JP2528744B2 - Delay detection circuit - Google Patents

Delay detection circuit

Info

Publication number
JP2528744B2
JP2528744B2 JP3040612A JP4061291A JP2528744B2 JP 2528744 B2 JP2528744 B2 JP 2528744B2 JP 3040612 A JP3040612 A JP 3040612A JP 4061291 A JP4061291 A JP 4061291A JP 2528744 B2 JP2528744 B2 JP 2528744B2
Authority
JP
Japan
Prior art keywords
phase difference
phase
circuit
data
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3040612A
Other languages
Japanese (ja)
Other versions
JPH04259150A (en
Inventor
俊二 安部
健三 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP3040612A priority Critical patent/JP2528744B2/en
Publication of JPH04259150A publication Critical patent/JPH04259150A/en
Application granted granted Critical
Publication of JP2528744B2 publication Critical patent/JP2528744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディジタル位相変調され
た受信信号を遅延検波するために使用される遅延検波回
路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential detection circuit used for differential detection of a digital phase-modulated received signal.

【0002】[0002]

【従来の技術】遅延検波は、基準位相信号として1タイ
ムスロット前の受信信号を用いる検波方式であり、同期
検波と比較して回路が簡単になるという特徴があり、デ
ィジタル移動無線やその他小型化を必要とする通信機な
どに広く用いられている。
2. Description of the Related Art Delay detection is a detection method that uses a received signal one time slot before as a reference phase signal, and is characterized in that the circuit is simpler than synchronous detection. It is widely used in communication equipment that requires.

【0003】さて、従来は上記遅延検波回路として受信
IF信号の波形自身を1シンボル遅延させ、もとのIF
信号と比較することによりその位相差を判定し復調に用
いる方法がとられている。図2は従来の遅延検波方式を
QPSKに用いた場合の構成例図である。その動作の説
明を簡単に行う。
Conventionally, the above-described delay detection circuit delays the waveform of the received IF signal itself by one symbol to obtain the original IF signal.
A method is used in which the phase difference is determined by comparing it with the signal and used for demodulation. FIG. 2 is a diagram showing a configuration example when a conventional differential detection method is used for QPSK. The operation will be briefly described.

【0004】まず、21は遅延回路であり入力される受
信信号IFをCLKでサンプリングしながら逐次波形を
記憶し1シンボル遅延信号IF’信号を作り出す。この
回路はCLKに同期するN段シフトレジスタで構成する
ことができる。この1シンボル遅延信号IF’は二つの
回路に出力されている。一方は90°移相回路22に送
られ、他方は位相差判定回路24に送られI相の位相比
較に用いられる。その90°移相回路22ではQ相の位
相比較に用いる1シンボル遅延信号IF”を作りだして
位相差判定回路23に出力している。
First, reference numeral 21 is a delay circuit, which stores a sequential waveform while sampling an input received signal IF with CLK to generate a 1-symbol delayed signal IF 'signal. This circuit can be composed of an N-stage shift register synchronized with CLK. This 1-symbol delay signal IF 'is output to two circuits. One is sent to the 90 ° phase shift circuit 22 and the other is sent to the phase difference determination circuit 24 and used for phase comparison of the I phase. The 90 ° phase shift circuit 22 produces a 1-symbol delay signal IF ″ used for Q-phase comparison and outputs it to the phase difference determination circuit 23.

【0005】23,24は位相差判定回路であり、IF
と1シンボル遅延信号IF’(またはその90°移相信
号IF”)を比較し2入力の位相差を求め、その値に対
応する復調データDEM−I(またはDEM−Q)を判
定して出力する。
Reference numerals 23 and 24 denote phase difference determination circuits, which are IF
And 1-symbol delay signal IF ′ (or its 90 ° phase shift signal IF ″) are compared to obtain the phase difference between the two inputs, and demodulation data DEM-I (or DEM-Q) corresponding to that value is determined and output. To do.

