JPS61236626A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS61236626A
JPS61236626A JP7613685A JP7613685A JPS61236626A JP S61236626 A JPS61236626 A JP S61236626A JP 7613685 A JP7613685 A JP 7613685A JP 7613685 A JP7613685 A JP 7613685A JP S61236626 A JPS61236626 A JP S61236626A
Authority
JP
Japan
Prior art keywords
fluorine
glass layer
glass
porous glass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7613685A
Other languages
Japanese (ja)
Inventor
Kunio Ogura
邦男 小倉
Katsumi Orimo
折茂 勝巳
Akira Iino
顕 飯野
Shinichi Yano
慎一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7613685A priority Critical patent/JPS61236626A/en
Publication of JPS61236626A publication Critical patent/JPS61236626A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a base material for an optical fiber wherein fluorine is doped in a synthesized glass layer uniformly and efficiently by decreasing gradually the amount of fluorine added in a raw material in case of accumulating a porous glass layer on an outside periphery of a quartz series glass rod. CONSTITUTION:The fine glass grains injected from a reaction burner 2 are successively accumulated on an outside periphery of a quartz series glass rod 7 and a porous glass layer 8a is formed. In this case, the feed amount of a doped raw material for the reaction burner 2 is gradually decreased and the following porous glass layer 8a is formed wherein fluorine (or a fluorine compd.) is contained in large quantities as the position is near to the outside peripheral surface of the glass rod 7 and the fluorine content is small as the position is further from the outside periphery. The quartz series glass rod 7 stuck with the porous glass layer 8a is inserted to the inside of a furnace core pipe 5 of a transparent vitrification furnace 4 to vitrify transparently the porous glass layer 8a. In a transparent glass layer 8b, the distribution of fluorine is uniform in the diameter direction and therefore the required base material for an optical fiber is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は通信用に適した光ファイバの母材を製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing optical fiber preforms suitable for communication applications.

1従来の技術】 既知の通り、外付VAD法(OVD法)では、高純度石
英棒、合成石英系ガラス棒等の外周に多孔質ガラス層を
堆積形成した後、9その多孔質ガラス層を高温の処理に
て透明ガラス化するのが一般であり、かかるOVD法に
おいてその堆積ガラス層中にフッ素をドープするとき、
従来ではっぎのような手段を採用している。
1. Prior Art As is known, in the external VAD method (OVD method), a porous glass layer is deposited on the outer periphery of a high-purity quartz rod, a synthetic quartz glass rod, etc., and then the porous glass layer is Generally, transparent glass is formed by high-temperature treatment, and when doping fluorine into the deposited glass layer in such OVD method,
Conventionally, methods such as hoggi have been adopted.

その一つは、多孔質ガラス層を堆積形成する際のガラス
原料中に、フッ素またはフッ素化合物を添加して、石英
系ガラス棒の外周にフッ素ドープト石英系の多孔質ガラ
ス層を堆積形成する方法である。
One method is to add fluorine or a fluorine compound to the glass raw material used to deposit and form the porous glass layer, and deposit a fluorine-doped silica-based porous glass layer around the outer periphery of a silica-based glass rod. It is.

他の一つは、石英系ガラス棒の外周に堆積形成された多
孔質ガラス層を、フッ素またはフッ素化合物が添加され
た不活性ガス雰囲気内で透明ガラス化し、該透明ガラス
化と同時にそのガラス層中にフッ素をドープする方法で
ある。
The other method is to convert a porous glass layer deposited around the periphery of a quartz-based glass rod into transparent vitrification in an inert gas atmosphere containing fluorine or a fluorine compound, and at the same time as converting the glass layer to transparent vitrification. This method involves doping fluorine inside.

