JPS59107672A - Transmitter of auxiliary signal - Google Patents

Transmitter of auxiliary signal

Info

Publication number
JPS59107672A
JPS59107672A JP57217952A JP21795282A JPS59107672A JP S59107672 A JPS59107672 A JP S59107672A JP 57217952 A JP57217952 A JP 57217952A JP 21795282 A JP21795282 A JP 21795282A JP S59107672 A JPS59107672 A JP S59107672A
Authority
JP
Japan
Prior art keywords
signal
circuit
cmi
pulse
auxiliary signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57217952A
Other languages
Japanese (ja)
Other versions
JPS6333820B2 (en
Inventor
Nobumi Kuriyama
栗山 宜已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57217952A priority Critical patent/JPS59107672A/en
Publication of JPS59107672A publication Critical patent/JPS59107672A/en
Publication of JPS6333820B2 publication Critical patent/JPS6333820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • H04L25/4908Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes
    • H04L25/491Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes using 1B2B codes
    • H04L25/4912Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes using 1B2B codes using CMI or 2-HDB-3 code

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To simplify the constitution of the transmitter eliminating the need for frame synchronism by providing a violation designating pulse generating circuit to a circuit sampling an auxiliary signal. CONSTITUTION:A transmission section 20 and a receiving section 27 are operated by using a clock pulse 10 as a reference pulse, a main signal 1 inputted to the transmission section 20 is converted into a CMI code train by a CMI converting circuit 21 and processed into random code where (1) and (0) are not consecutive. Further, a periodic auxiliary signal 2 inputted to the transmission section 20 is sampled by a sampling circuit 22, and when a sampling pulse 24 is at (1) level by the violation designating pulse generating circuit 23, a violation designating pulse 25 is applied to the circuit 21 after 2-bit to the time slot. When this pulse 25 has (0) time slot, the pulse is coded in the CMI code rule, and when the pulse has the time slot of (1), the pulse is coded by other code rule and transmitted to the receiving side 27. This signal is applied to a violation detecting circuit 29 and a CMI decoding circuit 28 so as to output a main signal 6 and an output 7 of an auxiliary signal.

Description

【発明の詳細な説明】 本発明は伝送符号として連続しない°1″′および°′
O′″のランダム符号から成るCMI符号を用い、回線
切替制御信号、監視信号、またけ打合せ信号等の補助信
号を、主信号に1畳して伝送する補助信号重畳方式に関
するものである。CMI符号列を用いた主信号に補助信
号を重畳する従来の補助信号1畳方式は第1図、に示す
ように、送信部11に入力した主信号1をCMI変換回
路12によりCMI符号列に変換するとともに補助信号
に担当する上記タイムにCMI符号化則に従わない符号
化を行って重畳するものである。CMI符号化はたとえ
ば第3図(C)に示すように、主信号1が0”のときは
” 01 ”に、主信号1が1′″のときは” o o
 ’″および11″の交番符号に変換し、符号をランダ
ム化する。一方、送(Ft部11に入力した制御信号、
監視信号等からなる周期的な補助信号2と、フレームパ
ターン発生回路14から出力されるフレーム同期(1フ
レームハ10クロツクとする)のためのフレームパター
ン信号3はサンプリング回路13に入力する。サンブリ
が1#のときu 、 #となる1ビツトのパルス、また
フレームパターン信号3のサンプル値が°゛0#のとき
41 Q #、サンプル値が°′1″のとき“′1”と
なる1ビツトのパルスを発生し、これをバイオレージ冒
ン指定ハルス4とする。パイオレーシランとは主信号を
CMI符号化するときにその符号則からはずすことを言
い、バイオレージ四ン指定パルス4が発生するタイツ・
スロットでは主信号をCMI符号化しない。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides non-consecutive transmission codes of °1"' and °'
This relates to an auxiliary signal superimposition method in which auxiliary signals such as line switching control signals, monitoring signals, and split meeting signals are transmitted as one signal on the main signal using a CMI code consisting of a random code of O'''.CMI The conventional auxiliary signal 1 tatami method, which superimposes an auxiliary signal on a main signal using a code string, converts the main signal 1 input to the transmitter 11 into a CMI code string by a CMI conversion circuit 12, as shown in FIG. At the same time, the above-mentioned time corresponding to the auxiliary signal is subjected to encoding that does not follow the CMI encoding rule and is superimposed. In CMI encoding, for example, as shown in FIG. 3(C), the main signal 1 is 0''. When the main signal 1 is 1'', it is "01", and when the main signal 1 is 1'', it is "o o".
Convert to alternating codes of ''' and 11'' and randomize the codes. On the other hand, the control signal input to the Ft section 11,
A periodic auxiliary signal 2 consisting of a monitoring signal and the like and a frame pattern signal 3 for frame synchronization (one frame has 10 clocks) outputted from a frame pattern generation circuit 14 are input to a sampling circuit 13. When the sample value is 1#, the 1-bit pulse becomes u and #, and when the sample value of frame pattern signal 3 is °゛0#, it becomes 41 Q #, and when the sample value is °'1'', it becomes "'1". A 1-bit pulse is generated, and this is designated as the biolage illegal designation pulse 4.Pioneering means that the main signal is removed from the coding rule when CMI-encoded, and the biolage four designation pulse 4 is used. Tights that cause
The main signal is not CMI encoded in the slot.