【0006】[0006]

【発明が解決しようとする課題】しかしこのような従来
の方法では、遅延回路21に供給するサンプリングCL
Kを受信信号IFの約10倍以上の周波数で動作させな
ければならず消費電力が大きくなってしまう。またIF
を遅延させるシフトレジスタの段数は、例えば前記CL
Kのサンプリング周波数と受信信号IFの周波数との比
をMとおき、1シンボル時間長のIFのサイクル数をN
とおくと(M×N)段となる。このため回路の規模が大
きくなるという欠点がある。
However, in such a conventional method, the sampling CL supplied to the delay circuit 21 is used.
K must be operated at a frequency about 10 times or more higher than the received signal IF, resulting in a large power consumption. IF
The number of stages of the shift register that delays
The ratio of the sampling frequency of K and the frequency of the received signal IF is set to M, and the number of cycles of IF of 1 symbol time length is set to N.
Therefore, (M × N) steps are required. Therefore, there is a disadvantage that the scale of the circuit becomes large.

【0007】本発明は、前記従来の方法における消費電
力や回路規模の問題を解決して小型化及び経済化を果た
し、性能的には劣化を伴わずに遅延検波を行うことので
きる遅延検波回路を提供することを目的とする。
The present invention solves the problems of power consumption and circuit scale in the above-mentioned conventional method, achieves miniaturization and economy, and can perform delay detection without delay in performance. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明による遅延検波回
路は受信信号の位相角とその遅延値との差動を用いるこ
とを特徴としている。すなわち、受信IF信号と局部発
振信号とを入力しその位相差を検出し該位相差をディジ
タル電圧値に変換した絶対値とその最上位桁に付加され
た1ビットの正負の符号とからなる位相情報φ1を出力
する位相差検出回路と、前記位相情報φ1を1シンボル
時間記憶して遅延位相情報φ2として出力する遅延回路
と、前記位相差検出回路からの位相情報φ1と前記遅延
回路からの遅延位相情報φ2とから位相変化量Δφを数
2によって算出し該位相変化量Δφを4つのしきい値
(3/4)π,(1/4)π,−(1/4)π,−(3
/4)πと比較し、Δφ≧(3/4)π,Δφ<−(3
/4)πのとき1シンボル位相差をπ(又は−π)と判
定して位相差πに適合したデータを復調データとして出
力し、(1/4)π≦Δφ<(3/4)πのとき1シン
ボル位相差をπ/2と判定して位相差π/2に適合した
データを復調データとして出力し、−(1/4)π≦Δ
φ<(1/4)πのとき1シンボル位相差を0と判定し
て位相差0に適合したデータを復調データとして出力
し、−(3/4)π≦Δφ<−(1/4)πのとき1シ
ンボル位相差を−π/2と判定して位相差−π/2に適
合したデータを復調データとして出力する判定回路とを
備えたことを特徴とするものである。
A differential detection circuit according to the present invention is characterized by using a differential between a phase angle of a received signal and its delay value. That is, inputs the reception IF signal and the local oscillation signal to detect the phase difference daisy a phase difference
And a phase difference detection circuit for outputting phase information φ1 consisting of an absolute value converted to a Tal voltage value and a 1-bit positive / negative sign added to the most significant digit, and the phase information φ1 is stored for one symbol time and delayed. The phase change amount Δφ is calculated from the delay circuit which outputs as the phase information φ2, the phase information φ1 from the phase difference detection circuit and the delay phase information φ2 from the delay circuit, and the phase change amount Δφ is calculated as Threshold
(3/4) π, (1/4) π, − (1/4) π, − (3
/ 4) π, and Δφ ≧ (3/4) π, Δφ <− (3
/ 4) When π, the 1-symbol phase difference is determined to be π (or −π).
Data that matches the phase difference π is output as demodulation data.
Force, and if (1/4) π ≦ Δφ <(3/4) π, 1 thin
The phase difference was determined to be π / 2 and the phase difference was adapted to π / 2
The data is output as demodulated data, and − (1/4) π ≦ Δ
When φ <(1/4) π, the 1-symbol phase difference is determined to be 0.
And output data that matches the phase difference of 0 as demodulation data
However, when − (3/4) π ≦ Δφ <− (1/4) π, 1 series
The phase difference is determined to be -π / 2 and the phase difference is suitable for -π / 2.
And a determination circuit for outputting the combined data as demodulated data .