「発明が解決しようとする問題点」 上述した前者の方法では、フッ素によるエッチンク効果
のため、OVD法におけるガラス微粒子の堆積速度、堆
積効率が低下し、他にも透明ガラス化時においてガラス
層中からフッ素が揮散するため、該ガラス層径方向のフ
ッ素分布が均一どならない。
"Problems to be Solved by the Invention" In the former method described above, the deposition rate and deposition efficiency of glass particles in the OVD method decrease due to the etching effect of fluorine, and there are other problems in the glass layer during transparent vitrification. Since fluorine volatilizes from the glass layer, the fluorine distribution in the radial direction of the glass layer is not uniform.

後者の方法の場合、」二記エツチング量が少ないが、そ
の反面、石英系ガラス棒外周付近の多孔質ガラス層が該
ガラス棒からの熱により、早期(所定量のフン素ドープ
を受ける前)に透明ガラス化されてしまい、したがって
この方法も該ガラス層径方向のフッ素分布が均一となら
ない。
In the case of the latter method, the amount of etching is small, but on the other hand, the porous glass layer near the outer periphery of the quartz-based glass rod is damaged early (before receiving a predetermined amount of fluorine doping) by the heat from the glass rod. Therefore, this method also does not provide a uniform fluorine distribution in the radial direction of the glass layer.

このように1従来の各方法では石英よりも屈折率が低く
、かつ、フラットな屈折率分布を呈するガラス層が得ら
れず、例えばコアを純石英とし、クラッドをフッ素ドー
プト石芙とする単一モード光ファイバを作製した場合、
クラッドの屈折率分布がフラットでないことにより、そ
の箇所から光が漏れてしまう。
In this way, each of the conventional methods cannot produce a glass layer that has a refractive index lower than that of quartz and exhibits a flat refractive index distribution. When making a mode optical fiber,
Since the refractive index distribution of the cladding is not flat, light leaks from that part.

そのため、合成りラッド/コアの比を理論値以上に設定
しないと、低損失の光ファイバが得られず、他にも光フ
ァイバの曲げ損失も発生しやすい問題があった。
Therefore, unless the composite rad/core ratio is set to a theoretical value or higher, a low-loss optical fiber cannot be obtained, and there is also the problem that bending loss of the optical fiber is likely to occur.

本発明は上記の問題点に鑑み、OVD法を介して作製さ
れる合成ガラス層中にフッ素が均一かつ効率よくドープ
することのできる光ファイバ母材の製造方法を提供しよ
うとするものである。
In view of the above-mentioned problems, the present invention seeks to provide a method for manufacturing an optical fiber preform, which allows fluorine to be doped uniformly and efficiently into a synthetic glass layer manufactured by an OVD method.

「問題点を解決するための手段J 本発明は、ガラス原料と燃焼ガスとを混合燃焼させて生
成したガラス微粒子を、回転する石英系ガラス棒の外周
に堆積して多孔質ガラス層を形成した後、該多孔質ガラ
ス層を、フッ素またはフッ素化合物を含む雰囲気中で高
温処理して透明ガラス化する光ファイバ母材の製造方法
において、上記石英系ガラス棒の外周に多孔質ガラス層
を堆積形成するとき、上記ガラス原料中には、フッ素ま
たはフッ素化合物を添加し、多孔質ガラス層の堆積が進
行するにしたがい、ガラス原料中へのフッ素またはフッ
素化合物の添加量を徐々に減じることを特徴としている
``Means for Solving the Problems J'' The present invention forms a porous glass layer by depositing glass fine particles produced by mixing and burning glass raw materials and combustion gas on the outer periphery of a rotating quartz-based glass rod. After that, in the method for producing an optical fiber base material, the porous glass layer is treated at high temperature in an atmosphere containing fluorine or a fluorine compound to become transparent vitrified. When doing so, fluorine or a fluorine compound is added to the glass raw material, and as the deposition of the porous glass layer progresses, the amount of fluorine or fluorine compound added to the glass raw material is gradually reduced. There is.

