JPS59107936A - Manufacture of preform rod - Google Patents

Manufacture of preform rod

Info

Publication number
JPS59107936A
JPS59107936A JP21907182A JP21907182A JPS59107936A JP S59107936 A JPS59107936 A JP S59107936A JP 21907182 A JP21907182 A JP 21907182A JP 21907182 A JP21907182 A JP 21907182A JP S59107936 A JPS59107936 A JP S59107936A
Authority
JP
Japan
Prior art keywords
amount
reaction
gecl4
quartz tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21907182A
Other languages
Japanese (ja)
Inventor
Toshio Iwamoto
岩本 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP21907182A priority Critical patent/JPS59107936A/en
Publication of JPS59107936A publication Critical patent/JPS59107936A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a preform rod having a low water content without narrowing the transmission zone by increasing the amount of gaseous oxygen for reaction in proportion to the increase in the mount of GeCl4 when a CVD method using Ar as a carrier gas is applied. CONSTITUTION:SiCl4 as a gaseous starting material and GeCl4 or the like as a dopant are introduced into a rotating quartz pipe using Ar as a carrier gas. At the same time, gaseous oxygen for reaction is introduced into the pipe. The outer wall of the pipe is heated to deposit successively soot on the inner wall of the pipe, and a preform rod is formed. The amount of gaseous oxygen to be introduced into the pipe is increased in proportion to the increase in the amount of GeCl4, and dehydrating action is sustained by a small amount of unreacted GeCl4 while accelerating the reaction of GeCl4. By this method a preform rod having a low water content and a prescribed refractive index distribution is obtd.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、ovp法によるプリフォームロッドの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a preform rod by the OVP method.

(発明の技術的背景) 従来のOVD法によるブリ7オームロツドの製造方法に
おいては、原料ガスとしての四塩化ケイ素(StOj+
)やキャリアガスに水分が含まれ、又ガス供給系の装置
の気密性が不充分であること等から、水分の混入したブ
リフォームロブトしか得ることができなかった。このた
め、プリフォームロッドの脱OH塞化が種々前えられ、
例えば原料ガスやキャリアガスを石英管に導入する前に
別工程で予熱してその含まれている水分を除去する方法
などが考えられている。
(Technical Background of the Invention) In the conventional method for producing 7-ohm rods using the OVD method, silicon tetrachloride (StOj+
) and the carrier gas, and the airtightness of the gas supply system was insufficient, so it was only possible to obtain pre-formed loaves containing moisture. For this reason, various methods of removing OH and clogging the preform rod are being carried out.
For example, a method has been considered in which the raw material gas or carrier gas is preheated in a separate process to remove the moisture contained therein before being introduced into the quartz tube.

(背景技術の問題点) しかし、この方法は装置規模が大きくなり、また得られ
た光ファイバの伝送帯域が減少してしまう他の欠点が免
れない。
(Problems with the Background Art) However, this method inevitably has other drawbacks such as an increase in the scale of the device and a decrease in the transmission band of the obtained optical fiber.

本発明者は、かかる従来の欠点を解消すべく研究を進め
、先ず、アルゴンキャリアガスを用いるOVD法にて、
原料組成である5iat4、Gec/4(四塩化ゲルマ
ニウム)及びP OOz。
The present inventor has conducted research in order to eliminate such conventional drawbacks, and first, using the OVD method using argon carrier gas,
Raw material composition: 5iat4, Gec/4 (germanium tetrachloride) and POOz.

をそれぞれ62 cc/min s 19 cc/mi
n 、 7cc/minの一定に保持し、反応用酸素ガ
ス量を0〜300 Q cc/minまで段階的に変化
させ、複数のブリ7オームロツドを作成した。そして、
各ロッドから光ファイバを製造して各ファイバの屈折率
と反応用酸素ガス量との関係を調べたところ、第1図に
示すように、反応用酸素ガス量の減少に伴なって未反応
のGeCl4が増大して屈折率差が小さくなっていた。
62 cc/min s 19 cc/mi respectively
A plurality of 7-ohm rods were prepared by keeping the reaction oxygen gas constant at 7 cc/min and changing the reaction oxygen gas amount stepwise from 0 to 300 Q cc/min. and,
When optical fibers were manufactured from each rod and the relationship between the refractive index of each fiber and the amount of reaction oxygen gas was investigated, as shown in Figure 1, as the amount of reaction oxygen gas decreased, unreacted GeCl4 increased and the refractive index difference became smaller.

