JPS59102833A - Preparation of quartz glass - Google Patents

Preparation of quartz glass

Info

Publication number
JPS59102833A
JPS59102833A JP20954182A JP20954182A JPS59102833A JP S59102833 A JPS59102833 A JP S59102833A JP 20954182 A JP20954182 A JP 20954182A JP 20954182 A JP20954182 A JP 20954182A JP S59102833 A JPS59102833 A JP S59102833A
Authority
JP
Japan
Prior art keywords
quartz glass
gel
dry gel
acid
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20954182A
Other languages
Japanese (ja)
Other versions
JPH0124734B2 (en
Inventor
Satoru Miyashita
悟 宮下
Sadao Kanbe
貞男 神戸
Motoyuki Toki
元幸 土岐
Tetsuhiko Takeuchi
哲彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP20954182A priority Critical patent/JPS59102833A/en
Publication of JPS59102833A publication Critical patent/JPS59102833A/en
Publication of JPH0124734B2 publication Critical patent/JPH0124734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prepare large-sized void-free dry gel for the preparation of quartz glass, in a short time, in high yield, by hydrolyzing an alkoxysilane using an acid as a catalyst, adjusting the pH of the product within a proper range with a base, and gelatinizing the product. CONSTITUTION:An alkoxysilane is hydrolyzed at a high rate of hydrolysis using an acid as a catlayst, and adjusted to 3-6pH with a base to increase the rate of polymerization and to effect the gelatinization at room temperature. The gel is put into a vessel, and dried in a semi-closed state by raising the temperature to obtain a large-sized void-free dry gel having low cracking defects, easily, in high yield, in a short time. The dry gel can be vitrified at a low temperature of about 950-1,000 deg.C to obtain colorless transparent quartz glass.

Description

【発明の詳細な説明】 本発明はゾル−ゲル法において、アルコキシシランを酸
で加水分解した後塩基全添加し、PH5〜6でゲル化さ
せる石英ガラスの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing quartz glass using a sol-gel method, in which alkoxysilane is hydrolyzed with an acid, then a base is completely added thereto, and the mixture is gelled at pH 5 to 6.

ゾル−ゲル法は金属アルコキイドを加水分解しゲル化さ
せ得られた乾燥ゲルを加熱する非浴融ガラス製造法であ
る。金橋アルコキシドを出発原料とすると、溶融法で作
ることが困難な組成でも均質なガラスを比較的低温で作
ることができる。しかじ、一般に加水分解後のゲル化収
縮過程、あるいは乾燥ゲルa加熱の途中で破砕しゃ丁い
という欠点がある。
The sol-gel method is a non-bath melting glass manufacturing method in which a metal alkoxide is hydrolyzed and gelled, and the resulting dry gel is heated. When Kanahashi alkoxide is used as a starting material, homogeneous glass can be produced at relatively low temperatures even with compositions that are difficult to produce by melting. However, it generally has the disadvantage that it breaks down during the gelling shrinkage process after hydrolysis or during heating of the dry gel.

石英ガラスは使用頻度が高く有用な物質であるが、現在
は2000℃付近で浴融して製造しているため非常に高
価である。ゾル−ゲル法は高純度低コスト、省エネルギ
ーなどの%徴を有するため有望視されているものの直径
5t7n以上の石英ガラスは得られていない。これは乾
燥ゲルが作製できないためである。
Although quartz glass is a frequently used and useful material, it is currently manufactured by bath melting at around 2000° C., making it very expensive. Although the sol-gel method is considered promising because it has characteristics such as high purity, low cost, and energy saving, silica glass having a diameter of 5t7n or more has not been obtained. This is because dry gel cannot be produced.

ゲル化収縮過程での割れは、内部構造と乾燥条件に負う
ところが太きい。
Cracking during the gelation shrinkage process is largely due to the internal structure and drying conditions.

アルコキン7ランを刃口水分解してゲル化させるには、
アンモニアのような塩基を触媒に用いる方法と、塩酸の
ような酸を触媒に用いる方法とがある。
In order to hydrolyze alcoquine 7ran and turn it into a gel,
There are methods using a base such as ammonia as a catalyst and methods using an acid such as hydrochloric acid as a catalyst.

塩基ケ触媒に用いると、加水分解速度が遅く、重合速度
が速いため得らf17c乾燥ゲルは粒子の太きい粗い構
造上とる。粒子間の結合力が弱いため直径2cnI以上
の乾燥ゲルは発光されていない。
When used as a base catalyst, the hydrolysis rate is slow and the polymerization rate is fast, so the dried gel obtained has a coarse structure with thick particles. Due to the weak binding force between particles, dry gels with a diameter of 2 cnI or more do not emit light.