「作用」 本発明方法の場合、石英系ガラス棒の外周に多孔質ガラ
ス層を堆積形成する際のガラス原料中にフッ素またはフ
ッ素化合物を添加し、多孔質ガラス層の堆積が進行する
にしたがい、ガラス原料中へのフッ素またはフッ素化合
物の添加量を徐々に減じる。
"Operation" In the method of the present invention, fluorine or a fluorine compound is added to the glass raw material when depositing and forming a porous glass layer around the outer periphery of a silica-based glass rod, and as the deposition of the porous glass layer progresses, Gradually reduce the amount of fluorine or fluorine compounds added to the glass raw material.

こうして形成した多孔質ガラス層の場合、石英系ガラス
棒の外周面に近い部分はど、フッ素ドープ量が多くなり
、石英系ガラス棒の外周から遠ざかる部分はど、フッ5
ドープ量が少なくなる。
In the case of the porous glass layer formed in this way, the portion close to the outer circumferential surface of the silica-based glass rod has a large amount of fluorine doped, and the portion far from the outer circumference of the silica-based glass rod has a large amount of fluorine doped.
The amount of dope is reduced.

つぎにフッ素またはフッ素化合物を含む雰囲気中での高
温処理により上記多孔質ガラス層を透明ガラス化する際
、前記とは逆に、多孔質ガラス層の石英系ガラス棒に近
い部分はフッ素ドープ量が少なくなり、その石英系ガラ
ス棒の外周から遠ざかる部分はど、フッ素ドープ量が多
くなる。
Next, when the porous glass layer is made into transparent glass by high-temperature treatment in an atmosphere containing fluorine or a fluorine compound, the amount of fluorine doped is The amount of fluorine doped increases in the portions farther away from the outer periphery of the quartz-based glass rod.

」−述のごとく、所定の二工程を介して石英系ガラス棒
の外周に透明なガラス層を形成するとき、はじめの工程
では外周から中心に向かうにしたがいフッ素ドープ量が
多くなり、つぎの工程では中心から外周に向かうにした
がいフッ素ドープ量が多くなるから、これら二様のフッ
素ドープによりガラス層径方向のフッ素分布が均一とな
る。
- As mentioned above, when forming a transparent glass layer around the outer periphery of a quartz-based glass rod through two predetermined steps, in the first step the amount of fluorine doped increases from the outer periphery toward the center, and in the next step Since the amount of fluorine doped increases from the center toward the outer periphery, these two types of fluorine doping make the fluorine distribution in the radial direction of the glass layer uniform.

しかも多孔質ガラス層形成時のフッ素ドープ量は、透明
ガラス化時のフッ素分布不均−を補償する程度よいから
、該多孔質ガラス層形成時のフッ素によるガラスエツチ
ング効果は小さく、一方、透明ガラス化時においてもそ
のガラスエツチング効果が小さいから、効率よく所定の
ガラス層が形成できる。
Moreover, the amount of fluorine doped when forming the porous glass layer is sufficient to compensate for the uneven distribution of fluorine during transparent glass formation, so the glass etching effect due to fluorine during the formation of the porous glass layer is small; Since the glass etching effect is small even during etching, a desired glass layer can be formed efficiently.

1実 施 例1 以下本発明方法の実施例につき、図面を参照して説明す
る。
1 Example 1 Examples of the method of the present invention will be described below with reference to the drawings.

第1図において、1a、1bは回転自在なチャックであ
り、これらチャック1a、1bは図示しないガラス旋盤
に備えられている。
In FIG. 1, 1a and 1b are rotatable chucks, and these chucks 1a and 1b are installed in a glass lathe (not shown).

2は多重管構造の反応バーナであり、このバーナ2は両
チャック1a、 lbを結ぶ軸心線に沿い、往復動する
ようになっている。
Reference numeral 2 denotes a reaction burner having a multi-tube structure, and this burner 2 is designed to reciprocate along an axial line connecting both chucks 1a and lb.

第2図において、4は透明ガラス化炉であり、この炉4
は炉心管5とその炉心管外周のヒータ8とを備えている
In FIG. 2, 4 is a transparent vitrification furnace, and this furnace 4
is equipped with a furnace core tube 5 and a heater 8 on the outer periphery of the furnace core tube.