【数2】 △φ=〔φ1−φ2+3π〕mod2π−π## EQU2 ## Δφ = [φ1-φ2 + 3π] mod2π- π

【0009】[0009]

【数2】 △φ=〔φ1−φ2+3π〕mod2π−π ……
(1)
[ Formula 2] Δφ = [φ1-φ2 + 3π] mod2π− π ...
(1)

【0010】[0010]

【実施例】図1は本発明による遅延検波回路の一構成例
を示すブロック図である。図において、11は位相差検
出回路であり、12は遅延回路、13は判定回路であ
る。また、図3は本発明の要部をなす位相差検出回路1
1の詳細を示す一構成例図である。
1 is a block diagram showing an example of the configuration of a differential detection circuit according to the present invention. In the figure, 11 is a phase difference detection circuit, 12 is a delay circuit, and 13 is a determination circuit. Further, FIG. 3 shows a phase difference detection circuit 1 which is an essential part of the present invention.
It is a structural example figure showing the details of 1.

【0011】まず、図1の各回路の簡単な説明を行う。
位相差検出回路11は受信信号IFとLOCAL信号を
入力しその位相差θを検出し、位相差θを電圧レベルに
変換して遅れ/進み情報を付加した位相情報φ1出力
する回路である。遅延回路12は位相情報φ1を入力し
1シンボルスピードに同期しているCLKをトリガーと
してφ1を1シンボル間記憶し遅延位相情報φ2として
出力する回路であって、シフトレジスタなどで構成され
る。判定回路13は、位相情報φ1と遅延位相情報φ2
とを入力し、(1)式によって位相変化量Δφを求め、
その位相変化量Δφの値を4つのしきい値によって判定
した復調データを出力する回路である。
First, a brief description of each circuit in FIG. 1 will be given.
Phase difference detection circuit 11 inputs the received signal IF and LOCAL signal to detect the phase difference theta, a phase difference theta to the voltage level
This is a circuit for converting and outputting phase information φ1 to which delay / advance information is added . The delay circuit 12 is a circuit which inputs the phase information φ1 and stores Φ1 for one symbol for one symbol by using CLK synchronized with one symbol speed as a trigger and outputs it as the delay phase information φ2. The determination circuit 13 uses the phase information φ1 and the delayed phase information φ2.
Input and, and obtain the amount of phase change Δφ by equation (1),
This is a circuit for outputting demodulated data in which the value of the phase change amount Δφ is determined by four threshold values.

【0012】[0012]

