the second embodiment, and Fig. 9 is the operation flow of the third and third embodiments. The operation flow of the fourth embodiment, FIG. 10 is an operation flow that can be added to the operation flow of the first, third and fourth embodiments, and FIG. 11 is a cooling medium flow rate corresponding to the operation flow of FIG. 10. FIG. 1... Expander, 2... Condenser, 3... Liquid pump,
4... Steam generator, 8... Cooling medium conveying means, 9...
...Flow rate adjustment means. ¥Jl Figure 2 Figure ¥] 5 Figure 6 Figure 9 Figure 10 Figure kfJII Figure fl 710

Claims (1)

【特許請求の範囲】 1、膨張機、凝縮器、液ポンプ、蒸気発生器。 膨張機において得られる動力を他種動力に変換゛する手
段、上記動力を吸収する負荷、蒸気発生器に高温媒体を
送る高温媒体搬送手段、凝縮器に冷却媒体を送る冷却媒
体搬送手段よりなる動力発生機関において、冷却媒体流
量調節手段を設けたことを特徴とする動力発生機関。 2 冷却媒体温度を検出して、前記温度が低下しかつそ
の低下速度がある設定値より大きい場合に、冷却媒体m
*を一旦減少させ、次いで徐徐に流量を増していくこと
を特徴とする特許請求の範囲第1項記載の動力発生機関
。 3、低圧側圧力を検出して、前記圧力が低下し、かつそ
の低下速度がある設定値より大きい場合に、冷却媒体流
量を一旦減少させ、次いで保々に#L量を増していくこ
とを特徴とする特許請求の範囲第1項記載の動力発生機
関。 4、#:縮液液温度検出して、前記温度が減少しかつそ
の秋少速度がある設定値よシ大きい場合に、冷却媒体流
量を一旦減少させ、次いで徐々に流量を増していくこと
を特徴とする特許請求の範囲第1項記載の動力発生機関
。 5、冷却媒体流量を検出して、前記流量が増加し、かつ
その増加速度がある設定値よシ大きい場合に、冷却媒体
流蓋を一旦減少させ、次いで徐々に流量を増していくこ
とを特徴とする特許請求の範囲第1項記載の動力発生機
関。
[Claims] 1. Expander, condenser, liquid pump, steam generator. A power source consisting of means for converting the power obtained in the expander into other types of power, a load that absorbs the power, a high temperature medium conveying means for conveying a high temperature medium to the steam generator, and a cooling medium conveying means for conveying a cooling medium to the condenser. A power generating engine characterized in that the generating engine is provided with a cooling medium flow rate adjusting means. 2 Detecting the cooling medium temperature, and when the temperature decreases and the rate of decrease is greater than a certain set value, the cooling medium m
2. The power generating engine according to claim 1, wherein the flow rate is decreased once and then the flow rate is gradually increased. 3. The low pressure side pressure is detected, and if the pressure decreases and the rate of decrease is greater than a certain set value, the coolant flow rate is temporarily decreased, and then the #L amount is continuously increased. A power generating engine according to claim 1. 4, #: The temperature of the condensed liquid is detected, and if the temperature decreases and the rate of fall is greater than a certain set value, the flow rate of the cooling medium is temporarily decreased, and then the flow rate is gradually increased. A power generating engine according to claim 1, characterized in that: 5. The coolant flow rate is detected, and if the flow rate increases and the rate of increase is greater than a certain set value, the coolant flow cover is temporarily reduced, and then the flow rate is gradually increased. A power generating engine according to claim 1.
JP21681782A 1982-12-13 1982-12-13 Power generating engine Pending JPS59108807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21681782A JPS59108807A (en) 1982-12-13 1982-12-13 Power generating engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21681782A JPS59108807A (en) 1982-12-13 1982-12-13 Power generating engine

Publications (1)

Publication Number Publication Date
JPS59108807A true JPS59108807A (en) 1984-06-23

Family

ID=16694350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21681782A Pending JPS59108807A (en) 1982-12-13 1982-12-13 Power generating engine

Country Status (1)

Country Link
JP (1) JPS59108807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181457A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same
JP2016029268A (en) * 2014-07-25 2016-03-03 日野自動車株式会社 Waste heat recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181457A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same
JP2016029268A (en) * 2014-07-25 2016-03-03 日野自動車株式会社 Waste heat recovery device

Similar Documents

Publication Publication Date Title
CN107091542B (en) A kind of coupling circulation system and control method for solar energy thermal-power-generating
JP4738225B2 (en) Power system
CN101994729A (en) Oil temperature control system and control method of refrigeration type hydraulic system
JPS59108807A (en) Power generating engine
US20150052895A1 (en) Heat exchanger, heat engine system and control method using the same
US10677101B2 (en) Combined heat and power system and operating method of combined heat and power system
JPH08338207A (en) Exhaust heat recovery device
CN1133052C (en) Absorption chiller
JPH0242102A (en) Method for recovering thermal energy and apparatus thereof
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2017110551A (en) Waste heat recovery device
JPH0742844B2 (en) Hot water turbine plant
JPH0445739B2 (en)
JPH0436245B2 (en)
WO2019155976A1 (en) Binary power generation system
JPS61145305A (en) Control device for turbine plant using hot water
JPS6069220A (en) Waste-heat recovering system
JPS6029501A (en) Steam generator for recovering waste heat
JP3095575B2 (en) Cycle plant
JPH0146684B2 (en)
JPH10184316A (en) Power generation control device utilizing exhaust heat
JPS58185911A (en) Motive power generator
CN116181458A (en) System and method for regulating and controlling regeneration of diesel particulate collector
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS606007A (en) Operation of power production engine