図中、7は石英系のガラス棒、 8aはそのガラス棒7
の外周に堆積形成される多孔質ガラス層、8bは該多孔
質ガラス層8aを透明ガラス化した後のガラス層である
In the figure, 7 is a quartz-based glass rod, and 8a is the glass rod 7.
The porous glass layer 8b deposited on the outer periphery of the porous glass layer 8b is a glass layer obtained by converting the porous glass layer 8a into transparent glass.

第1図のOVD法を介して石英系ガラス棒7の外周に多
孔質ガラス層8dを堆積形成するとき、そのガラス棒7
を例えば時計回りへ回転させ、該ガラス棒7の長手方向
に沿って往復動する多重管構造の反応バーナ2には、気
相のガラス原料(四塩化ケイ素)、気相のドープ原料(
例えば六フッ化イオウ)、水素、酸素等のガスを供給し
、これら各ガスを燃焼させることにより生成したガラス
微粒子を反応へ−す2の先端からガラス棒7に外周に向
けて噴射する。
When the porous glass layer 8d is deposited on the outer periphery of the quartz-based glass rod 7 through the OVD method shown in FIG.
For example, the reaction burner 2, which has a multi-tube structure and rotates clockwise and reciprocates along the longitudinal direction of the glass rod 7, contains a gaseous glass raw material (silicon tetrachloride) and a gaseous dope raw material (silicon tetrachloride).
Gases such as sulfur hexafluoride (for example, sulfur hexafluoride), hydrogen, and oxygen are supplied, and glass particles generated by burning these gases are injected from the tip of the reaction chamber 2 toward the outer periphery of the glass rod 7.

かくてガラス棒7の外周には、上記反応バーナ2から噴
射されたガラス微粒子が順次堆積され、所定層厚の多孔
質ガラスR8aが形成されるが、この多孔質ガラス層形
成時、反応バーナ2へのドープ原料供給量を漸減するか
ら、当該多孔質ガラス層8aは、石英系ガラス棒7の外
周面に近い部分はどフッ素を多く含み、石英系ガラス棒
7の外周から遠ざかる部分はどフッ素含有量が少なくな
る。
In this way, the glass particles sprayed from the reaction burner 2 are sequentially deposited on the outer periphery of the glass rod 7, and a porous glass R8a having a predetermined layer thickness is formed. Since the amount of dope raw material supplied to the quartz glass rod 7 is gradually reduced, the porous glass layer 8a contains a large amount of fluorine in the portion close to the outer circumference of the silica glass rod 7, and the portion far from the outer circumference of the silica glass rod 7 contains less fluorine. The content will be reduced.

つぎに多孔質ガラス層8a付きの石英系ガラス棒7を、
第2図に示した透明ガラス化炉4の炉心管5内に挿入し
、該炉心管5内にヘリウム、六フッ化イオウ、塩素ガス
等を供給して多孔質ガラス層8aを透明ガラス化する。
Next, the quartz glass rod 7 with the porous glass layer 8a is
It is inserted into the furnace tube 5 of the transparent vitrification furnace 4 shown in FIG. 2, and helium, sulfur hexafluoride, chlorine gas, etc. are supplied into the furnace tube 5 to turn the porous glass layer 8a into transparent vitrification. .

この際の透明ガラス化時、多孔質ガラス層8aの内層部
は、石英系ガラス棒7からの熱を受けることによりその
外層部よりも早期に透明ガラス化される。
At this time of transparent vitrification, the inner layer portion of the porous glass layer 8a receives heat from the quartz-based glass rod 7, thereby becoming transparent vitrified earlier than the outer layer portion.

したがって上記炉心管5における多孔質ガラス層8aは
、透明ガラス化の速いその内層部はどフッ素ドープ量が
少なく、これの外層部に向かうにしたがいフッ素ドープ
量が多くなる。
Therefore, in the porous glass layer 8a of the furnace tube 5, the amount of fluorine doped is small in the inner layer, which is quickly transformed into transparent glass, and increases in the amount of fluorine doped toward the outer layer.