たとえば第3図(d)に示すようにバイオレージ目ン指
定パルス4が°′1”のときのタイムスロット(*印の
位置すなわち第2図においては斜線に示すタイムスロッ
ト)に主信号1がII OI+のときは10”とし、主
信号1がtl 1#lのときはそのタイムスロットだけ
“00″および°゛11″′の交番を禁止してCMI符
号則からはずす。またバイオレージ冒ン指定パルス4の
符号が0”のときにはバイオレーションを行なわすCM
I符号則に従う。このようにしてフレームパターン信号
3および補助信号2に応じて、バイオレージ鱈ンを行な
った伝送路信号5が受信部15に送られる。
For example, as shown in Fig. 3(d), the main signal 1 is in the time slot when the biolage eye designation pulse 4 is °'1'' (the position marked with an asterisk, i.e., the time slot indicated by diagonal lines in Fig. 2). When the main signal 1 is tl 1 #l, the alternation of "00" and °゛11'' is prohibited for that time slot and removed from the CMI coding rule. CM that causes a violation when the sign of designated pulse 4 is 0''
Follows the I sign rule. In this way, the transmission line signal 5 subjected to biolage processing is sent to the receiving section 15 in accordance with the frame pattern signal 3 and the auxiliary signal 2.

一方、受信部15において、伝送路信号5はCMI復号
回路16に入力し元の主係号1に復号される。伝送路信
号5はバイオレージーン検出回路17にも入力し、伝送
路信号5のCMI符号列中ノバイオレーシ冒ンのあるタ
イムスロットヲ検出し1そのタイムスロット位置で°゛
1″となるバイオレージ■ン位置パルス8をつくす、フ
レーム同期回路18および補助信号分離回路19に送る
On the other hand, in the receiving section 15, the transmission path signal 5 is input to the CMI decoding circuit 16 and decoded into the original main code 1. The transmission line signal 5 is also input to the bioregene detection circuit 17, which detects the time slot in the CMI code string of the transmission line signal 5 where there is a violation of the biorage, and detects the biorage which becomes °゛1'' at that time slot position. The frame synchronization circuit 18 and the auxiliary signal separation circuit 19 are then sent to the frame synchronization circuit 18 and the auxiliary signal separation circuit 19.

7レ一ム同期回路19はバイオレージ賞ン位置パルス8
の中のフレームパターンの位置信号を検出して同期を確
立し、補助信号が重畳されているべきタイムスロット位
置で1″″となる補助信号重畳位置パルス9を発生し、
補助信号分離回路19に送る。補助信号分離回路19で
は補助信号重畳位置パルス9が°゛1″′であるタイム
スロット位置でバイオレージ曹ン位置パルス8の符号が
”0″′のとき補助信号用カフの符号8 n’ (SI
’+ 81’+・・・)はalo a′、  t(1#
のときSゎ′は°′1”とし、このパルス幅を拡大して
もとの補助信号を再生し、補助信号7を出力する。
7 Remedy synchronization circuit 19 is biolage position pulse 8
Detecting the position signal of the frame pattern in the frame pattern to establish synchronization, and generating an auxiliary signal superimposition position pulse 9 that becomes 1'' at the time slot position where the auxiliary signal should be superimposed,
The signal is sent to the auxiliary signal separation circuit 19. In the auxiliary signal separation circuit 19, when the sign of the biorage cuff position pulse 8 is ``0'' at the time slot position where the auxiliary signal superimposition position pulse 9 is ``1'''', the auxiliary signal cuff sign 8 n' ( S.I.
'+81'+...) is alo a', t(1#
In this case, Sゎ' is set to °'1'', the original auxiliary signal is reproduced by enlarging this pulse width, and auxiliary signal 7 is output.