酸を触媒に用いると、刀日水分解速圀が速く、重合速度
が遅いため粒成長は起らない。テトラヒドロキシシラン
が2〜4量体を形成していると考えられている。
When an acid is used as a catalyst, the water decomposition rate is fast and the polymerization rate is slow, so grain growth does not occur. It is believed that tetrahydroxysilane forms dimers to tetramers.

結合力は強く、割れは乾燥条件に起因すると思われる。The bonding strength is strong, and the cracking appears to be caused by the drying conditions.

直径7cmの乾燥ゲルが発表されているがゲルが大きく
なると乾燥の制御は難かしくなる。
Dry gels with a diameter of 7 cm have been announced, but as the gel gets larger, it becomes difficult to control drying.

それゆえ大型の乾燥ゲルを高率で作製することは現状の
1までは不可能である。
Therefore, it is currently impossible to produce large-sized dry gels at a high rate.

捷だ、50〜70℃に加熱してゲル化させるため気泡を
含み、湿度を高く保つ必要性から短時間で作製できない
、などの欠点を有する。
It has drawbacks such as being stiff, containing air bubbles because it is gelled by heating to 50 to 70°C, and cannot be produced in a short time because of the need to maintain high humidity.

本発明は刀1〃)る欠点を除去したもので、酸を触媒に
用いて加水分解した後、塩基を加えて重合速度を高め、
室温でゲル化させた後、半開放にして温度を上げて乾燥
させることにより、気泡のない大型の乾燥ゲル全尚収率
しかも短時間で得ること尋 ができπ。
The present invention eliminates the disadvantages of 1). After hydrolysis using an acid as a catalyst, a base is added to increase the polymerization rate.
By gelling at room temperature and then drying in a semi-open air condition at elevated temperature, it is possible to obtain a large, bubble-free dry gel in a high yield and in a short period of time.

以下、来躾例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on a case study.

大きな乾燥ゲルを得るためには、アンモニアと塩酸の例
から網目構造をとった万が有利なことがわ刀)る。その
ためには酸で加水分解全行ない、モノマーが均一に分散
している状態をとる必要がある。重合速度は温度、テト
ラヒドロキシシラン濃度、水素イオン濃度に依存してい
る。乾燥条件、濃縮などによシ、前の2点については検
討がなされている。我々は水素イオン濃度に着眼して実
験全行なった。
In order to obtain a large dry gel, it can be seen from the example of ammonia and hydrochloric acid that it is advantageous to form a network structure. For this purpose, it is necessary to perform complete hydrolysis with an acid so that the monomer is uniformly dispersed. The polymerization rate depends on temperature, tetrahydroxysilane concentration, and hydrogen ion concentration. The previous two points are being studied, including drying conditions and concentration. We conducted all experiments focusing on hydrogen ion concentration.

実施例1 オルトケイ酸エチルに対し10倍モルの水を0.1規足
塩酸水浴液として加え、水冷下1時間攪拌して均一な透
明溶液(以下浴液Aと記す)を得た。攪拌しながら浴液
Aに0,1規定アンモニア水を徐々に渦下し、PH4,
6とした。室温に放置すると無色透明の11約30分後
にゲル化した。その後浴媒全押し出しながら急速に収縮
が進んだ。
Example 1 10 times the molar amount of water relative to ethyl orthosilicate was added as a 0.1 molar hydrochloric acid bath solution, and stirred for 1 hour under water cooling to obtain a uniform transparent solution (hereinafter referred to as bath solution A). While stirring, gradually swirl 0.1 N ammonia water into bath liquid A until the pH is 4,
It was set at 6. When left at room temperature, the colorless and transparent 11 gelled after about 30 minutes. Thereafter, the shrinkage progressed rapidly while extruding all of the bath medium.

ゲルは開放でも割nな刀)つた。Gel is a sword that is cheap even when opened.

直径10m高さ5crnのポリテトラフルオロエチレン
製容器でゲル化さぞ′L後、直径3■の穴20個全開け
たふたをし、60℃で1日保持し徐々に90℃筐で昇温
し罠。90℃で2日間乾燥させると直径4.5 cmの
乾燥ゲルが得らnた。
After gelling in a polytetrafluoroethylene container with a diameter of 10 m and a height of 5 crn, cover all 20 holes with a diameter of 3 mm, hold at 60°C for 1 day, and gradually raise the temperature to 90°C in a box. trap. Drying at 90°C for 2 days yielded a dry gel with a diameter of 4.5 cm.