このように、多孔質ガラス堆積工程とその多孔質ガラス
層の透明ガラス化工程とにおけるフッ素ドープ傾向が異
なるから、多孔質ガラス層8aを透明ガラス化した後の
透明ガラス層8bは、その径方向にわたるフッ素の分布
が均一となる。
As described above, since the fluorine doping tendency in the porous glass deposition process and the transparent vitrification process of the porous glass layer are different, the transparent glass layer 8b after the porous glass layer 8a has been made into transparent vitrification is The distribution of fluorine becomes uniform throughout the area.

つぎに本発明方法の具体例とその比較例について説明す
る。
Next, specific examples of the method of the present invention and comparative examples thereof will be explained.

具体例 上述した手段で単一モード光ファイバの母材を作製する
とき、コア用となる石英系ガラス棒7としてOH基の含
有量が0.lppm以下、直径が1h+mの高、 純度
石英棒を用いた。
Specific Example When producing a base material for a single mode optical fiber by the above-mentioned method, the quartz-based glass rod 7 serving as the core has an OH group content of 0. A high purity quartz rod with a diameter of 1 h+m and less than 1 ppm was used.

この石英棒外周に多孔質ガラス層を外付けするとき、多
重管構造からなる反応バーナには、それぞれH2を10
1 /win、02を1041/+sin、 5il1
4を500cc/sin供給し、フッ素化合物としては
SF8を採用してこれを前記S + Cl 4とともに
供給した。
When externally attaching a porous glass layer to the outer periphery of this quartz rod, each reaction burner with a multi-tube structure is filled with 10 H2.
1/win, 02 to 1041/+sin, 5il1
4 was supplied at 500 cc/sin, and SF8 was employed as the fluorine compound, which was supplied together with the S + Cl 4 described above.

なお、SF6の供給量は多孔質ガラス層を一層堆積する
ごとに減量してn層目のSF6供給量を(300/n)
cc/winとし、50層目以降(7)SF6供給量は
零とした。
The amount of SF6 supplied is reduced each time a porous glass layer is deposited, and the amount of SF6 supplied for the nth layer is reduced to (300/n).
cc/win, and after the 50th layer (7) the SF6 supply amount was set to zero.

」1記ガラス堆積時における石英棒の回転数は60r、
p、腸、反応バーナの移動速度は80mm/win、ガ
ラス堆積層の平均厚さは0.25m層/一層である。
” 1. The rotation speed of the quartz rod during glass deposition is 60 r,
The moving speed of the reaction burner is 80 mm/win, and the average thickness of the glass deposited layer is 0.25 m layer/layer.

こうして石英棒の外周に多孔質ガラス層を堆積形成した
後は、その多孔質ガラス層付き石英棒を最高温度部14
50℃とした透明ガラス化炉の炉心管内に入れ、当該多
孔質ガラス層を透明ガラス化した。
After the porous glass layer is deposited on the outer periphery of the quartz rod in this way, the quartz rod with the porous glass layer is placed in the highest temperature section 14.
The porous glass layer was placed in a core tube of a transparent vitrification furnace heated to 50° C. to vitrify the porous glass layer.

この際、透明ガラス化炉の炉心管内には、20文/wi
nのHe、500cc/winのSF8.200cc/
winのC12をそれぞれ供給し、降下速度3mm1I
sinとして多孔質ガラス層付き石英棒を炉心管の最高
温度部へ降下させた。
At this time, in the core tube of the transparent vitrification furnace, 20 sentences/wi
n He, 500cc/win SF8.200cc/
Supply each C12 of win, descending speed 3mm1I
As a sin, the quartz rod with a porous glass layer was lowered to the highest temperature part of the furnace tube.

こうして得られた光ファイバ母材の屈折率分布を第3図
に示す。
FIG. 3 shows the refractive index distribution of the optical fiber preform thus obtained.