以上説明したように従来行われている方法では送信側で
バイオレージ目ン用のフレームラ組み、受信側でフレー
ム同期をとシ補助信号の分離を行っているが、フレーム
を組み、受信側でフレーム同期をとり補助信号の分離を
行っているが、フレーム同期をとるフレーム同期回路1
8は、擬似的な7レームパターンを発生する回路、受信
したパイオレー91フ位置パルス8中のフレームパター
ンを検出する回路、上記2つの回路から出力する5− 7レームパターンをもとに同期を確立するための同期引
込み回路、さらに符号誤りに対して同期の保護を行う回
期保護回路が必要なため、回路が複雑で規模がかなり大
きくなる。
As explained above, in the conventional method, the transmitting side assembles frames for biolage, and the receiving side performs frame synchronization and separates auxiliary signals. Frame synchronization circuit 1 performs frame synchronization and separates auxiliary signals.
8 is a circuit that generates a pseudo 7 frame pattern, a circuit that detects the frame pattern in the received pie ray 91 frame position pulse 8, and establishes synchronization based on the 5-7 frame pattern output from the above two circuits. Since a synchronization pull-in circuit is required to perform synchronization, and a period protection circuit is required to protect synchronization against code errors, the circuit becomes complex and considerably large in scale.

本発明の目的は、伝送路符号としてCMI符号を用いた
補助信号伝送システムにおいて回路が簡単で、かつ装置
の規模が小さい補助信号伝送装置ランダム符号化するC
MI符号則を用いて符号化した主信号に、制御信号、監
視信号等の補助信号をV畳して伝送する補助信号分離回
路において、送信部は補助信号をサンプリングするサン
プリング回路と、前記サンプリング回路の出力信号がa
t 1nに相当するタイムスロットおよびn(nは1以
上の整数)ビット後のタイムスロッ)el定するバイオ
レージ讐ン指定回路と、主信号全前記CMI符号則にし
たがってCMI符号列に変換するとともに前記バイオレ
ージ目ン相定のあるタイムスロットに対応する前記CM
I符号列のタイム6− スロットにCMI符号則にした。かわない符号化を行う
CMI変換回路とを含み、受信部は受信信号から主信号
にゆ号化するCM■復刊回路と、(n−1)ピット間隔
のCMT符号則バイオレージ目ンを検出すZ)バイオレ
ージ日ン桧出回路と、前記バイオレージ日ン栓出回路の
出力よ9元の補助信号を得る補助4;i号■号回路とを
含むことを特徴とする補助イば号伝送を+、 1ijr
 、、< 4f19 At 6゜次に本発明の火施例に
ついて図面を参照して駅間する。
An object of the present invention is to provide an auxiliary signal transmission device with a simple circuit and a small device size in an auxiliary signal transmission system using a CMI code as a transmission path code.
In an auxiliary signal separation circuit that transmits a main signal encoded using the MI coding rule by V-folding auxiliary signals such as a control signal and a monitoring signal, the transmission section includes a sampling circuit that samples the auxiliary signal, and the sampling circuit. The output signal of a
A violation specifying circuit that determines the time slot corresponding to t1n and the time slot after n (n is an integer of 1 or more) bits; The CM corresponding to a time slot with a biolage target
The CMI code rule was applied to the time 6-slot of the I code string. The receiving section includes a CMI conversion circuit that performs unaltered encoding, and a CM reprint circuit that decodes the received signal to the main signal, and a CMT encoding rule violation circuit that detects (n-1) pit interval violation points. Z) An auxiliary Iba signal transmission characterized by including a biorage sun hydrant circuit and an auxiliary 4; +, 1ijr
,, < 4f19 At 6° Next, we will discuss the embodiment of the present invention with reference to the drawings.