【作用】次に図1の構成例に基づく本発明の動作につい
て説明する。まず、位相差検出回路11に関して、その
一構成例を示す図3を用いて説明する。図3において、
31は排他的論理和回路(EXOR回路)、32はD−
F/F(フリップフロップ)、33は低域ろ波器(LP
F)、34はアナログ/ディジタル変換器(A/D)で
ある。図4は図3の回路の各部の位相比較特性図であ
り、(A)はLPF33の出力aの特性を示し、(B)
はD−F/F32の出力bの特性を示す。(A),
(B)共、横軸は、LOCAL(局部発振)信号の位相
を基準(θ=0)としそれに対する受信IF信号の位相
差θを表す。(A)の縦軸IはLPF33の出力電圧の
最大値を1とした正規化電圧を表し、(B)の縦軸Kは
D−F/F32の2値出力の例えば5VのHレベルを1
として正規化した電圧を表す。受信信号IFとLOCA
L(局部発振)信号はEXOR回路31に入力され、2
信号の位相差θが2値の電圧値で出力される。この位相
差θをLPF33に通した信号aは、図4(A)に示し
たように、I=0〜1の範囲の電圧の絶対値で示され
る。すなわち、位相差が電圧に変換され、EXOR回路
31の出力として“1”が連続したときはI=1とな
り、“0”が連続したときはI=0となり、“1”,
“0”が混じっているときはI=0〜1の中間の値とな
る。このアナログ電圧をA/D変換器34で量子化しデ
ィジタル値に変換した位相差θに対応する多ビットの電
圧の絶対値を位相差情報の1つとして用いる。一方、受
信信号IFとLOCAL信号はD−F/F(フリップフ
ロップ)32にも入力され、D−F/F(フリップフロ
ップ)32の出力bは、図4(B)の位相比較特性に示
したように、位相差θが0〜πの範囲にあるときはK=
1となり、0〜−πの範囲にあるときK=0となる。
即ち、2値で示される出力bは、受信信号IFがLOC
AL信号に対して遅れているか、進んでいるかの正負の
符号を1ビットで示している。これをもう1つの位相差
情報として用い、A/D変換器34から出力される上記
多ビットの絶対値を示す情報の最上位桁(MSB)に
付加したものを位相情報φ1として出力する。即ち、位
相差検出回路11は、受信信号IFとLOCAL信号の
位相差θを検出し、正負を示す1ビットの符号と絶対値
を示す多ビットの情報とからなる位相情報φ1を出力す
る。
Next, the operation of the present invention based on the configuration example of FIG. 1 will be described. First, the phase difference detection circuit 11 will be described with reference to FIG. In FIG.
31 is an exclusive OR circuit (EXOR circuit), 32 is D-
F / F (flip-flop), 33 is a low-pass filter (LP
F) and 34 are analog / digital converters (A / D). FIG. 4 is a phase comparison characteristic diagram of each part of the circuit of FIG.
(A) shows the characteristics of the output a of the LPF 33, and (B)
Indicates the characteristic of the output b of the D-F / F 32. (A),
(B) both the horizontal axis, and LOCAL (local oscillator) based on the signal of the phase (theta = 0) to display the phase difference theta reception IF signal thereto. The vertical axis I in (A) represents the output voltage of the LPF 33.
It represents the normalized voltage with the maximum value as 1, and the vertical axis K of (B) is
For example, the H level of 5 V of the binary output of D-F / F32 is set to 1
Represents the normalized voltage as. Received signal IF and LOCA
The L (local oscillation) signal is input to the EXOR circuit 31, and 2
The signal phase difference θ is output as a binary voltage value . As shown in FIG. 4 (A), the signal a obtained by passing the phase difference θ through the LPF 33 is represented by the absolute value of the voltage in the range of I = 0 to 1. That is, the phase difference is converted into a voltage, and the EXOR circuit
When "1" continues as the output of 31, I = 1
Therefore, when "0" continues, I = 0 and "1",
When “0” is mixed, it becomes an intermediate value of I = 0 to 1.
It This analog voltage is quantized by the A / D converter 34 and converted into a digital value, which is a multi-bit electric signal corresponding to the phase difference θ.
The absolute value of pressure is used as one piece of phase difference information. On the other hand, the reception signal IF and the LOCAL signal are also input to the D-F / F (flip-flop) 32, and the output b of the D-F / F (flip-flop) 32 is shown in the phase comparison characteristic of FIG. As described above, when the phase difference θ is in the range of 0 to π, K =
1, and a K = 0 when the range of 0 to-[pi.
That is, the output b is the two values, the received signal IF is LOC
A positive or negative sign indicating whether it is behind or ahead of the AL signal is shown by 1 bit. Using this as another phase difference information, the above-mentioned output from the A / D converter 34 is performed.
The information added to the most significant digit (MSB) of the information indicating the multi-bit absolute value of is output as the phase information φ1. That is, the phase difference detection circuit 11 detects the phase difference θ between the reception signal IF and the LOCAL signal, and the 1-bit sign and the absolute value indicating positive or negative
And phase information φ1 including multi-bit information indicating

【0013】本発明の従来方式との違いは、この位相差
検出回路11を通る段階ですでに受信信号IFのLOC
AL信号に対する位相の遅れ/進みと位相差θの絶対値
(電圧レベル)からなる位相情報を抽出しており、従来
回路のようにIFシンボルをそのままの形で使用しない
というである。このように位相差θを電圧に変換して
その後の処理を行うことにより、記憶データの冗長性が
省かれ回路の簡略化及び小規模化が可能となる。
The difference from the conventional method of the present invention is that the LOC of the received signal IF has already been reached at the stage of passing through the phase difference detection circuit 11.
Absolute value of phase delay / lead and phase difference θ with respect to AL signal
And extracting phase information comprising (voltage level), the IF symbols as in the conventional circuit is that it does not use as is. In this way, the phase difference θ is converted to voltage
By performing the subsequent processing, the redundancy of the stored data can be omitted and the circuit can be simplified and downsized.

