JPH0124734B2 - - Google Patents

Info

Publication number
JPH0124734B2
JPH0124734B2 JP57209541A JP20954182A JPH0124734B2 JP H0124734 B2 JPH0124734 B2 JP H0124734B2 JP 57209541 A JP57209541 A JP 57209541A JP 20954182 A JP20954182 A JP 20954182A JP H0124734 B2 JPH0124734 B2 JP H0124734B2
Authority
JP
Japan
Prior art keywords
gel
quartz glass
diameter
less
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57209541A
Other languages
Japanese (ja)
Other versions
JPS59102833A (en
Inventor
Satoru Myashita
Sadao Kanbe
Motoyuki Toki
Tetsuhiko Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP20954182A priority Critical patent/JPS59102833A/en
Publication of JPS59102833A publication Critical patent/JPS59102833A/en
Publication of JPH0124734B2 publication Critical patent/JPH0124734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゾル−ゲル法において、アルコキシシ
ランを酸でPH3未満として加水分解した後塩基を
添加し、PH3〜6に調整してゲル化させる石英ガ
ラスの製造方法に関する。 ゾル−ゲル法は金属アルコキシドを加水分解し
ゲル化させ得られた乾燥ゲルを加熱する非溶融ガ
ラス製造法である。金属アルコキシドを出発原料
とすると、溶融法で作ることが困難な組成でも均
質なガラスを比較的低温で作ることができる。し
かし、一般に加水分解後のゲル化収縮過程、ある
いは乾燥ゲルの加熱の途中で破砕しやすいという
欠点がある。 石英ガラスは使用頻度が高く有用な物質である
が、現在は2000℃付近で溶融して製造しているた
め非常に高価である。ゾル−ゲル法は高純度低コ
スト、省エネルギーなどの特徴を有するため有望
視されているものの直径3cm以上の石英ガラスは
得られていない。これは乾燥ゲルが作製できない
ためである。 ゲル化収縮過程での割れは、内部構造と乾燥条
件に負うところが大きい。 アルコキシシランを加水分解してゲル化させる
には、アンモニアのような塩基を触媒に用いる方
法と、塩酸のような酸を触媒に用いる方法とがあ
る。 塩基を触媒に用いると、加水分解速度が遅く、、
重合速度が速いため得られた乾燥ゲルは、粒子の
大きい粗い構造をとる。粒子間の結合力が弱いた
め直径2cm以上の乾燥ゲルは発表されていない。 特開昭57−11845に単にアルコキシシランをPH
3〜6の範囲に調整しただけでは、加水分解が極
めて遅く
The present invention relates to a method for producing quartz glass in which an alkoxysilane is hydrolyzed with an acid to a pH of less than 3, and then a base is added to adjust the pH to 3 to 6 to form a gel in a sol-gel method. The sol-gel method is a non-melting glass manufacturing method in which a metal alkoxide is hydrolyzed and gelled, and the resulting dry gel is heated. When metal alkoxides are used as starting materials, homogeneous glass can be produced at relatively low temperatures even with compositions that are difficult to produce by melting. However, it generally has the disadvantage that it tends to break during the gelling shrinkage process after hydrolysis or during heating of the dry gel. Although quartz glass is a frequently used and useful material, it is currently manufactured by melting it at around 2000°C, making it extremely expensive. Although the sol-gel method is considered promising because it has features such as high purity, low cost, and energy saving, silica glass with a diameter of 3 cm or more has not been obtained. This is because dry gel cannot be produced. Cracking during the gelation shrinkage process is largely due to the internal structure and drying conditions. To hydrolyze and gel alkoxysilane, there are two methods: a method using a base such as ammonia as a catalyst, and a method using an acid such as hydrochloric acid as a catalyst. When a base is used as a catalyst, the rate of hydrolysis is slow,
Due to the high polymerization rate, the resulting dry gel has a coarse structure with large particles. Due to the weak binding force between particles, dry gels with a diameter of 2 cm or more have not been published. In JP-A No. 57-11845, alkoxysilane is simply PH
If you just adjust it to the range of 3 to 6, hydrolysis will be extremely slow.