第4図は本発明の実が!惰11のブロック図、第5図は
第4図の各部のタイミングチャートを示す。第4図にお
いて送信部20と受(W部27は、クロックパルス10
を基準クロックとして動作する。送信部20に入力した
主信号1はCMI変換回路21によりCM■符号列に変
換されパ1#および“0″符号の続かない杓号にランダ
ム化される。
Figure 4 shows the fruits of this invention! A block diagram of the inertia 11, FIG. 5 shows a timing chart of each part of FIG. 4. In FIG.
operates as the reference clock. The main signal 1 inputted to the transmitter 20 is converted into a CM■ code string by the CMI conversion circuit 21, and is randomized into a CM code string that does not include Par1# and "0" codes.

一方送信部20に入力した周期的な補助信号2はサンプ
リング回路22でサンプリングされ、1ビツトのサンプ
リングパルス24となる。バイオレージ璽ン指定パルス
発生回路23はサンプリング回/L//(24が、”1
″の場合にこのタイムスロットと2ビツト後のタイムス
ロットにおいてパルスをψ1−たに形成し、バイオレー
ジ目ン指定パルス25をつくル。バイオレーション指定
パルス25はCMI変換回路21に入力され、バイオレ
ージ四りm足パルスがII O#lのときのタイムスロ
ットでは主信号1をCMI符号則でCMI符号化を行な
い、′”1″のときのタイムスロット(第5図斜線部)
では主信号1のCMI符号列に対し、バイオレーション
すなわちCMI符号則とは別の符号則で符号化k・行う
。このようにして、補助信号2に応じ、CMI符号化し
た主信号1に対してバイオレージ曹ンを行った伝送路符
号26(CMIfi号)が受信部27に送られる。
On the other hand, the periodic auxiliary signal 2 input to the transmitter 20 is sampled by the sampling circuit 22 and becomes a 1-bit sampling pulse 24. The biolage designation pulse generation circuit 23 has a sampling time of /L//(24 is "1").
'', pulses are formed in this time slot and the time slot 2 bits later to create a violation designation pulse 25.The violation designation pulse 25 is input to the CMI conversion circuit 21, and the violation designation pulse 25 is input to the CMI conversion circuit 21, In the time slot when the register quadruple m-leg pulse is II O#l, the main signal 1 is CMI encoded according to the CMI coding rule, and the time slot when it is ``1'' (shaded area in Figure 5)
Then, the CMI code string of main signal 1 is encoded using a violation, that is, a code rule different from the CMI code rule. In this way, in response to the auxiliary signal 2, the transmission line code 26 (CMIfi code) obtained by performing biorage encoding on the CMI-encoded main signal 1 is sent to the receiving unit 27.

受信部27において、送られてきた伝送路信号26(C
MI杓号)はバイオレージ璽ン検出回路29に送られる
と同時に、CMI復号回路28へ送られ、元の主信号6
に戻される。バイオレージ日ン検出回路29tj:、1
ビツトのシフトレジスタを内蔵しておシ、伝送路信号2
6中の1ビツト間隔のバイオレージ璽ンの検出が行われ
、伝送路信号26(CMI符号)の符号にバイオレーシ
ョンのあるタイムスロットが1ビツトおきに表われた時
のみ′1”、それ以外は10″となるサンプルパルス3
1を出力する。このサンプルパルス31は補助信号復号
回路30に入力し、サンプルパルス31が′0#のとき
、補助信号用カフの符号はuOa+、ulsのときは1
#となシさらにパルいて新たに発生するパルスをサンプ
リングパルス24の1ビツト後としたが、1ビット9−
に限らない。この場合バイオレーション検出回路29は
内蔵するシフトレジスタのビット数を増やすだけでよい
In the receiving section 27, the transmitted transmission line signal 26 (C
The MI signal) is sent to the biorage detection circuit 29 and at the same time sent to the CMI decoding circuit 28 where the original main signal 6 is sent to the CMI decoding circuit 28.
will be returned to. Biolage sun detection circuit 29tj:, 1
It has a built-in bit shift register and transmits the transmission line signal 2.
'1' is detected only when a violation occurs every other bit in the code of the transmission line signal 26 (CMI code). is 10'' sample pulse 3
Outputs 1. This sample pulse 31 is input to the auxiliary signal decoding circuit 30, and when the sample pulse 31 is '0#, the code of the auxiliary signal cuff is uOa+, and when it is uls, it is 1.
The pulse that is generated after # is set to be 1 bit after sampling pulse 24, but 1 bit 9-
Not limited to. In this case, the violation detection circuit 29 only needs to increase the number of bits of the built-in shift register.