【0014】図1に戻り、位相情報φ1は遅延回路12
に送られ、前記のとおりCLKをトリガーとしてφ1を
シンボル間記憶し遅延位相情報φ2として出力する。こ
の回路は位相情報φ1のデータビット幅を持つシフトレ
ジスタによって容易に実現することができる。またトリ
ガーとして使用するCLKの周波数の伝送速度に対する
比率をLとおくときLは約10程度以上でよく、また必
要となるシフトレジスタの段数もMでよいので、受信信
号IF周波数のM倍程度(M≧10)のクロックと(M
×N)段のレジスタ(Nは1シンボル時間長のサイクル
数)を必要とする従来回路と比較するとかなり低い周波
数でよいので、消費電力と回路規模の面で大きな利点と
なる。
Returning to FIG. 1, the phase information φ1 is the delay circuit 12
, And as described above, φ1 is stored between symbols by using CLK as a trigger and output as delay phase information φ2. This circuit can be easily realized by a shift register having a data bit width of phase information φ1. Further, when the ratio of the frequency of CLK used as a trigger to the transmission rate is set to L, L may be about 10 or more, and the required number of shift register stages may be M. Therefore, about M times the reception signal IF frequency ( M ≧ 10) clock and (M
The frequency is considerably lower than that of a conventional circuit that requires (N) stage registers (N is the number of cycles of one symbol time length), which is a great advantage in terms of power consumption and circuit scale.

【0015】次に、判定回路13にて復調を行う。判
回路13は、位相差検出回路11からの位相情報φ1と
遅延回路12からの遅延位相情報φ2とが入力され、
(1)式によって現在のシンボルの位相情報φ1と直前
のシンボルの位相情報φ2との位相変化量Δφを求め、
その位相変化量Δφの値を4つのしきい値によって領域
判定した復調データを出力する回路である。ここで
(1)式について詳しく説明する。図6は(1)式を導
出する経過の説明図である。(A)はLOCAL信号に
対する受信IF信号の位相差θと位相差検出回路11か
ら出力される位相差情報φ1の関係を示す。縦軸は図4
と同様に正規化電圧を示す。(B)は現在シンボルの位
相情報φ1と直前シンボルの位相情報すなわち遅延回路
12から出力される遅延位相情報φ2との正規化電圧の
差(φ1−φ2)を横軸とし、その差(φ1−φ2)に
対応する位相差Δφを縦軸としその関係を示したもので
ある。すなわち、現在シンボルのLOCAL信号に対す
る位相差φ1から直前シンボルのLOCAL信号に対す
る位相差φ2を減算することにより、LOCAL信号の
成分が相殺されて現在シンボルと直前シンボルとの位相
変化量Δφが求められることを示している。この位相差
Δφは−2π〜2πの4πの範囲で変化するが、位相変
調の場合、送信データは必ず2πの範囲(−π〜π)で
割り当てられており、それを超える範囲は2πの範囲の
繰り返し(mod2π)となる。QPSKの場合、−π
〜πの範囲に4値(0、±π/2、πまたは−π)のデ
ータが割り当てられるので、その復調判定を行うには4
つのしきい値でよいが、図6(B)の特性のまま判定し
ようとすると、しきい値が8つ必要になり回路構成が複
雑になる。そこで、図6(B)の正規化電圧が−1〜1
の範囲でΔφが原点を通過して一定上昇する特性を維持
し、正規化電圧が−1と1の点でΔφがπから−πに位
相ジャンプし、−2〜2に対応するΔφが−π〜πの範
囲でのこぎり歯状に繰り返す特性を得るために2πのモ
ジュロ演算を用いる。 しかし、2πのモジュロ演算を行
うには(B)の特性のΔφの値を正の値にする必要があ
る。そこで、Δφに2πを加算すると位相ジャンプ点が
正規化電圧0の点となり、−1〜1の範囲のΔφ特性が
維持できない。そこで、(B)の特性 に3πを加算して
(C)の破線の特性とし、この破線の特性に2πのモジ
ュロ演算を行って(C)の実線の特性すなわちΔφの範
囲が0〜2πの間でのこぎり歯状の特性を得る。次に、
この実線の特性が原点を通過する特性とするためπを減
算し、図5の特性を得る。この図5の特性を式で示した
のが(1)式となる。図5の横軸値は図6(C)の横軸
値と異なっているが、正規化電圧と位相変化量の関係
は、図6(B)のように1対1の対応関係にあるので同
じとみなしてよい。
Next, the decision circuit 13 demodulates . Determine Teikairo 13 includes a phase information φ1 from the phase difference detecting circuit 11 and the delay phase information φ2 from the delay circuit 12 is input,
According to the equation (1), the phase information φ1 of the current symbol and the immediately preceding
The phase change amount Δφ with the phase information φ2 of the symbol
Domain by four thresholds the value of the phase variation Δφ
Is a circuit that outputs the demodulated data that has been determined. Here, the formula (1) will be described in detail. FIG. 6 is an explanatory diagram of the process of deriving the equation (1). (A) is the LOCAL signal
The relationship between the phase difference θ of the received IF signal and the phase difference information φ1 output from the phase difference detection circuit 11 is shown. The vertical axis is Fig. 4
The normalized voltage is shown in the same manner as . (B) is currently <br/> difference normalized voltage between the delay phase information .phi.2 outputted from the phase information, that the delay circuit 12 of the phase information .phi.1 and the immediately preceding symbol of the symbol a (φ1-φ2) and the horizontal axis, the Difference (φ1-φ2)
The relationship is shown with the corresponding phase difference Δφ as the vertical axis. That is, for the LOCAL signal of the current symbol
From the phase difference φ1 to the LOCAL signal of the immediately preceding symbol.
Of the LOCAL signal by subtracting the phase difference φ2
The phases of the current symbol and the immediately preceding symbol due to the cancellation of the components
It shows that the change amount Δφ can be obtained. This phase difference Δφ changes in the range of 4π from −2π to 2π, but in the case of phase modulation, the transmission data is always assigned in the range of 2π (−π to π), and the range beyond that is the range of 2π. Is repeated (mod2π). In the case of QPSK, -π
Since 4-valued data (0, ± π / 2, π or −π) is assigned to the range of up to π, 4 is required to make the demodulation determination.
Although one threshold value is sufficient, if the characteristics shown in FIG. 6B are to be determined, eight threshold values are required and the circuit configuration becomes complicated. Therefore, the normalized voltage in FIG.
Maintains the characteristic that Δφ passes the origin and rises constantly in the range of
Then, at the points where the normalized voltage is -1 and 1, Δφ changes from π to -π.
A phase jump occurs, and Δφ corresponding to −2 to 2 falls within the range of −π to π.
To obtain the characteristic of repeating a sawtooth shape,
Use Juro arithmetic. However, the modulo operation of 2π is performed.
Therefore, it is necessary to make the value of Δφ of the characteristic of (B) a positive value.
It Therefore, if 2π is added to Δφ, the phase jump point becomes
The normalized voltage is 0, and the Δφ characteristic in the range of −1 to 1 is
I can't keep up. Therefore, add 3π to the characteristic of (B)
The characteristic of the broken line in (C) is used, and the characteristic of the broken line is 2π.
After performing the uro operation, the characteristics of the solid line in (C), that is, the range of Δφ
Sawtooth-like properties with an enclosure between 0 and 2π are obtained. next,
Since the solid line characteristic is a characteristic that passes through the origin, π is subtracted to obtain the characteristic shown in FIG. The characteristics of this FIG.
Is the equation (1). The horizontal axis value in FIG. 5 is different from the horizontal axis value in FIG. 6C, but the relationship between the normalized voltage and the phase change amount is shown.
Are in a one-to-one correspondence as shown in FIG.
You may consider it the same.