【式】のような化合物が存在する こととなり、網目化反応が起こらず、ゲル化は極
めて遅く、殆ど実用的にゲルをつくることはでき
ない。 またPHを3未満として酸を触媒に用いると、加
水分解速度が速く、このままでは重合速度が遅い
ため網目化反応が起こらず粒成長は起こらない。
これはテトラヒドロキシシランが2〜4量体を形
成していると考えられている。 一方、網目化反応したものは、結合力は強く、
割れは乾燥条件に起因すること思われる。直径7
cmの乾燥ゲルが発表されているがゲルが大きくな
ると乾燥の制御は難しくなる。それゆえ大型の乾
燥ゲルを効率で作製することは現状のままでは不
可能である。 また、50〜70℃に加熱してゲル化させるため気
泡を含み、湿度を高く保つ必要性から短時間で作
製できない、などの欠点を有する。 本発明は、かかる欠点を除去することを目的と
する。 本発明の石英ガラスの製造方法は、 ゾル−ゲル法を用いる石英ガラスの製造方法に
おいて、酸を触媒に用いてPHを3未満としてアル
コキシシランを加水分解した後、塩基を添加しPH
3〜6の範囲になるよう調整してからゲル化させ
ることを特徴とする。すなわち、酸を触媒に用い
てPHを3未満として加水分解した後、塩基を加え
てPHを3〜6にして重合速度を高め、室温でゲル
化させた後、半開放にして温度を上げて乾燥させ
ることにより、気泡のない大型の乾燥ゲルを高収
率でしかも短時間で得ることができた。 一旦PHを3未満にしないとテトラヒドロキシシ
ランの発生すなわち の反応が完全に進まず、塩基でPHを3〜6の範囲
に調整しなければ、PHは3未満の場合は重合速度
が遅く、6を越えるとゲルの重合速度が速すぎて
制御が困難で、作業上実用的ではない。 以下、実験例に基づき本発明を詳しく説明す
る。 大きな乾燥ゲルを得るためには、アンモニアと
塩酸の例から網目構造をとつた方が有利なことが
わかる。そのためには酸で一旦PH3未満として加
水分解を行い、モノマーが均一に分散している状
態をとる必要がある。重合速度は温度、テトラヒ
ドロキシシラン濃度、水素イオン濃度に依存して
いる。乾燥条件、濃縮などにより、前の2点につ
いては検討がなされている。我々は水素イオン濃
度に着眼して実験を行つた。 実施例 1 オルトケイ酸エチルに対し10倍のモルの水を
0.1規定塩酸水溶液として加えてPH2とし、氷冷
下1時間攪拌して均一な透明溶液(以下溶液Aと
記す)を得た。攪拌しながら溶液Aに0.1規定ア
ンモニア水を徐々に滴下し、PH4.6とした。室温
に放置すると無色透明のまま約30分後にゲル化し
た。その後溶媒を押し出しながら急速に収縮が進
んだ。ゲルは開放でも割れなかつた。 直径10cm高さ5cmのポリテトラフルオロエチレ
ンン製容器でゲル化させた後、直径3mmの穴20個
を開けたふたをし、60℃で1日保持し徐々に90℃
まで昇温した。90℃で2日間乾燥させると直径
4.5cmの乾燥ゲルが得られた。 950℃〜1000℃でガラス化が起こり、、無色透明
の石英ガラスが得られた。 実施例 2 溶液Aに0.1規定アンモニア水を徐々に滴下し
PH4.4にしたところ、ゲル化に約2時間を要した。
その後実施例1と同様にして、石英ガラスが得ら
れた。 実施例 3 溶液Aに0.1規定アンモニア水を徐々に滴下し
PH5以上にしたところ、数十秒でゲル化した。乾
燥ゲルはやはり無色透明で、焼結により石英ガラ
スが得られた。 実施例 4 溶液Aに0.5規定アンモニア水を徐々に滴下し
たところ、無色透明のまま中和が進行した。ゲル
化後、焼結により石英ガラスが得られた。 実施例 5 溶液Aをテトラヒドロキシシラン濃度40mt%
るで濃縮し、0.1規定アンモニア水を攪拌しなが
ら徐々に滴下した。実施例1同様PH4.6で約30分
後にゲル化し、収縮した。直径10cmの容器から、
直径5.0cmの乾燥ゲルが作製できた。 950〜1000℃でガラス化が起こり、無色透明の
石英ガラスが得られた。 実施例 6 実施例1同様にPH4.6とした後、直径30cmの容
器でゲル化させた。60℃で2日間、90℃で3日間
乾燥させ、直径13.5cmの乾燥ゲルが作製できた。
焼結により、石英ガラスが得られた。 以上のように、本発明によれば酸性触媒を用い
て一旦PHを3未満として加水分解したのち、塩基
を用いてPHを3〜6の範囲に調整するので、 (1) テトラヒドキシシランを均一に分散させたの
ち、徐々に重合をさせていくので、ゾルの分子
間の結合力を網目状に強固なものとすることが
でき、重合もムラなく進めることができるの
で、ゾルをゲル化させる上でも分子間の強い結
合力をもつたままのゲルを得ることができ、さ
らにゲルの収縮過程において割れたり、クラツ
クの入ることもなく、またゲルを焼結する際に
も割れたり、クラツクの入ることのない大型の
乾燥ゲルを作成することができる。 (2) PHが3未満のものを塩基でPHを3〜6に調整
していくので、室温でゲル化も適性な速度をも
つこととなり、これにより作業性もよく、さら
には速度が速すぎて歪なども発生することがな
く、また熱などによつて蒸気が強制的に発生す
ることがないので、ゾル中に気泡を巻きこむこ
ともなく、内部に全く気泡を含まない大型の石
英ガラスをつくることができる。
Due to the presence of a compound such as [Formula], the network formation reaction does not occur and gelation is extremely slow, making it almost impossible to create a gel practically. Furthermore, when the pH is set to less than 3 and an acid is used as a catalyst, the hydrolysis rate is high, and if this continues, the polymerization rate is slow, so that no meshing reaction occurs and grain growth does not occur.
This is thought to be due to tetrahydroxysilane forming dimers to tetramers. On the other hand, those that have undergone a meshing reaction have a strong binding force;
