JPS59104804A - Am demodulator - Google Patents

Am demodulator

Info

Publication number
JPS59104804A
JPS59104804A JP21443982A JP21443982A JPS59104804A JP S59104804 A JPS59104804 A JP S59104804A JP 21443982 A JP21443982 A JP 21443982A JP 21443982 A JP21443982 A JP 21443982A JP S59104804 A JPS59104804 A JP S59104804A
Authority
JP
Japan
Prior art keywords
signal
clock
circuit
value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21443982A
Other languages
Japanese (ja)
Other versions
JPH0479164B2 (en
Inventor
Masanobu Tanaka
正信 田中
Yoshiro Omotani
重谷 好郎
Teruo Kitani
木谷 晃夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21443982A priority Critical patent/JPS59104804A/en
Publication of JPS59104804A publication Critical patent/JPS59104804A/en
Publication of JPH0479164B2 publication Critical patent/JPH0479164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Amplitude Modulation (AREA)

Abstract

PURPOSE:To obtain an AM demodulator possible for operation by using the clock signal not in synchronizing with an AM signal to be demodulated. CONSTITUTION:An amplitude signal 14 to be demodulated is sampled by a clock frequency N times (where, N>=2) the carrier frequency of the signal. The value obtained by dividing the difference between a sample value Xk-1 before one clock and a sample value Xk+1 after one clock by 2sin (2pi/N) is squared and added this value to the squared value of a present sample value Xk. The square root of said summed value, i.e. the value expressed in the figure is outputted. Where Ak is a modulating signal component at a sample point. Thus, it is possible to use a clock signal not in synchronizing with the demodulation of an AM signal, thereby making the constitution of a clock generating circuit 13 easy and enabling an FM signal to be demodulated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はM口振幅変調)復調装置の中でも、特にデジタ
ル演算によって入力店信号の包絡線を求めるものに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to M-channel amplitude modulation/demodulation devices, and particularly to devices for determining the envelope of an input signal by digital calculation.

従来例の構成とその問題点 従来、AM復調を行なうためにはアナログ信号の場合、
ダイオード検波回路や同期検波回路が良く用いられてき
た。近年、デジタル集積回路の発達。
Conventional configuration and its problems Conventionally, in order to perform AM demodulation, in the case of analog signals,
Diode detection circuits and synchronous detection circuits have often been used. In recent years, the development of digital integrated circuits.

により従来アナログ回路で構成された機能回路がデジタ
ル回路で構成されることが多くなってきている。届復調
をデジタル回路で実現するためには、−例として同期サ
ンプリングにょ71AM復調装置のブロック図を示す。
Therefore, functional circuits that were conventionally constructed from analog circuits are increasingly constructed from digital circuits. In order to realize demodulation using a digital circuit, a block diagram of a 71AM demodulator using synchronous sampling is shown as an example.

被復調アナログ油信号(4)はA/D変換器(1)によ
り、デジタル信号(5)に変換される。A/D変換器(
1)へのクロック信号(7)はクロック発生回路(3)
から与えられ、クロック発生回路(3)は店信号(4)
の搬送波周波数fcのN倍に位相・周波数とも同期した
前記クロック信号(7)を出力している。
The demodulated analog oil signal (4) is converted into a digital signal (5) by the A/D converter (1). A/D converter (
The clock signal (7) to 1) is the clock generator circuit (3)
The clock generation circuit (3) is given by the store signal (4)
The clock signal (7) synchronized in phase and frequency with N times the carrier wave frequency fc is output.

第2図は店信号(4)をベクトル図で示したものである
。(81(9) (If)はN−4の場合のサンプル点
を示している。今、変調信号をA (t)として、油信
号z (t)をz(t)=  (1+A(t) 1 t
 j2”C” t−・Q)と表わせば、サンプルされた
データはサンプル周期をTとして、 Zk−(1+Ak)If!j2πfc+kT    −
+2)となり。
FIG. 2 shows the store signal (4) in a vector diagram. (81(9) (If) indicates the sample point in the case of N-4. Now, assuming that the modulation signal is A (t), the oil signal z (t) is expressed as z (t) = (1 + A (t) 1 t
j2"C" t-・Q), the sampled data is expressed as Zk-(1+Ak)If!, where T is the sampling period. j2πfc+kT −
+2).

T = (1/4 ) f c  とすれば。If T = (1/4) f c.