【0016】図5は本発明に用いる4値判定特性図であ
り、(1)式の特性を示す。4本の一点鎖線はそれぞれ
しきい値を示している。図5より明らかな通り、(1)
式で求められるΔφは、現在シンボルの位相情報φ1と
直前シンボルの位相情報である遅延位相情報φ2の差
(φ1−φ2)が−2π〜2πの範囲に拡がっているの
を、−π〜πの範囲で4つのしきい値によりデータの領
域を判定することができることを意味している。以上の
ように、判定回路13は、まず、位相情報φ1と遅延位
相情報φ2の2つの入力の差(φ1−φ2)を算出し、
次に、(1)式によってΔφを算出し、そのΔφを4つ
のしきい値でその領域を判定することにより復調データ
を出力する。
FIG. 5 is a four-value judgment characteristic diagram used in the present invention, and shows the characteristic of the equation (1). Each of the four dash-dotted lines indicates a threshold value. As is clear from Fig. 5, (1)
Δφ obtained by the equation is the phase information φ1 of the current symbol.
The difference (φ1−φ2) of the delay phase information φ2, which is the phase information of the immediately preceding symbol, extends to the range of −2π to 2π, and the data area is determined by four threshold values in the range of −π to π. It means that you can do it. As described above, the determination circuit 13 first calculates the difference (φ1−φ2) between the two inputs of the phase information φ1 and the delay phase information φ2,
Next, Δφ is calculated by the equation (1), and the area of Δφ is determined by four threshold values to output demodulated data.