また、反応用酸素ガス量を少なくして作成したプリフォ
ームロッドは水分量が非常に少なく、良好な結果が得ら
れた。これは未反応のaeat、が水分と反応し、脱水
作用を起こしたことが原因であった。
In addition, the preform rod made with a reduced amount of reaction oxygen gas had a very low moisture content, and good results were obtained. This was caused by unreacted aeat reacting with moisture and causing dehydration.

次に、反応用酸素ガス量を800 cc/minの一定
にして、CVD法によりプリ7オームロツドを作成した
。作成条件としては、キャリアガスAt250 c C
1810ノ。を66 cc/min s  POOIB
を2cc/minの一定にし、スート堆積回数が100
回になるまでGeC/4を0〜15 cc/minの範
囲で順次増加させた。得られたプリ7オームロツドから
グレーデッドインデックス型光ファイバを製造し、その
水分を調べたところ、非常に少なく良好な結果が得られ
た。しかし、この得られた光ファイバは、その屈折率こ
う配αが2.5になり、第2図に示すように、屈折率分
布が計算値で示すα−2,0の理想分布(点線)からか
なりずれ、伝送帯域が減少していた。
Next, a pre-7 ohm rod was produced by CVD with the amount of oxygen gas for reaction kept constant at 800 cc/min. The preparation conditions are carrier gas At250cC
1810 no. 66 cc/min s POOIB
was kept constant at 2 cc/min, and the number of soot depositions was 100.
The GeC/4 was increased sequentially in the range of 0 to 15 cc/min until the temperature reached 100 cc/min. A graded index optical fiber was manufactured from the obtained pre-7 ohm rod, and when the moisture content was examined, good results were obtained, with very little moisture. However, the obtained optical fiber has a refractive index gradient α of 2.5, and as shown in FIG. There was considerable deviation and the transmission band was reduced.

そこで、本発明者は、反応用酸素ガス量が一定の場合G
e C74の量が増えると酸素、ガス量が少なくなって
未反応aeat、が増加し、屈折率分布がずれる点に注
目し、反応用酸素ガス量をGeC/4に比例させて増加
すれば未反応QeC14を最小に押さえることができ、
これにより屈折率分布のずれをなくして水分の除去を行
うことができることを見出した。
Therefore, the inventor proposed that when the amount of oxygen gas for reaction is constant, G
e Note that as the amount of C74 increases, the amount of oxygen and gas decreases and unreacted aeat increases, and the refractive index distribution shifts.If the amount of oxygen gas for reaction is increased in proportion to GeC/4, The reaction QeC14 can be kept to a minimum,
It has been found that this makes it possible to remove moisture while eliminating deviations in the refractive index distribution.

(発明の目的) 本発明の目的は、装置規模を大きくせず、また伝送帯域
を減少させることなく水分の少ないブリ7オームロツド
を作成することができる方法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a method capable of producing a 7-ohm rod with low moisture content without increasing the scale of the device or reducing the transmission band.

(発明の概要) 本発明は、アルゴンキャリアガスを用いるCVD法にお
いて、反応用酸素ガス量を、G e 014の増加に比
例させて順次増大することを特徴とする。
(Summary of the Invention) The present invention is characterized in that in a CVD method using an argon carrier gas, the amount of oxygen gas for reaction is gradually increased in proportion to the increase in G e 014.

(発明の実施例) 以下、本発明の詳細な説明する。(Example of the invention) The present invention will be explained in detail below.

先ず、石英管をガラス旋盤に取り付け、1分間に数十回
転の速度で回転させ、この石英管に、8 iCl 46
2 CC/f21 @ n s P OCj @ 7 
CC/min  一定で導入すると共にQe! Cz、
を0〜36cc/minまで変化させ、又反応用酸素ガ
スを100cc/minから1000cc/minまで
変化させて導入する。キャリアガスとしてアルゴンを用
いる。
First, a quartz tube was attached to a glass lathe, rotated at a speed of several tens of revolutions per minute, and 8 iCl 46 was applied to the quartz tube.
2 CC/f21 @ n s P OCj @ 7
In addition to introducing constant CC/min, Qe! Cz,
The rate of reaction oxygen gas is varied from 0 to 36 cc/min, and the rate of reaction oxygen gas is varied from 100 cc/min to 1000 cc/min. Argon is used as a carrier gas.