The cracking appears to be caused by dry conditions. Diameter 7
cm dry gels have been announced, but the larger the gel, the more difficult it is to control drying. Therefore, it is currently impossible to efficiently produce large-sized dry gels. In addition, since it is gelled by heating to 50 to 70°C, it contains bubbles and cannot be produced in a short time because of the need to maintain high humidity. The present invention aims to eliminate such drawbacks. The method for producing quartz glass of the present invention is a method for producing quartz glass using a sol-gel method, in which alkoxysilane is hydrolyzed to a pH of less than 3 using an acid as a catalyst, and then a base is added to the pH.
It is characterized in that it is adjusted to a range of 3 to 6 and then gelled. That is, after hydrolysis using an acid as a catalyst to bring the pH to less than 3, a base is added to raise the pH to 3 to 6 to increase the polymerization rate, gelation is performed at room temperature, and then the temperature is raised in a semi-open state. By drying, a large, bubble-free dry gel could be obtained in high yield and in a short time. If the pH is not lowered to less than 3, tetrahydroxysilane will be generated, i.e. If the reaction does not proceed completely and the pH is not adjusted to a range of 3 to 6 with a base, if the pH is less than 3, the polymerization rate will be slow, and if it exceeds 6, the polymerization rate of the gel will be too fast and difficult to control. And it's not practical for work. Hereinafter, the present invention will be explained in detail based on experimental examples. The example of ammonia and hydrochloric acid shows that it is more advantageous to form a network structure in order to obtain a large dry gel. For this purpose, it is necessary to perform hydrolysis with an acid to lower the pH to less than 3 to obtain a state in which the monomers are uniformly dispersed. The polymerization rate depends on temperature, tetrahydroxysilane concentration, and hydrogen ion concentration. The previous two points are being studied depending on drying conditions, concentration, etc. We conducted experiments focusing on hydrogen ion concentration. Example 1 Add 10 times the molar amount of water to ethyl orthosilicate.
The mixture was added as a 0.1N aqueous hydrochloric acid solution to adjust the pH to 2, and stirred for 1 hour under ice cooling to obtain a homogeneous transparent solution (hereinafter referred to as solution A). 0.1N ammonia water was gradually added dropwise to solution A while stirring to adjust the pH to 4.6. When left at room temperature, it remained colorless and transparent and turned into a gel after about 30 minutes. After that, the shrinkage progressed rapidly while pushing out the solvent. The gel did not crack even when opened. After gelling in a polytetrafluoroethylene container with a diameter of 10 cm and a height of 5 cm, the lid was covered with 20 holes of 3 mm in diameter, kept at 60°C for 1 day, and gradually heated to 90°C.