以上説明したように、本発明による回路構成はフレーム
同期をとる必要がなく、簡単でしかも規模が比較的小さ
な回路構成でCMI符号則のバイオレージ箇ンを用いた
補助信号伝送装置が実現で9− きる。
As explained above, the circuit configuration according to the present invention does not require frame synchronization, and an auxiliary signal transmission device using the violation section of the CMI coding rule can be realized with a simple and relatively small-scale circuit configuration. - I can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の補助信号伝送装置の一例を示すブロック
図、第2図は第1図の各部のタイムチャート、第3図は
従来の補助信号伝送装置のCMT符号化の一例を示す波
形図、第4図は本発明の補助信号伝送装置の一実施例を
示すブロック図、第5図は第4図の各部のタイムチャー
トである。 1・・・・・・主信号(二値符号)入力、2・・・・・
・補助信号入力、3・・・・・・フレームパターン信号
、4.25・・・・・・バイオレ・・・シ璽ン指定パル
ス、5・・・・・・伝送路信号(CMI符号)、6・・
・・・・主信号(通常二値符号出力)、7・・・・・・
補助信号出力、8・・・・・・パイオレー21フ位置パ
ルス、9・・・・・・補助信号重畳位置パルス、lO・
・・・・・クロックパルス、11.20・・・・・・送
信部、15,27・・・・・・受信部、12,21・・
・・・・CMI変換回路、13.22・・・・・・サン
プリング回路、14・・・・・・フレームパターン発生
回路、16゜28・・・・・・CMI復号回路、17.
29・・・・・・バイオ10− レージロン検出回路、18・・・・・・フレーム同XJ
j 回路、19・・・・・・補助信号分離回路、23・
・・・・・バイオレージ、ン指定パルス発生回路、30
・・・・・・補助信号復号回路。 11−
Fig. 1 is a block diagram showing an example of a conventional auxiliary signal transmission device, Fig. 2 is a time chart of each part of Fig. 1, and Fig. 3 is a waveform diagram showing an example of CMT encoding of the conventional auxiliary signal transmission device. , FIG. 4 is a block diagram showing one embodiment of the auxiliary signal transmission device of the present invention, and FIG. 5 is a time chart of each part of FIG. 4. 1... Main signal (binary code) input, 2...
・Auxiliary signal input, 3... Frame pattern signal, 4.25... Biores code designation pulse, 5... Transmission line signal (CMI code), 6...
...Main signal (usually binary code output), 7...
Auxiliary signal output, 8...Piolet 21 position pulse, 9...Auxiliary signal superimposition position pulse, lO.
...Clock pulse, 11.20...Transmitter, 15,27...Receiver, 12,21...
...CMI conversion circuit, 13.22...Sampling circuit, 14...Frame pattern generation circuit, 16°28...CMI decoding circuit, 17.
29... Bio 10- Resilon detection circuit, 18... Frame same XJ
j circuit, 19... Auxiliary signal separation circuit, 23.
...Biolage, N specified pulse generation circuit, 30
...Auxiliary signal decoding circuit. 11-

Claims (1)