反応用酸素ガス量は次式によって決定されているO n m a x        3 但し、X tはi層目のスートを堆積するのに用いる反
応用酸素ガス量、G e iはi層目のスートを堆積す
るのに用いるQeQj4流量、Xmaxは最終回にスー
トを作成するに用いる反応用酸素ガス量、oemax 
 は最終回にスートを作成するのに用いるQeOj4流
量、Biot、及びPQCjBはこれら原料ガスの反応
に必要な酸素ガス量をそれぞれ示す。
The amount of oxygen gas for reaction is determined by the following formula: O n m a x 3 where, QeQj4 flow rate used to deposit, Xmax is the amount of reaction oxygen gas used to create soot in the final step, oemax
represents the QeOj4 flow rate used to create soot in the final step, Biot, and PQCjB each represent the amount of oxygen gas required for the reaction of these raw material gases.

次に、前記各ガスの導入と同時に1.加熱源としての酸
水素バーナを原料ガスの流れる方向に沿って、即ち石英
管の軸方向に沿って移動し、石英管の管外壁を局部的に
連続して加熱する。この加熱によりドーパントを含む原
料ガスと反応用酸素ガスが反応し、8 i 0! 、G
e Ot 、Pt Osから成るスートが石英管内壁に
堆積する。この堆積したスートは移行してきたバーナに
より高温度で加熱されガラス化される。バーナは石英管
のガス導入端から排出端まで移動されると、迅速にガス
導入端に戻され、再び同一動作を繰り返す。この場合ド
ーパントであるG e’ 014の流量が徐々に増加し
ているので、石英管には順次屈折率の相違するガラス層
が積層されることになる。
Next, at the same time as introducing each of the above gases, 1. An oxyhydrogen burner serving as a heating source is moved along the flow direction of the raw material gas, that is, along the axial direction of the quartz tube, to locally and continuously heat the outer wall of the quartz tube. This heating causes the raw material gas containing the dopant to react with the reaction oxygen gas, resulting in 8 i 0! ,G
Soot consisting of eOt, PtOs is deposited on the inner wall of the quartz tube. This deposited soot is heated at high temperature by the transferred burner and vitrified. When the burner is moved from the gas introduction end to the discharge end of the quartz tube, it is quickly returned to the gas introduction end and the same operation is repeated again. In this case, since the flow rate of the dopant G e' 014 is gradually increased, glass layers having different refractive indexes are successively laminated on the quartz tube.

このようにして、ブリ7オームレツドを作成した後この
ロッドを用いてグレーデッドインデックス型光ファイバ
を製造し、そのαと帯域を調べた。
After creating a 7-ohm rod in this way, a graded index optical fiber was manufactured using this rod, and its α and band were investigated.

この結果、α−1,9で計算値のα−1,9と全く同一
になり、帯域が1.2GHz−に+  あった0また、
この光ファイバは低OH基を示した。
As a result, α-1,9 is exactly the same as the calculated value α-1,9, and the band is at 1.2 GHz-0.
This optical fiber exhibited low OH groups.

比較のために、反応用酸素ガス量を100OCC/mi
n  の一定にし、上述と同一の原料ガス及び製造条件
でブリ7オームロンドを作成し、このロッドから光ファ
イバを製造したところ、光ファイバのff −2,5で
、帯域が100〜200MH2−kII+であった。尚
、反応用酸素ガス量が少なかったので、光ファイバを低
ORに保持することはできた。
For comparison, the amount of oxygen gas for reaction was 100OCC/mi.
When n was kept constant and a Buri 7 ohm rond was created using the same raw material gas and manufacturing conditions as described above, and an optical fiber was manufactured from this rod, the optical fiber had a band of 100 to 200 MH2-kII+ at ff -2,5. Met. Note that since the amount of oxygen gas for reaction was small, it was possible to maintain the optical fiber at a low OR.