950℃〜1000℃でガラス化が起こシ、無色透明の
石英ガラスが得らf′L罠。
Vitrification occurs at 950°C to 1000°C, and colorless and transparent quartz glass is obtained.

実施例2 浴液Aに01規定アンモニア水を徐々に滴下しP H4
,4にしたところ、ゲル化に#J2時間を要した。その
後実施例1と同様にして、石英ガラスが得られた。
Example 2 Gradually drop 01 normal ammonia water into bath liquid A to P H4
, 4, it took #J2 hours for gelation. Thereafter, in the same manner as in Example 1, quartz glass was obtained.

実施例 浴液Aに0.1規定アンモニア水を徐々に滴下しPH5
以上にしたところ、数十秒でゲル化した。
Example: 0.1N ammonia water was gradually added dropwise to bath solution A to pH 5.
When the above procedure was carried out, gelation occurred in several tens of seconds.

乾燥ゲルはやはシ無色透明で、焼結により石英ガラスが
得られた。
The dried gel was colorless and transparent, and silica glass was obtained by sintering.

実施例4 浴液Aに0.5規定アンモニア水を徐々に滴下したとこ
ろ、無色透明のまま中オロが進行した。ゲル化後、焼結
によシ石英ガラスが得ら几た。
Example 4 When 0.5N ammonia water was gradually added dropwise to the bath solution A, the solution remained colorless and transparent, and solidification proceeded. After gelation, silica glass was obtained by sintering.

実施例5 浴液hfテトラヒドロキシシランd 度40 cqt%
まで濃縮し、cL1規定アンモニア水全攪拌しながら徐
々に徹下した。実施例1同様P H4,6で約3o分後
にゲル化し、収縮し1ζ0直径10zの容器刀)ら、直
径5.0 cmの乾燥ゲルが作製できた。
Example 5 Bath liquid hf tetrahydroxysilane d degree 40 cqt%
The mixture was concentrated to 1,000 liters, and gradually poured with 1 normal aqueous ammonia with stirring. As in Example 1, the mixture gelatinized after about 3 minutes at pH 4.6 and shrunk to produce a dry gel with a diameter of 5.0 cm.

950℃〜1000℃でガラス化が起こシ、無色透明の
石英ガラスが得られた。
Vitrification occurred at 950°C to 1000°C, yielding colorless and transparent quartz glass.

実施例6 実施例1と同様にP H4,6とした後、直径30σの
容器でゲル化させた。60℃で2日間、90℃で3日間
乾燥させ、直径13.5Crnの乾燥ゲルが作製できた
。焼結によシ、石英ガラスが得られた。
Example 6 After setting the pH to 4.6 in the same manner as in Example 1, gelation was performed in a container with a diameter of 30σ. It was dried at 60° C. for 2 days and at 90° C. for 3 days, and a dried gel with a diameter of 13.5 Crn was prepared. After sintering, quartz glass was obtained.

以上のように本発明によれば次のような効果が発揮され
る。まず室温でゲル化するため、円部に気泡を全く含ま
ない。″また、ゲル化時間を操作することができる。[
へ極めて短時間のうちに乾燥ゲルを作製することができ
る。
As described above, according to the present invention, the following effects are exhibited. First, it gels at room temperature, so the circular part does not contain any air bubbles. ``Also, the gelation time can be manipulated.
Dry gel can be prepared in a very short time.

そして最も大きな特徴は、収縮過程で極めて割れに<<
、大型の乾燥ゲルの作製が容易だということである。
The biggest feature is that it is extremely resistant to cracking during the shrinkage process.
This means that it is easy to prepare large-sized dry gels.

不発明はゾル−ゲル法を用いて石芙ガラス金製造する際
の極めて重要な手段である。
The invention is a very important means in producing stone-glass gold using the sol-gel method.