第3図で明らかなように、透明ガラス層のΔ−は0.3
鬼であり、該透明ガラス層にはフッ素が均一にドープさ
れ、フラットな屈折率分布を呈している。
As is clear from Figure 3, the Δ- of the transparent glass layer is 0.3
The transparent glass layer is uniformly doped with fluorine and exhibits a flat refractive index distribution.

透明ガラス化後のガラス重量から測定した結果では、前
記ガラス堆積速度は0.23g/露inである。
The glass deposition rate was 0.23 g/in as measured from the glass weight after transparent vitrification.

比較例1 具体例と同様にして石英棒の外周に多孔質ガラス層な堆
積形成するとき、反応/ヘーナにはSF6を300cc
/minの流量にて終始供給した。
Comparative Example 1 When forming a porous glass layer on the outer periphery of a quartz rod in the same manner as in the specific example, 300 cc of SF6 was added to the reaction/hener.
It was supplied at a flow rate of /min from beginning to end.

この際のガラス堆積層は0.1mm/一層であり、著し
くガラス収率が低下した。
The glass deposited layer at this time was 0.1 mm/layer, and the glass yield was significantly reduced.

これはフッ素によるエツチングのためである。This is due to etching with fluorine.

具体例と同様に、ただしSF6は供給しないで、上記多
孔質ガラス層材き石英棒を透明ガラス化炉内に入れ、そ
の多孔質ガラス層を透明ガラス化した。
In the same manner as in the specific example, but without supplying SF6, the above-mentioned quartz rod with the porous glass layer was placed in a transparent vitrification furnace, and the porous glass layer was transformed into transparent vitrification.

こうして得られた光ファイバ母材の屈折率分布を第4図
に示す。
FIG. 4 shows the refractive index distribution of the optical fiber preform thus obtained.

第4図で明らかなように、透明ガラス層の屈折率分布は
フラットでなく、Fの揮散により外周部の屈折率が上っ
ている。
As is clear from FIG. 4, the refractive index distribution of the transparent glass layer is not flat, and the refractive index of the outer peripheral portion increases due to the volatilization of F.

この比較例でのガラス堆積速度は0.1g/sinであ
る。
The glass deposition rate in this comparative example is 0.1 g/sin.

比較例2 反応バーナにSF6を供給しない点を除き、他は具体例
と同様にして石英棒の外周に多孔質ガラス層を堆積形成
した。
Comparative Example 2 A porous glass layer was deposited on the outer periphery of a quartz rod in the same manner as in the specific example except that SF6 was not supplied to the reaction burner.

この比較例でのガラス堆積層の厚さは平均0.26mm
/一層であり、具体例とほぼ同じであった。
The average thickness of the glass deposited layer in this comparative example is 0.26 mm.
/ single layer, and was almost the same as the specific example.

さらに上記多孔質ガラス層の透明ガラス化を具体例と同
様に行なった。
Furthermore, the porous glass layer was made into transparent glass in the same manner as in the specific example.

こうして得られた光ファイバ母材の屈折率分布を第5図
に示す。
FIG. 5 shows the refractive index distribution of the optical fiber preform thus obtained.

第5図で明らかなように、この比較例でも透明ガラス層
の屈折率分布がフラットでない。
As is clear from FIG. 5, the refractive index distribution of the transparent glass layer is not flat in this comparative example as well.

これはガラス棒付近のガラス層にFがドープされなかっ
たことによる。
This is because the glass layer near the glass rod was not doped with F.

この比較例でのガラス堆積速度は0.24g/sinで
あった。
The glass deposition rate in this comparative example was 0.24 g/sin.

上述した各側により、クラッド用透明ガラス層/コア用
石英棒の外径比が8.5となる光ファイバ母材をそれぞ
れ作製し、これら光ファイバ母材を紡糸してディプレス
トクラッド型の単一モード光ファイバを製造した。
Optical fiber preforms with an outer diameter ratio of transparent glass layer for cladding/quartz rod for core of 8.5 are prepared from each side as described above, and these optical fiber preforms are spun to form a depressed clad single unit. A one-mode optical fiber was manufactured.