【特許請求の範囲】[Claims] 主信号の“0”および61′″が連続しないようランダ
ム符号化するCMI符号則を用いて符号化した主信号に
、制御信号、監視信号等の補助信号を重畳して伝送する
補助信号伝送装置゛において、送信部は補助信号をサン
プリングするサンプリング回路と、前記サンプリング回
路の出力信号がII I IIに相当するタイムスロッ
トおよびn(nl;l;1以上の整数)ビット後のタイ
ムスロットを指定するバイオレージ目ン指定回路と、主
信号を前記CMI符号則にしたがってCMI符号列に変
換するとともに前記バイオレージ冒ン指定のあるタイム
スロットに対応する前記CMI符号別のタイムスロット
にCMI符号則にしたがわない符号化を行うCMI変換
回路とを含み、受信部は受信信号から主信号に複写化す
るCMI復号回路と%(”−1)ビット間隔のCMI符
号則バイオレージ曹ンを検出するバイオレージ冒ン検出
回路と、前記バイオレージ冒ン検出回路の出力より元の
補助信号を得る補助信号復号回路とを含むことを特徴と
する補助信号伝送装置。
An auxiliary signal transmission device that superimposes and transmits auxiliary signals such as control signals and monitoring signals on the main signal encoded using the CMI coding rule, which randomly encodes the main signal so that "0" and 61''' are not consecutive. In ``, the transmitter specifies a sampling circuit that samples the auxiliary signal, a time slot in which the output signal of the sampling circuit corresponds to II II, and a time slot after n (nl; l; an integer of 1 or more) bits. a biolage target designation circuit, converting the main signal into a CMI code string according to the CMI code rule, and converting the main signal into a CMI code string corresponding to the time slot with the biolage designation according to the CMI code rule; The receiver includes a CMI decoding circuit that copies the received signal into the main signal, and a CMI converter that detects the CMI coding rule violation code with a bit interval of %(''-1). 1. An auxiliary signal transmission device comprising: an auxiliary signal decoding circuit for obtaining an original auxiliary signal from the output of the biolage detection circuit;
JP57217952A 1982-12-13 1982-12-13 Transmitter of auxiliary signal Granted JPS59107672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217952A JPS59107672A (en) 1982-12-13 1982-12-13 Transmitter of auxiliary signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217952A JPS59107672A (en) 1982-12-13 1982-12-13 Transmitter of auxiliary signal

Publications (2)

Publication Number Publication Date
JPS59107672A true JPS59107672A (en) 1984-06-21
JPS6333820B2 JPS6333820B2 (en) 1988-07-07

Family

ID=16712281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217952A Granted JPS59107672A (en) 1982-12-13 1982-12-13 Transmitter of auxiliary signal

Country Status (1)

Country Link
JP (1) JPS59107672A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138626A (en) * 1977-05-10 1978-12-04 Nippon Telegr & Teleph Corp <Ntt> Timing transmission system
JPS5689154A (en) * 1979-12-21 1981-07-20 Nippon Telegr & Teleph Corp <Ntt> Transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138626A (en) * 1977-05-10 1978-12-04 Nippon Telegr & Teleph Corp <Ntt> Timing transmission system
JPS5689154A (en) * 1979-12-21 1981-07-20 Nippon Telegr & Teleph Corp <Ntt> Transmission system

Also Published As

Publication number Publication date
JPS6333820B2 (en) 1988-07-07

Similar Documents

Publication Publication Date Title
JPH0322724A (en) Spectrum diffusion communication device
US4244051A (en) Data communication method and apparatus therefor
JPS59107672A (en) Transmitter of auxiliary signal
EP0066620B1 (en) Circuit for clock recovery
US3813493A (en) Secure data transmission apparatus
US4809301A (en) Detection apparatus for bi-phase signals
US5510786A (en) CMI encoder circuit
JPS6333818B2 (en)
JPS6055760A (en) Auxiliary signal transmission system
JP2693831B2 (en) Auxiliary signal transmission method
JP2600575B2 (en) Modem
JP3270572B2 (en) Frame signal transmission system
SU613515A2 (en) Cyclic code decoder
JPS6262098B2 (en)
SU653743A1 (en) Decoder
JPS61263326A (en) Method for detecting frame synchronization
JPH0362641A (en) Auxiliary signal superimposing system
JP2981332B2 (en) Frame synchronization method
SU1003127A1 (en) Television signal receiving device
JPS6240834A (en) Code transmission system
JPS60235562A (en) Auxiliary code transmission system of digital code transmission system
JPH02226932A (en) Receiver for cmi code
JPS6096044A (en) Line identification system
JPS63151131A (en) Time division multiplex transmission system
JPS6276334A (en) Transmission system for spread spectrum signal