Zk=(1+AI)εj1茅 ・・・(3) となる。この第8式の実部が実際のデータであるから、
第2図のようにkの値が奇数の時には零となり、偶数の
ときには、符号は反転するが振幅そのものとなる。従っ
てこのデジタル信号(5)が振幅検出回路(2)により
絶対値をとってから平均化すれば変調信号成分(6)が
取出せる。絶対値を求めるのは符号ビットによってデー
タを反転するか、又は2乗すればよい。
Zk=(1+AI)εj1茅...(3) It becomes. Since the real part of this 8th equation is the actual data,
As shown in FIG. 2, when the value of k is an odd number, it becomes zero, and when it is an even number, the sign is reversed but the amplitude is the same. Therefore, if the absolute value of this digital signal (5) is taken by the amplitude detection circuit (2) and then averaged, the modulated signal component (6) can be extracted. The absolute value can be obtained by inverting the data depending on the sign bit or by squaring the data.

しかしながら、このような従来の方法では、クロック信
号(7)が原信号(4)の搬送周波数と位相も同期して
いる必要があり、クロック発生回路(3)はフェイズロ
ックループ等を用いるため複雑になる。
However, in such conventional methods, the clock signal (7) needs to be synchronized in phase with the carrier frequency of the original signal (4), and the clock generation circuit (3) uses a phase-locked loop, etc., making it complicated. become.

例えば、位相がずれるとサンプル点が第2図の実軸と虚
軸からずれ、これが振幅検出回路(1)の誤差となる。
For example, if the phase shifts, the sample point shifts from the real axis and imaginary axis in FIG. 2, which causes an error in the amplitude detection circuit (1).

また周波数が少しずれるとサンプル位相が変化しサンプ
ル点が第2図の円周上を回転するため、振幅検出回路(
2)の誤差となりビート成分が低周波信号として出力さ
れてしまう。
Also, if the frequency shifts slightly, the sample phase changes and the sample point rotates on the circumference in Figure 2, so the amplitude detection circuit (
2), and the beat component will be output as a low frequency signal.

また、FM(周波数変調)信号の復調等では、入力信号
周波数が絶えず変化するため上記の方法では振幅検出で
きない。
Furthermore, in demodulation of an FM (frequency modulation) signal, etc., the input signal frequency constantly changes, so the amplitude cannot be detected using the above method.

発明の目的 本発明は、被復調1周信号と同期していないクロック信
号で動作可能な店復調装置を提供することを目的とする
OBJECTS OF THE INVENTION It is an object of the present invention to provide a demodulator that can operate with a clock signal that is not synchronized with a one-cycle signal to be demodulated.

発明の構成 本発明のM(復調装置は、被復調振幅信号をその搬送周
波数のN〔但し、8223倍のクロック周波数でサンプ
ルしlクロック前のサンプル値Xk−1と1クロツク後
のサンプル値Xk+1の差を25in(2π/N)で割
った値の2乗と、現サンプル値xkの2乗との和の平方
根の値、すなわち を出力するように構成し、これにより原信号の復調に非
同期のクロック信号を使うことが可能になり、クロック
発生回路の構成を容易にし、 FM信号の復調も可能と
することを特徴とするもの゛である。
Structure of the Invention The M (demodulator) of the present invention samples the demodulated amplitude signal at a clock frequency N (8223 times as high as its carrier frequency), and samples the sample value Xk-1 one clock before and the sample value Xk+1 one clock later. The configuration is configured to output the square root of the sum of the square of the difference between 25in (2π/N) and the square of the current sample value xk. The present invention is characterized in that it becomes possible to use the same clock signal, simplifies the configuration of the clock generation circuit, and also enables demodulation of FM signals.

実施例の説明 以下1本発明の実施例について図面を参照しながら詳し
く説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

第8図は1本発明の個復調装置のブロック図を示す。a
℃はA/D変換器、aりは振幅検出回路1時はクロック
発生回路である。第4図はA/D変換器aVに入力され
る被復調M(信号04のサンプル点をベクトル表示した
ものである。眉信号a→とクロック発生回路Qlのクロ
ック信号αηとは同期していないため、サンプル点の位
相は一定しないが、ある瞬間のサンプル点(ト)のサン
プル位相をθとすれば。
FIG. 8 shows a block diagram of a single demodulator according to the present invention. a
℃ is an A/D converter, a is an amplitude detection circuit, and 1 o'clock is a clock generation circuit. Figure 4 shows a vector representation of the sample points of the demodulated signal 04 input to the A/D converter aV.The eyebrow signal a→ and the clock signal αη of the clock generation circuit Ql are not synchronized. Therefore, the phase of the sample point is not constant, but if the sample phase of the sample point (g) at a certain moment is θ.