こうして得られた光ファイバの伝送特性を下記に示す。The transmission characteristics of the optical fiber thus obtained are shown below.

〔具体例の場合〕[In the case of specific examples]

波長1.30蒔■でのロス: 0.5dB/km波長1
.55pLiでのロス: 0.3dB/km波長1.3
11gmでのロス: 2.3dB/km〔比較例1の場
合〕 波長1.301Lmでのロス: 0.5dB/に+。
Loss at wavelength 1.30mm: 0.5dB/km wavelength 1
.. Loss at 55pLi: 0.3dB/km wavelength 1.3
Loss at 11 gm: 2.3 dB/km [for comparative example 1] Loss at wavelength 1.301 Lm: 0.5 dB/+.

波長1.55pLmでのロス: 4−2dB/km波長
1.39gmでのロス: 2.’5dB/に+m〔比較
例2の場合〕 波長1.30JL11でのロス: 0.8dB/km波
長1.55pmでのロス: 3.OdB/km波長1.
391L+m テのロス: ?、OdB/km上記特性
値で明らかなように、具体例の光ファイバはそのクラッ
ドがほぼ完全にフラー/ ト〒あるため、マイクロベン
ドに強く、波長1.55gmでのロスが低くなっている
Loss at wavelength 1.55 pLm: 4-2 dB/km Loss at wavelength 1.39 gm: 2. '5dB/+m [in case of comparative example 2] Loss at wavelength 1.30JL11: 0.8dB/km Loss at wavelength 1.55pm: 3. OdB/km wavelength 1.
391L+m Te loss: ? , OdB/km As is clear from the above characteristic values, the cladding of the optical fiber in the specific example is almost completely flat, so it is resistant to microbending and has low loss at a wavelength of 1.55 gm.

しかも具体例の場合は、多孔質ガラス層の段階でその内
部にフッ素が含有されているため、コア:クラッド界面
の脱水が良好となり、その結果、波長1.39p■での
ロスが比較例1と同レベルとなり、波長1.39.厘に
関して比較例2よりも良好な伝送特性を示している。
Moreover, in the case of the specific example, since fluorine is contained inside the porous glass layer, dehydration at the core:clad interface is good, and as a result, the loss at the wavelength of 1.39 p■ is less than that of the comparative example 1. The wavelength is the same as that of 1.39. In terms of power, it shows better transmission characteristics than Comparative Example 2.

「発明の効果1 以上説明した通り、本発明方法によるときは、石英系ガ
ラス棒外周への多孔質ガラス層の形成工程、該多孔質ガ
ラス層の透明ガラス化工程において、そのガラス層中へ
巧みにフッ層をドープするから、所望の光ファイバ母材
を製造するとき、ガラス堆積効率を低下させることなく
、上記ガラス ”層中へ均一分布にてフッ素を含有させ
ることができる。
"Effect of the Invention 1 As explained above, when using the method of the present invention, in the step of forming a porous glass layer on the outer periphery of a quartz-based glass rod and the step of making the porous glass layer transparent vitrification, it is possible to Since the fluorine layer is doped with the fluorine layer, when manufacturing a desired optical fiber preform, fluorine can be contained in the glass layer in a uniform distribution without reducing the glass deposition efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における多孔質ガラス層の形成工程を略
示した説明図、第2図はその多孔質ガラス層の透明ガラ
ス化工程を略示した説明図、第3図は本発明方法により
製造された光ファイバ母材の屈折率分布図、第4図、第
5図は本発明の比較例として製造した光ファイバ母材の
屈折率分布図である。 2 ・・・ガラス微粒子生成用の反応バーナ4 ・・・
多孔質ガラス層の透明ガラス化炉7・・・石英系のガラ
ス棒 8a・・・多孔質ガラス層 8b@拳・透明ガラス層
FIG. 1 is an explanatory diagram schematically showing the process of forming a porous glass layer according to the present invention, FIG. 2 is an explanatory diagram schematically showing the process of making the porous glass layer transparent vitrification, and FIG. FIGS. 4 and 5 are refractive index distribution diagrams of optical fiber preforms manufactured as comparative examples of the present invention. 2... Reaction burner 4 for glass particle generation...
Transparent vitrification furnace 7 of porous glass layer...Quartz-based glass rod 8a...Porous glass layer 8b @ fist/transparent glass layer