The temperature rose to After drying at 90℃ for 2 days, the diameter
4.5 cm of dry gel was obtained. Vitrification occurred at 950°C to 1000°C, yielding colorless and transparent quartz glass. Example 2 Gradually drop 0.1N ammonia water into solution A.
When the pH was set to 4.4, it took about 2 hours for gelation.
Thereafter, in the same manner as in Example 1, quartz glass was obtained. Example 3 Gradually drop 0.1N ammonia water into solution A.
When the pH was raised to 5 or higher, it gelled in several tens of seconds. The dried gel was also colorless and transparent, and quartz glass was obtained by sintering. Example 4 When 0.5N ammonia water was gradually added dropwise to solution A, neutralization proceeded while the solution remained colorless and transparent. After gelation, silica glass was obtained by sintering. Example 5 Solution A was prepared with a tetrahydroxysilane concentration of 40 mt%.
The mixture was concentrated using a vacuum cleaner, and 0.1N aqueous ammonia was gradually added dropwise with stirring. As in Example 1, it gelatinized and shrank after about 30 minutes at pH 4.6. From a container with a diameter of 10 cm,
A dry gel with a diameter of 5.0 cm was prepared. Vitrification occurred at 950-1000°C, yielding colorless and transparent quartz glass. Example 6 After adjusting the pH to 4.6 in the same manner as in Example 1, gelation was performed in a container with a diameter of 30 cm. After drying at 60°C for 2 days and at 90°C for 3 days, a dried gel with a diameter of 13.5cm was produced.
Silica glass was obtained by sintering. As described above, according to the present invention, after hydrolyzing using an acidic catalyst to once lower the pH to less than 3, the pH is adjusted to a range of 3 to 6 using a base. After uniformly dispersing, polymerization is carried out gradually, so the bond between the molecules of the sol can be strengthened in a network-like manner, and polymerization can proceed evenly, so the sol can be turned into a gel. It is possible to obtain a gel that maintains strong bonding forces between molecules even when the gel is sintered, and it also does not break or crack during the shrinking process. It is possible to create large-sized dry gels that do not contain water. (2) Since the pH of substances with a pH of less than 3 is adjusted to 3 to 6 with a base, gelation will occur at an appropriate rate at room temperature. It is a large quartz glass that does not contain any air bubbles inside, and does not cause any distortion or the like, and does not forcefully generate steam due to heat, etc., so no air bubbles are drawn into the sol. can be created.