2πk z=(1千〜)εj(0十−T−) −Xk+jYk          ・・・(5)l+
Ak工呂弔7     ・・・(6)となる。Nはクロ
ック周波数と原信号の搬送周波数との比であり、 AM
はサンプル点における変調信号成分である。通常、変調
信号周波数に比べ搬送周波数は十分高いからサンプル点
(ト)C1l(イ)では変調信号はほとんど一定と見な
せる。よって、Ak’AI< −1岬Ak+1とできる
から、Zk−1−Zk+s−CI+Asc+Bgj(1
i’+VCk−1)]、    2π −(1+Ak−t)C1〔θ+1(k+1))”v−j
(1+Ak)gj(”Hk)sin L’m −j Z
ksin ”    −(7)従って第7式の実数部か
ら が求まり、第8式と第6式から第4式を求めることがで
き、変調信号Akが求まる。特にクロック周波数を搬送
周波数の4倍(N−4)とすれば第4式となり、演算を
簡単化でき、回路構成も容易になる。前記振幅検出回路
04では第4式の演算が行なわれている。
2πk z=(1000~)εj(01−T−) −Xk+jYk ・・・(5)l+
Ak Koro 7...(6). N is the ratio of the clock frequency to the carrier frequency of the original signal, and AM
is the modulated signal component at the sample point. Normally, the carrier frequency is sufficiently high compared to the modulation signal frequency, so the modulation signal can be considered almost constant at the sample points (g) and C1l (a). Therefore, since Ak'AI<-1 MisakiAk+1 can be obtained, Zk-1-Zk+s-CI+Asc+Bgj(1
i'+VCk-1)], 2π-(1+Ak-t)C1[θ+1(k+1))"v-j
(1+Ak)gj("Hk)sin L'm -j Z
k sin '' - (7) Therefore, the real part of the 7th equation can be found, and the 4th equation can be found from the 8th and 6th equations, and the modulation signal Ak can be found.In particular, if the clock frequency is set to 4 times the carrier frequency ( If N-4), then the fourth equation is obtained, which simplifies the calculation and the circuit configuration.The amplitude detection circuit 04 performs the calculation according to the fourth equation.

第5図は第8図の振幅検出回路(6)をより具体的に示
した全体構成図である。3υ(2)は1クロック遅延回
路、(ハ)は減算回路、(ハ)は掛算回路、に)(ホ)
は2乗回路、@は加算回路、(ハ)は平方根回路である
FIG. 5 is an overall configuration diagram showing more specifically the amplitude detection circuit (6) of FIG. 8. 3υ(2) is a 1-clock delay circuit, (c) is a subtraction circuit, (c) is a multiplication circuit, (ii) (e)
is a square circuit, @ is an adder circuit, and (c) is a square root circuit.

クロック信号0?)の周波数は油信号C1→の周波数と
同期する必要はなく、ここでは簡単のため搬送周波数の
ほぼ4倍として動作を説明する。A/D変換器0ηを介
して変換されたデジタル信号aθは第4図のようなサン
プル点のデータである。減算回路に)により、現データ
と2クロツクの2Tだけ遅れたデータの差が求められ、
掛算回路(財)により1/2 S In u−1/2が
掛算され2乗回路(イ)により2乗される。
Clock signal 0? ) does not need to be synchronized with the frequency of the oil signal C1→, and for the sake of simplicity, the operation will be described assuming that it is approximately four times the carrier frequency. The digital signal aθ converted through the A/D converter 0η is sample point data as shown in FIG. (in the subtraction circuit), the difference between the current data and the data delayed by 2T, which is 2 clocks, is found,
The multiplication circuit (product) multiplies 1/2 S In u-1/2, and the squaring circuit (a) squares the result.

実際には1/2の掛算は1ビツトのシフトで良く、2乗
回路(2)はROMテーブルで構成されている。こXk
−1−Xk+1 のようにして()2がデータ09に得られる。
Actually, multiplication by 1/2 may be performed by a 1-bit shift, and the squaring circuit (2) is constituted by a ROM table. This Xk
-1-Xk+1 ()2 is obtained as data 09.

一万、lクロックのITだけ遅れたデータ(至)は2乗
回路(ホ)により2乗されてXk!のデータ(至)とな
る。
The data (to) delayed by IT of 10,000,1 clocks is squared by the square circuit (e) and becomes Xk! The data is (to).

これら2つのデータ0υに)は加算回路■により加算さ
れ、平方根回路に)により平方根が求められ復調された
振幅データが出力端子Onに出力される。以上のように
して(4)式が演算される。平方根回路(2)もROM
テーブルによって構成されている。
These two data 0υ) are added by the adder circuit (2), the square root is determined by the square root circuit (), and the demodulated amplitude data is output to the output terminal On. Equation (4) is calculated as described above. Square root circuit (2) is also ROM
It is made up of tables.