Claims (1)

【特許請求の範囲】[Claims] ガラス原料と燃焼ガスとを混合燃焼させて生成したガラ
ス微粒子を、回転する石英系ガラス棒の外周に堆積して
多孔質ガラス層を形成した後、該多孔質ガラス層を、フ
ッ素またはフッ素化合物を含む雰囲気中で高温処理して
透明ガラス化する光ファイバ母材の製造方法において、
上記石英系ガラス棒の外周に多孔質ガラス層を堆積形成
するとき、上記ガラス原料中には、フッ素またはフッ素
化合物を添加し、多孔質ガラス層の堆積が進行するにし
たがい、ガラス原料中へのフッ素またはフッ素化合物の
添加量を徐々に減じることを特徴とする光ファイバ母材
の製造方法。
Glass particles produced by mixing and burning glass raw materials and combustion gas are deposited on the outer periphery of a rotating quartz-based glass rod to form a porous glass layer, and then the porous glass layer is treated with fluorine or a fluorine compound. In a method for manufacturing an optical fiber base material, which is made into transparent glass by high temperature treatment in an atmosphere containing
When depositing and forming a porous glass layer around the outer periphery of the silica-based glass rod, fluorine or a fluorine compound is added to the glass raw material, and as the porous glass layer is deposited, fluorine or a fluorine compound is added to the glass raw material. A method for producing an optical fiber preform, characterized by gradually reducing the amount of fluorine or fluorine compound added.
JP7613685A 1985-04-10 1985-04-10 Production of base material for optical fiber Pending JPS61236626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7613685A JPS61236626A (en) 1985-04-10 1985-04-10 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7613685A JPS61236626A (en) 1985-04-10 1985-04-10 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS61236626A true JPS61236626A (en) 1986-10-21

Family

ID=13596548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7613685A Pending JPS61236626A (en) 1985-04-10 1985-04-10 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS61236626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2307908A (en) * 1995-12-04 1997-06-11 Sumitomo Electric Industries Making an optical fibre preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2307908A (en) * 1995-12-04 1997-06-11 Sumitomo Electric Industries Making an optical fibre preform
US5895515A (en) * 1995-12-04 1999-04-20 Sumitomo Electric Industries, Ltd. Increasing a fluorine compound flow rate during a VAD process
GB2307908B (en) * 1995-12-04 1999-09-08 Sumitomo Electric Industries Method of fabricating an optical fibre preform

Similar Documents

Publication Publication Date Title
EP0311080B1 (en) Method for producing glass preform for optical fiber
US4737179A (en) Method for producing glass preform for optical fiber
CN109553295B (en) Large-size low-loss optical fiber preform and manufacturing method thereof
GB2059944A (en) Fabrication method of optical fiber preforms
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
EP0146659B1 (en) A method for the preparation of synthetic quartz glass suitable as a material of optical fibers
WO2019142878A1 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
CN113461322B (en) Optical fiber and method for manufacturing optical fiber preform
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPS61236626A (en) Production of base material for optical fiber
JP3579919B2 (en) Manufacturing method of preform for optical fiber
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
EP0498415B1 (en) Method for producing glass preform for optical fiber
JPH0460930B2 (en)
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0463365B2 (en)
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPS63139028A (en) Production of optical fiber glass base material
JPH06321553A (en) Production of fluorine-doped quartz glass
JPH01111747A (en) Production of optical fiber preform
JPS63147840A (en) Production of quartz glass material
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JPS5924097B2 (en) Glass body manufacturing method
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPH02304B2 (en)