(発明の効果) 本発明によれば、反応用酸素ガスの石英管への導入量を
、GeCl4の導入量の増加に比例させて増大すること
で、GeCl4の反応を促進しつつ小量の未反応Ge0
14にて脱水作用を保持できる。従って、水分が少なく
、所定の屈折率分布が得られるプリフォーム胃ツドを作
成することができるので、低損失、高帯域の光ファイバ
を提供することができる。
(Effects of the Invention) According to the present invention, by increasing the amount of reaction oxygen gas introduced into the quartz tube in proportion to the increase in the amount of GeCl4 introduced, the reaction of GeCl4 is promoted and a small amount of unused gas is removed. Reaction Ge0
The dehydration effect can be maintained at 14. Therefore, it is possible to create a preformed tube that contains less water and has a predetermined refractive index distribution, so that a low-loss, high-bandwidth optical fiber can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応用酸素ガスと得られた光7アイパの屈折率
差との関係を示す線図、第2図は反応用酸素ガス量を少
なくして作成したブリ、7オームロ1「 ラドから成る光ファイバの屈折率分布図である。
Figure 1 is a diagram showing the relationship between the reaction oxygen gas and the refractive index difference of the obtained light 7 Aiper. 1 is a refractive index distribution diagram of an optical fiber made of

Claims (1)

【特許請求の範囲】 ガラス旋盤により支持されて回転している石英管に、原
料ガスとしての四塩化ケイ素とドーパントとしての四塩
化ゲルマニウムをアルゴンキャリアガスにより担持して
反応用酸素ガスと共に導入し、加熱源を前記回転してい
る石英管の両端間で往復運動させて前記石英管の外周壁
を加熱し、前記石英管の内壁に順次スートを堆積させて
ブリ7オームロツドを製造する方法において、前記反応
用酸素ガスの前記石英管への導入量を、前記四塩化ゲル
マニウムの前記石英管への導入量の増加に比例させて順
次増大するツ ことを特徴とするブリフォームロブトの製造方法。
[Scope of Claims] Silicon tetrachloride as a raw material gas and germanium tetrachloride as a dopant are supported by an argon carrier gas and introduced together with a reaction oxygen gas into a quartz tube which is supported and rotated by a glass lathe, In the method of manufacturing a 7-ohm rod by reciprocating a heating source between both ends of the rotating quartz tube to heat the outer circumferential wall of the quartz tube and sequentially depositing soot on the inner wall of the quartz tube, A method for producing a pre-formed robot, characterized in that the amount of reaction oxygen gas introduced into the quartz tube is gradually increased in proportion to the increase in the amount of germanium tetrachloride introduced into the quartz tube.
JP21907182A 1982-12-13 1982-12-13 Manufacture of preform rod Pending JPS59107936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21907182A JPS59107936A (en) 1982-12-13 1982-12-13 Manufacture of preform rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21907182A JPS59107936A (en) 1982-12-13 1982-12-13 Manufacture of preform rod

Publications (1)

Publication Number Publication Date
JPS59107936A true JPS59107936A (en) 1984-06-22

Family

ID=16729806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21907182A Pending JPS59107936A (en) 1982-12-13 1982-12-13 Manufacture of preform rod

Country Status (1)

Country Link
JP (1) JPS59107936A (en)

Similar Documents

Publication Publication Date Title
JPS5844619B2 (en) Manufacturing method of optical fiber base material
SE511399C2 (en) Process for producing optical fiber glass preform
CA2328143A1 (en) Method of making an optical fiber preform
JP3053320B2 (en) Method for producing porous glass preform for optical fiber
JPS59107936A (en) Manufacture of preform rod
JP3562545B2 (en) Method for producing glass preform for optical fiber
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0239458B2 (en)
JPH01111747A (en) Production of optical fiber preform
JPH0460930B2 (en)
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JPH0327491B2 (en)
JPS6243934B2 (en)
JP3864580B2 (en) Manufacturing method of optical fiber preform
EP0135175B1 (en) Methods for producing optical fiber preform and optical fiber
JPS6054936A (en) Manufacture of preform rod
JPS62108748A (en) Preparation of glass fiber base material
JP2000327360A (en) Production of optical fiber preform
JPS6317236A (en) Production of preform for optical fiber
JPS5925738B2 (en) Optical glass fiber manufacturing method
JPS61236626A (en) Production of base material for optical fiber
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission
JPS5915092B2 (en) Method of manufacturing optical transmission glass
JPS59195547A (en) Manufacture of base material for optical fiber
JPH02164734A (en) Production of quartz glass soot