以   上 出願人 株式会社諏訪梢工合that's all Applicant: Suwa Kozue Kogo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ゾル−ゲル法を用いる石英ガラスの製造においテ、[触
媒に用いてアルコキシシラン?加水分解した後、塩基を
添〃口しPH3〜乙の範囲になるよう調整してたらゲル
化させること全特徴とする石英ガラスの製造法。
In the production of quartz glass using the sol-gel method, [alkoxysilane is used as a catalyst?] A method for producing quartz glass, which is characterized in that after hydrolysis, a base is added and the pH is adjusted to a range of 3 to 2, and then gelation occurs.
JP20954182A 1982-11-30 1982-11-30 Preparation of quartz glass Granted JPS59102833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20954182A JPS59102833A (en) 1982-11-30 1982-11-30 Preparation of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20954182A JPS59102833A (en) 1982-11-30 1982-11-30 Preparation of quartz glass

Publications (2)

Publication Number Publication Date
JPS59102833A true JPS59102833A (en) 1984-06-14
JPH0124734B2 JPH0124734B2 (en) 1989-05-12

Family

ID=16574508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20954182A Granted JPS59102833A (en) 1982-11-30 1982-11-30 Preparation of quartz glass

Country Status (1)

Country Link
JP (1) JPS59102833A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622056A (en) * 1985-02-13 1986-11-11 Seiko Epson Corporation Method of preparing silica glass
US4788164A (en) * 1987-01-28 1988-11-29 Hoechst Celanese Corporation Inorganic-organic composite compositions with sustained release properties
US4994218A (en) * 1988-06-30 1991-02-19 Ngk Spark Plug Co., Ltd. Method of producing gelled green compact for thin sintered body
CN1042922C (en) * 1996-07-31 1999-04-14 中国建筑材料科学研究院 Technology for production of high-boron-contained seal glass with high-temp.-resistance and low-expansion
KR100487194B1 (en) * 2002-06-27 2005-05-03 삼성전자주식회사 Colloidal silica composition and method for fabricating thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019520A (en) * 1973-05-31 1975-03-01
JPS5281315A (en) * 1975-12-22 1977-07-07 Dynamit Nobel Ag Process for preparing granular silica glass
JPS5711845A (en) * 1980-06-20 1982-01-21 Natl Inst For Res In Inorg Mater Production of colored silica glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019520A (en) * 1973-05-31 1975-03-01
JPS5281315A (en) * 1975-12-22 1977-07-07 Dynamit Nobel Ag Process for preparing granular silica glass
JPS5711845A (en) * 1980-06-20 1982-01-21 Natl Inst For Res In Inorg Mater Production of colored silica glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622056A (en) * 1985-02-13 1986-11-11 Seiko Epson Corporation Method of preparing silica glass
US4788164A (en) * 1987-01-28 1988-11-29 Hoechst Celanese Corporation Inorganic-organic composite compositions with sustained release properties
US4994218A (en) * 1988-06-30 1991-02-19 Ngk Spark Plug Co., Ltd. Method of producing gelled green compact for thin sintered body
CN1042922C (en) * 1996-07-31 1999-04-14 中国建筑材料科学研究院 Technology for production of high-boron-contained seal glass with high-temp.-resistance and low-expansion
KR100487194B1 (en) * 2002-06-27 2005-05-03 삼성전자주식회사 Colloidal silica composition and method for fabricating thereof

Also Published As

Publication number Publication date
JPH0124734B2 (en) 1989-05-12

Similar Documents

Publication Publication Date Title
EP0131057B1 (en) Process for producing quartz glass
JPS6191024A (en) Production of cylindrical silica glass
EP0328715B1 (en) A catalyst for sol-gel method using metal alkoxide and sol-gel method using the same
JPS59102833A (en) Preparation of quartz glass
JPS5930730A (en) Manufacture of quartz glass
JPS59131539A (en) Production of quartz glass
JPS6090835A (en) Manufacture of silica-titania glass
JPH0114177B2 (en)
JPS6086035A (en) Production of quartz glass
JPS60141627A (en) Preparation of silica glass
JP3582093B2 (en) Method for producing silica glass
JPS62207723A (en) Production of glass
JPS63117917A (en) Production of glass
JPH03257029A (en) Production of quartz glass
JPH0124735B2 (en)
JPS63151624A (en) Production of organic substance-containing silica bulk material
JPS6428243A (en) Cerium-doped quartz glass and production thereof
JPS58185442A (en) Preparation of quartz glass
JPS6065733A (en) Production of quartz glass
JPS6330335A (en) Production of quartz glass
JPS62100425A (en) Production of quartz glass
JPH0761876B2 (en) Method for producing silica glass
JPS59107938A (en) Manufacture of quartz glass
JPH02167830A (en) Production of glass
JPS63134525A (en) Production of glass