Claims (1)

【特許請求の範囲】[Claims] 1 ゾル−ゲル法を用いる石英ガラスの製造にお
いて、酸を触媒に用いてPHを3未満としてアルコ
キシシランを加水分解した後、塩基を添加しPH3
〜6の範囲になるよう調整してからゲル化させる
ことを特徴とする石英ガラスの製造方法。
1 In the production of quartz glass using the sol-gel method, alkoxysilane is hydrolyzed using an acid as a catalyst to bring the pH to less than 3, and then a base is added to bring the pH to 3.
A method for producing quartz glass, which comprises adjusting the quartz glass to a range of 6 to 6 and then gelling it.
JP20954182A 1982-11-30 1982-11-30 Preparation of quartz glass Granted JPS59102833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20954182A JPS59102833A (en) 1982-11-30 1982-11-30 Preparation of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20954182A JPS59102833A (en) 1982-11-30 1982-11-30 Preparation of quartz glass

Publications (2)

Publication Number Publication Date
JPS59102833A JPS59102833A (en) 1984-06-14
JPH0124734B2 true JPH0124734B2 (en) 1989-05-12

Family

ID=16574508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20954182A Granted JPS59102833A (en) 1982-11-30 1982-11-30 Preparation of quartz glass

Country Status (1)

Country Link
JP (1) JPS59102833A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622056A (en) * 1985-02-13 1986-11-11 Seiko Epson Corporation Method of preparing silica glass
US4788164A (en) * 1987-01-28 1988-11-29 Hoechst Celanese Corporation Inorganic-organic composite compositions with sustained release properties
JPH0764644B2 (en) * 1988-06-30 1995-07-12 日本特殊陶業株式会社 Method for producing gel-like thin plate molded article having plasticity
CN1042922C (en) * 1996-07-31 1999-04-14 中国建筑材料科学研究院 Technology for production of high-boron-contained seal glass with high-temp.-resistance and low-expansion
KR100487194B1 (en) * 2002-06-27 2005-05-03 삼성전자주식회사 Colloidal silica composition and method for fabricating thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019520A (en) * 1973-05-31 1975-03-01
JPS5281315A (en) * 1975-12-22 1977-07-07 Dynamit Nobel Ag Process for preparing granular silica glass
JPS5711845A (en) * 1980-06-20 1982-01-21 Natl Inst For Res In Inorg Mater Production of colored silica glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019520A (en) * 1973-05-31 1975-03-01
JPS5281315A (en) * 1975-12-22 1977-07-07 Dynamit Nobel Ag Process for preparing granular silica glass
JPS5711845A (en) * 1980-06-20 1982-01-21 Natl Inst For Res In Inorg Mater Production of colored silica glass

Also Published As

Publication number Publication date
JPS59102833A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
JPH0124734B2 (en)
JP3431197B2 (en) Method for producing porous silica body by sol-gel method
JP2635313B2 (en) Method for producing silica glass
JPH0328382B2 (en)
JPS59131539A (en) Production of quartz glass
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
JP2621491B2 (en) Method for producing silica glass
JPH0114177B2 (en)
JPH0238321A (en) Production of silica glass
JPH01119526A (en) Production of silica glass
JPH0259446A (en) Production of silica glass
JP2666471B2 (en) Method for producing silica glass
JPH0238326A (en) Production of silica glass
JPS6330335A (en) Production of quartz glass
JPH0214833A (en) Production of silica glass
JPH0761876B2 (en) Method for producing silica glass
JPH0259443A (en) Production of silica glass
JPH0238327A (en) Production of silica glass
JPH0825757B2 (en) Silica glass manufacturing method
JPH0214830A (en) Production of silica glass plate
JPS643811B2 (en)
JPS6317225A (en) Production of silica glass
JPH0259448A (en) Production of silica glass
JPH0986918A (en) Production of synthetic quartz glass powder
JPH0238325A (en) Production of silica glass