このように本実施例によれば、ハードウェアで実現すれ
ば1例えばビデオ信号程度の高速の演算が可能である。
As described above, according to the present embodiment, if it is realized by hardware, high-speed calculations comparable to those of video signals, for example, are possible.

なお、これは既存の部品1回路を用いて実現できる。ま
た、クロック信号と同期して振幅データが得られるため
、高い変調信号周波数まで復調が可能である。
Note that this can be realized using one existing component circuit. Furthermore, since amplitude data is obtained in synchronization with the clock signal, it is possible to demodulate up to a high modulation signal frequency.

第6図は、他の実施例のブロック図である。前記実施例
とほぼ同じであるが、1つの2乗回路に)で時分割動作
させるため、1クロック遅延回路(財)選択スイッチ(
至)、OI%分周回路(ロ)が追加変更されている。す
なわち、2乗回路を時分割使用するため、クロック信号
αηを分周回路(ロ)で2分周し1選択スイッチ(2)
で差信号と現信号とを切換えて1つの2乗回路(ハ)を
使用する。差信号(ト)の2乗と現信号(至)の2乗は
順に出力されるため、lクロック遅延回路(財)でタイ
ミングを合わせて加算回路(財)で加算される。加算回
路(ロ)の出力は、1つおきに正しいデータとなってい
るため、そのタイミングに合わせて選択スイッチ(至)
を閉じることによって、平方根回路(ハ)から正しい振
幅データが出力端子α呻に得られる。出力データはクロ
ック周波数の172の周波数で出力されるが変調信号周
波数はクロック信号及び搬送周波数より十分低いため全
く問題はない。このように、第6図の実施例では2乗回
路を1つに減らし、構成の容易な選択スイッチ、分周回
路、lクロック遅延回路等を使用したため。
FIG. 6 is a block diagram of another embodiment. This is almost the same as the previous embodiment, but in order to perform time-division operation with one squaring circuit, a one-clock delay circuit selection switch (
), the OI% frequency dividing circuit (b) has been additionally changed. In other words, in order to use the square circuit in a time-division manner, the clock signal αη is divided into two by the frequency divider circuit (b) and the 1 selection switch (2) is used.
The difference signal and the current signal are switched at , and one squaring circuit (c) is used. Since the square of the difference signal (g) and the square of the current signal (to) are output in order, they are added together in the adder circuit (l-clock delay circuit) with the timing adjusted. Since the output of the adder circuit (b) is correct data every other time, the selection switch (to) is set according to the timing.
By closing , correct amplitude data can be obtained from the square root circuit (c) at the output terminal α. Although the output data is output at a frequency of 172 of the clock frequency, there is no problem at all since the modulation signal frequency is sufficiently lower than the clock signal and carrier frequency. In this way, in the embodiment of FIG. 6, the number of squaring circuits is reduced to one, and easy-to-configure selection switches, frequency dividing circuits, l-clock delay circuits, etc. are used.

費用を低減できる。Costs can be reduced.

上記各実施例では、ハードウェアの構成で示したが、信
号周波数がもつと低く演算時間に余裕があれば第4式の
計算をソフトウェアで実現することもできる。
In each of the above embodiments, a hardware configuration is shown, but if the signal frequency is low and there is enough calculation time, the calculation of the fourth equation can also be realized by software.

また、上記実施例ではへ信号で説明したが、単一正弦波
信号の振幅の検出にも使用できることはいうまでもない
Further, although the above embodiment has been explained using a signal, it goes without saying that it can also be used to detect the amplitude of a single sine wave signal.

発明の詳細 な説明のように本発明の店復調装置によると。Details of the invention According to the store demodulator of the present invention as described.

標本化定理を満足する任意のクロック周波数でサンプリ
ングしてAM復調が可能であり、特にN−4の場合には
その演算が簡単になるため装置も簡単にできる。また、
クロックが入力信号と同期していな(でもよいため任意
の正弦波信号の振幅検出。
AM demodulation is possible by sampling at any clock frequency that satisfies the sampling theorem, and especially in the case of N-4, the calculation is simple, so the device can be simplified. Also,
Amplitude detection of any sine wave signal even if the clock is not synchronized with the input signal.