【0017】以上から、本発明の構成を、例えば4相P
SK信号の復調に用いる場合、Δθ=0,±π/2,π
(または−π)の4種の位相変化に対し、各々図5の一
点鎖線で示したしきい値、±1/4π,±3/4πによ
り0,±π/2,π(または−π)により分割された判
定領域を設定することにより容易に復調回路が構成され
ることがわかる。
From the above, the structure of the present invention can be applied to, for example, four-phase P
When used for demodulating an SK signal, Δθ = 0, ± π / 2, π
(Or −π) for four types of phase changes, 0, ± π / 2, π (or −π) according to the threshold values shown by the one-dot chain line in FIG. 5, ± 1 / 4π, ± 3 / 4π It can be seen that the demodulation circuit can be easily configured by setting the determination region divided by.

【0018】なお、上記機能を実現する判定回路13と
しては、例えば図1のφ1,φ2をアドレス入力とし
(1)式によって得られる位相変化量Δφが所属する判
定値を記憶データとするROM(Read Only
Memory)によって簡単に構成することができる。
As the decision circuit 13 for realizing the above-mentioned function, for example, ROM (φ1 and φ2 in FIG. 1 is used as an address input, and the decision value to which the phase change amount Δφ obtained by the equation (1) belongs is stored as ROM ( Read Only
It can be easily configured by Memory.

【0019】[0019]

【発明の効果】以上詳細に説明したように、本発明によ
れば、従来方式で問題となる消費電力を小さくすること
ができ且つ回路を小規模化することができる。
As described in detail above, according to the present invention, it is possible to reduce power consumption, which is a problem in the conventional method, and it is possible to downsize the circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による遅延検波回路の一構成例図であ
る。
FIG. 1 is a diagram showing a configuration example of a differential detection circuit according to the present invention.

【図2】従来の遅延検波回路の一構成例図である。FIG. 2 is a diagram showing a configuration example of a conventional differential detection circuit.

【図3】本発明の主要部をなす位相差検出回路の一構成
例図である。
FIG. 3 is a configuration example diagram of a phase difference detection circuit which is a main part of the present invention.

【図4】図3のa点及びb点に於ける位相比較特性図で
ある。
FIG. 4 is a phase comparison characteristic diagram at points a and b in FIG.

【図5】本発明をQPSKに用いた場合の4値判定特性
例図である。
FIG. 5 is a diagram showing a four-value determination characteristic example when the present invention is used for QPSK.

【図6】本発明の式(1)の導出経過説明図である。FIG. 6 is an explanatory diagram of the derivation process of the equation (1) of the present invention.

【符号の説明】[Explanation of symbols]