特にFM復調のための個復調装置としての利用価値が高
いものである。
It is particularly useful as an individual demodulator for FM demodulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の店復調装置のブロック図、第2図は第1
図のサンプル点のベクトル表示図、第8図は本発明の店
復調装置のブロック図、第4図はそのサンプル点のベク
トル表示図、第5図は第8肉の具体的な一実施例のブロ
ック図、第6図は第5図の他の実施例のブロック図であ
る。 aη・・・A/D変換器、(財)・・・振幅検出回路、
(13・・・クロック発生回路、a・・・・出力端子、
p])@−・・1クロック遅延回路、Q・・・減算回路
、(ハ)・・・掛算回路、mm−・・2乗回路、(財)
・・・加算回路、(ハ)・・・平方根回路代理人 森本
義弘 第1図 筑2図 第3因 第4図
Figure 1 is a block diagram of a conventional store demodulator, and Figure 2 is a block diagram of a conventional store demodulator.
8 is a block diagram of the store demodulator of the present invention, FIG. 4 is a vector representation of the sample points, and FIG. 5 is a specific example of meat. Block Diagram FIG. 6 is a block diagram of another embodiment of FIG. 5. aη...A/D converter, (Foundation)...amplitude detection circuit,
(13...clock generation circuit, a...output terminal,
p]) @-...1 clock delay circuit, Q...subtraction circuit, (c)...multiplication circuit, mm-...square circuit, (Foundation)
...addition circuit, (c)...square root circuit agent Yoshihiro Morimoto Figure 1 Chiku 2 Figure 3 Cause Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、被復調振幅変調信号をその搬送周波数のN(但し、
N22)倍のクロック周波数でサンプルし、lクロック
前のサンプル値と1クロツク後のサンプル値の差を25
in(2π/N)で割った値の2乗と、現サンプル値の
2乗との和の平方根の値を出力するよう構成した店復調
装置。
1. The amplitude modulation signal to be demodulated is set to its carrier frequency N (however,
N22) times the clock frequency, and the difference between the sample value l clocks ago and the sample value one clock later is 25
A store demodulator configured to output the square root of the sum of the square of the value divided by in (2π/N) and the square of the current sample value.
JP21443982A 1982-12-07 1982-12-07 Am demodulator Granted JPS59104804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21443982A JPS59104804A (en) 1982-12-07 1982-12-07 Am demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21443982A JPS59104804A (en) 1982-12-07 1982-12-07 Am demodulator

Publications (2)

Publication Number Publication Date
JPS59104804A true JPS59104804A (en) 1984-06-16
JPH0479164B2 JPH0479164B2 (en) 1992-12-15

Family

ID=16655791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21443982A Granted JPS59104804A (en) 1982-12-07 1982-12-07 Am demodulator

Country Status (1)

Country Link
JP (1) JPS59104804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631939A (en) * 1986-06-20 1988-01-06 Advantest Corp Envelope detector
KR100594196B1 (en) * 1998-04-14 2006-08-30 삼성전자주식회사 Amplitude modulation detector and the detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631939A (en) * 1986-06-20 1988-01-06 Advantest Corp Envelope detector
KR100594196B1 (en) * 1998-04-14 2006-08-30 삼성전자주식회사 Amplitude modulation detector and the detecting method

Also Published As

Publication number Publication date
JPH0479164B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
KR850003644A (en) Frequency detector
JPS5925500B2 (en) Carrier wave regeneration circuit
US5517689A (en) Phase detecting method and phase detector and FM receiver using phase detecting method
JPS62269446A (en) Phase transfer keying modulator
US3387220A (en) Apparatus and method for synchronously demodulating frequency modulated differentially coherent duobinary signals
KR960036465A (en) 4-phase phase modulator
JPS59104804A (en) Am demodulator
JPH04160843A (en) Demodulation circuit
US3378637A (en) System for generating single sideband phase modulated telegraphic signals
JPS58114654A (en) Reproducing circuit of reference carrier wave
JP2931454B2 (en) Digital phase modulation signal demodulation circuit
US3535452A (en) Demodulation method and devices for rhythmically modulated waves using four-phase differential modulation
JPS5890856A (en) Sampling phase synchronizing circuit
US3980971A (en) Modulator for hybrid modulation by more and less significant digital signals in succession in each clock interval and counterpart demodulator
JPS6115610B2 (en)
JPH05336185A (en) Digital orthogonal detection demodulator
JP3228361B2 (en) Digital processing type quadrature detection circuit
US6539070B1 (en) Clock synchronizing circuit
JPS60224345A (en) Data transmission system
JPS5915536B2 (en) digital phase locked loop
JPS5838018B2 (en) Phase continuous FSK signal modulation circuit
JP2600991B2 (en) Demodulation method
JP3148319B2 (en) Modulation phase detection device and demodulation device
JPS55149554A (en) Carrier reproducing circuit
JP2528744B2 (en) Delay detection circuit