11 位相差検出回路 12 遅延回路 13 判定回路 21 遅延回路 22 90°移相回路 23 位相差判定回路 24 位相差判定回路 31 EXOR回路 32 Dフリップフロップ 33 LPF 34 A/D変換器 11 phase difference detection circuit 12 delay circuit 13 determination circuit 21 delay circuit 22 90 ° phase shift circuit 23 phase difference determination circuit 24 phase difference determination circuit 31 EXOR circuit 32 D flip-flop 33 LPF 34 A / D converter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 受信IF信号と局部発振信号とを入力し
その位相差を検出し該位相差をディジタル電圧値に変換
した絶対値とその最上位桁に付加された1ビットの正負
の符号とからなる位相情報φ1を出力する位相差検出回
路と、前記位相情報φ1を1シンボル時間記憶して遅延
位相情報φ2として出力する遅延回路と、前記位相差検
出回路からの位相情報φ1と前記遅延回路からの遅延位
相情報φ2とから位相変化量Δφを数1によって算出し
該位相変化量Δφを4つのしきい値(3/4)π,(1
/4)π,−(1/4)π,−(3/4)πと比較し、
Δφ≧(3/4)π,Δφ<−(3/4)πのとき1シ
ンボル位相差をπ(又は−π)と判定して位相差πに適
合したデータを復調データとして出力し、(1/4)π
≦Δφ<(3/4)πのとき1シンボル位相差をπ/2
と判定して位相差π/2に適合したデータを復調データ
として出力し、−(1/4)π≦Δφ<(1/4)πの
とき1シンボル位相差を0と判定して位相差0に適合し
たデータを復調データとして出力し、−(3/4)π≦
Δφ<−(1/4)πのとき1シンボル位相差を−π/
2と判定して位相差−π/2に適合したデータを復調デ
ータとして出力する判定回路とを備えた遅延検波回路。 【数1】 △φ=〔φ1−φ2+3π〕mod2π−π
1. A received IF signal and a local oscillation signal are input, a phase difference between them is detected, and the phase difference is converted into a digital voltage value.
And a phase difference detection circuit for outputting phase information φ1 consisting of a 1-bit positive / negative sign added to the most significant digit thereof, and the phase information φ1 is stored for one symbol time and output as delay phase information φ2. a delay circuit for phase information φ1 and the calculated the number 1 phase variation Δφ from the delay phase information φ2 Prefecture from the delay circuit the phase variation Δφ the four threshold (3 from the phase difference detecting circuit / 4) π, (1
/ 4) π, − (1/4) π, − (3/4) π,
When Δφ ≧ (3/4) π and Δφ <− (3/4) π, 1 series
The phase difference is determined to be π (or −π) and suitable for the phase difference π.
The combined data is output as demodulation data, and (1/4) π
When ≦ Δφ <(3/4) π, the phase difference of one symbol is π / 2.
The data that is determined to be the phase difference π / 2 is demodulated data
Output as − (1/4) π ≦ Δφ <(1/4) π
When the 1-symbol phase difference is judged to be 0,
Output data as demodulated data, and − (3/4) π ≦
When Δφ <-(1/4) π, the phase difference of one symbol is -π /
2 and the data that matches the phase difference −π / 2 is demodulated and demodulated.
A differential detection circuit including a determination circuit that outputs the data. ## EQU1 ## Δφ = [φ1-φ2 + 3π] mod2π- π
JP3040612A 1991-02-13 1991-02-13 Delay detection circuit Expired - Fee Related JP2528744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040612A JP2528744B2 (en) 1991-02-13 1991-02-13 Delay detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040612A JP2528744B2 (en) 1991-02-13 1991-02-13 Delay detection circuit

Publications (2)

Publication Number Publication Date
JPH04259150A JPH04259150A (en) 1992-09-14
JP2528744B2 true JP2528744B2 (en) 1996-08-28

Family

ID=12585354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040612A Expired - Fee Related JP2528744B2 (en) 1991-02-13 1991-02-13 Delay detection circuit

Country Status (1)

Country Link
JP (1) JP2528744B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280611A (en) * 1990-03-29 1991-12-11 Japan Radio Co Ltd Adaptive equalizer
JPH04172040A (en) * 1990-11-05 1992-06-19 Matsushita Electric Ind Co Ltd Delay detector circuit with frequency offset correction

Also Published As

Publication number Publication date
JPH04259150A (en) 1992-09-14

Similar Documents

Publication Publication Date Title
JP3003826B2 (en) Clock recovery circuit
AU660878B2 (en) Differential detection demodulator
JP3856555B2 (en) Phase angle detector and frequency discriminator using the same
JP2837982B2 (en) Delay detection demodulator
US4686484A (en) Phase detection circuit
JP2528744B2 (en) Delay detection circuit
JPH10271178A (en) Pi/n shift psk demodulator
US8355479B2 (en) Signal processing apparatus and signal processing method
JP2931454B2 (en) Digital phase modulation signal demodulation circuit
JPH0779363B2 (en) Delay detection circuit
JP2005210436A (en) Carrier frequency detecting method
JPH10327208A (en) Clock recovery circuit
JP2853728B2 (en) Digital demodulation circuit
JP3183456B2 (en) Clock recovery circuit and receiving device using the same
JP2795761B2 (en) MSK signal demodulation circuit
JP3262069B2 (en) Frequency error detection circuit
JPH07221802A (en) Digital demodulator
JP3329491B2 (en) PSK demodulation circuit and demodulation method thereof
JP3253057B2 (en) Delay detection circuit
JP3353331B2 (en) Clock extraction method and clock extraction circuit
JP2002190839A (en) Gfsk orthogonal modulator and modulation method
JP2744541B2 (en) Double differential coded communication device
JP2004165936A (en) Phase-modulated signal demodulator
JPS5816826B2 (en) digital phase synchronization circuit
JPH0637838A (en) Method and circuit for clock phase error detection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees