JPS643811B2 - - Google Patents

Info

Publication number
JPS643811B2
JPS643811B2 JP21800782A JP21800782A JPS643811B2 JP S643811 B2 JPS643811 B2 JP S643811B2 JP 21800782 A JP21800782 A JP 21800782A JP 21800782 A JP21800782 A JP 21800782A JP S643811 B2 JPS643811 B2 JP S643811B2
Authority
JP
Japan
Prior art keywords
sol
gel
quartz glass
catalyst
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21800782A
Other languages
Japanese (ja)
Other versions
JPS59107938A (en
Inventor
Satoru Myashita
Sadao Kanbe
Motoyuki Toki
Tetsuhiko Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21800782A priority Critical patent/JPS59107938A/en
Publication of JPS59107938A publication Critical patent/JPS59107938A/en
Publication of JPS643811B2 publication Critical patent/JPS643811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明はゾル―ゲル法において、酸性・塩基性
それぞれの触媒を用いてアルコキシシランを別々
に加水分解した後、よく混合してゲル化させる石
英ガラスの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing quartz glass in which alkoxysilanes are separately hydrolyzed using acidic and basic catalysts and then thoroughly mixed to form a gel in a sol-gel method.

ゾル―ゲル法は金属アルコキシドを加水分解
し、ゲル化させ得られた乾燥ゲルを加熱する非溶
融ガラス製造法である。金属アルコキシドを出発
原料とすると、溶融法で作ることが困難な組成で
も均質なガラスを比較的低温で作ることができ
る。しかし、一般に加水分解後のゲル化収縮過
程、あるいは乾燥ゲルの加熱の途中で破砕しやす
いという欠点がある。
The sol-gel method is a non-melting glass manufacturing method in which a metal alkoxide is hydrolyzed, gelled, and the resulting dry gel is heated. When metal alkoxides are used as starting materials, homogeneous glass can be produced at relatively low temperatures even with compositions that are difficult to produce by melting. However, it generally has the disadvantage that it tends to break during the gelling shrinkage process after hydrolysis or during heating of the dry gel.

焼結過程での破砕を防ぐためには50〜80Åの、
比較的大きな細孔を多量に含む乾燥ゲルを作製す
ることが必要である。
To prevent fracture during the sintering process, the thickness of 50 to 80 Å is
It is necessary to create a dry gel that contains a large amount of relatively large pores.

アルコキシシランを加水分解してゲル化させる
には、アンモニアのような塩基を触媒に用いる方
法と、塩酸のような酸を触媒に用いる方法とがあ
る。
To hydrolyze and gel alkoxysilane, there are two methods: a method using a base such as ammonia as a catalyst, and a method using an acid such as hydrochloric acid as a catalyst.

アンモニアのような塩基を触媒に用いると、作
製した乾燥ゲルは50Å以上の細孔を多量に含むた
め、焼結における割れは皆無である。しかし乾燥
ゲルを求める形状に作成するのは非常に困難であ
り、直径2cm以上の乾燥ゲルが得られた例は発表
されていない。
When a base such as ammonia is used as a catalyst, the dried gel produced contains a large number of pores larger than 50 Å, so there are no cracks during sintering. However, it is extremely difficult to create a dried gel in the desired shape, and no examples have been published in which a dried gel with a diameter of 2 cm or more has been obtained.

塩酸のような酸を触媒に用いると、乾燥ゲルは
作製が容易になり、最大で直径7cmの乾燥ゲルが
発表されている。しかし焼結過程で割れを生じ易
く、特に700℃以上で激しく破砕する。昇温速度
を0.5℃/minと遅くしてもほとんど防ぐことが
できない。これは乾燥ゲルに20Å前後の微細孔し
か含まれていないためである。60℃以上の温度で
ゲル化させれば、50〜80Åの細孔を含むようにな
るため焼結過程での割れをある程度防ぐことがで
きる。しかし、この方法だけでは不完全である。
When an acid such as hydrochloric acid is used as a catalyst, dry gels can be easily produced, and dry gels with a maximum diameter of 7 cm have been published. However, it is prone to cracking during the sintering process, and it fractures violently especially at temperatures above 700°C. Even if the temperature increase rate is slowed to 0.5°C/min, this can hardly be prevented. This is because the dried gel contains only micropores of around 20 Å. If it is gelled at a temperature of 60°C or higher, it will contain pores of 50 to 80 Å, which can prevent cracking during the sintering process to some extent. However, this method alone is incomplete.

以上のように焼結過程で割れない構造をもつ、
大型の乾燥ゲルは未だ作製されておらず、方法も
確立されていない。アンモニア、及び塩酸を触媒
に用いた乾燥ゲル作製法は一長一短があり、どち
らからも満足する結果が得られていない。
As mentioned above, it has a structure that does not crack during the sintering process.
Large-scale dry gels have not yet been produced and the method has not been established. Dry gel preparation methods using ammonia and hydrochloric acid as catalysts have advantages and disadvantages, and neither method has yielded satisfactory results.

本発明は互いの欠点を補い、ゲル化収縮および
焼結過程で割れることなく大型の石英ガラスを製
造することを目的とした。
The present invention aims to compensate for each other's shortcomings and to produce large-sized quartz glass without cracking during gelation shrinkage and sintering processes.

本発明の石英ガラスの製造法は、 ゾル―ゲル法を用いる石英ガラスの製造法にお
いて、アルコキシシランを塩基を触媒に用いて加
水分解したゾルと、酸を触媒に用いて加水分解し
たゾルとを均一に混合した後、ゲル化させること
を特徴とする。
The method for producing quartz glass of the present invention is a method for producing quartz glass using a sol-gel method, in which a sol obtained by hydrolyzing an alkoxysilane using a base as a catalyst and a sol obtained by hydrolyzing an alkoxysilane using an acid as a catalyst are used. It is characterized in that it is mixed uniformly and then gelled.

すなわち本発明は塩酸で加水分解したテトラヒ
ドロキシシランの微細構造の中に、アンモニアで
加水分解した後種々の大きさに粒成長させた微粒
子を、種々の割合で均一に分散させた状態でゲル
化させ、上記の目的を達成させることができる。
That is, in the present invention, fine particles grown to various sizes after hydrolysis with ammonia are uniformly dispersed in various proportions in the fine structure of tetrahydroxysilane that has been hydrolyzed with hydrochloric acid, and then gelled. and achieve the above objectives.

以下、実験例に基づいて本発明を詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on experimental examples.

実験例 1 Si(OC2H54:H2O:C2H5OH=1:10:8の
モル比で混合し、均一溶液とした。水は0.1規定
アンモニア水溶液を用い、3日間密栓をして室温
で放置し、加水分解及び粒成長を行なわせた。白
色半透明の溶液をシリカ濃度25mt%までロータ
リー・エバポレーターを用いて濃縮した。(以下
これをゾルAと記す。)これ以上に濃縮すると瞬
時にゲル化がおこつた。
Experimental Example 1 Si(OC 2 H 5 ) 4 :H 2 O:C 2 H 5 OH was mixed at a molar ratio of 1:10:8 to form a homogeneous solution. A 0.1N ammonia aqueous solution was used as the water, and the tube was sealed tightly and allowed to stand at room temperature for 3 days to allow hydrolysis and grain growth. The white translucent solution was concentrated to a silica concentration of 25 mt% using a rotary evaporator. (Hereinafter, this will be referred to as sol A.) When concentrated more than this, gelation occurred instantly.

一方、Si(OC2H54:H2O=1:10のモル比で
氷冷下1時間撹拌を続けた。水は0.1規定塩酸水
溶液を用い、無色透明の均一溶液を得た。この溶
液をゾルAと同じシリカ濃度まで濃縮した。(以
下これをゾルBと記す。)テトラヒドロキシシラ
ンで考えると40mt%となる。
Meanwhile, stirring was continued for 1 hour under ice cooling at a molar ratio of Si(OC 2 H 5 ) 4 :H 2 O=1:10. A 0.1N aqueous hydrochloric acid solution was used as water to obtain a colorless and transparent homogeneous solution. This solution was concentrated to the same silica concentration as Sol A. (Hereinafter, this will be referred to as sol B.) Considering tetrahydroxysilane, it is 40 mt%.

このように別々に作製したゾルAとゾルBを
1:1の体積比でよく混合した。
Sol A and Sol B, which were prepared separately in this way, were thoroughly mixed at a volume ratio of 1:1.

中和により塩化アンモンが生成する水溶液であ
るため溶解し、均一な白色半透明のゾルが得られ
た。濃縮過程でアンモニアが除去されたためかこ
の混合ゾルはPH3を示した。70℃に加熱して直径
4cmの乾燥ゲルが作製できた。この乾燥ゲルは
10000倍に拡大しても粒子は認められず表面は平
滑だつたが、細孔径分布を測定すると40〜80Åの
細孔を多量に含んでいた。そのため5℃/minで
昇温しても全く割れず、1150℃で無色透明の石英
ガラスになつた。
Since it was an aqueous solution in which ammonium chloride was generated by neutralization, it was dissolved, and a uniform white translucent sol was obtained. This mixed sol exhibited a pH of 3, probably because ammonia was removed during the concentration process. A dry gel with a diameter of 4 cm was prepared by heating to 70°C. This dry gel
Even when magnified 10,000 times, no particles were observed and the surface was smooth, but when the pore size distribution was measured, it contained a large amount of pores of 40 to 80 Å. Therefore, it did not crack at all even when the temperature was raised at 5°C/min, and it became colorless and transparent quartz glass at 1150°C.

乾燥ゲル中に含まれる塩化アンモンは650℃以
下で完全に分解し除去され、また焼結における悪
影響は観察されなかつた。
Ammonium chloride contained in the dried gel was completely decomposed and removed at temperatures below 650°C, and no adverse effects on sintering were observed.

実験例 2 ゾルAとゾルBを1:2の体積比で混合すると
PH1を示し、1:1の時より白濁の程度が強かつ
た。密閉条件を選び70℃に加熱して、直径6cmの
乾燥ゲルが得られた。1:1の時に比べ、40〜80
Åの細孔の数が減少したためか、1050℃付近でガ
ラス化が起こつた。1:2の混合比でも5℃/
minという昇温速度に耐え、割れは生じなかつ
た。
Experimental example 2 When sol A and sol B are mixed at a volume ratio of 1:2.
The pH was 1, and the degree of white turbidity was stronger than when the ratio was 1:1. By selecting sealed conditions and heating to 70°C, a dry gel with a diameter of 6 cm was obtained. 40-80 compared to 1:1
Vitrification occurred at around 1050°C, probably due to a decrease in the number of Å pores. Even at a mixing ratio of 1:2, the temperature is 5℃/
It withstood a temperature increase rate of min. without cracking.

以上のように、アルコキシシランを塩基性触媒
で加水分解したゾルと、酸性触媒で加水分解した
ゾルとを均一に混合させたのち、ゲル化させるの
で、 (1) 塩基性触媒例えばアンモニヤの量を調整する
ことによりゾルを構成するシリカの粒径を大き
くしたり、小さくしたりすることが任意に調整
でき、また酸性触媒によつて加水分解されたゾ
ルの混合する量を調整することにより、加水分
解ゾル同志の粒径の大から小までの組合せが任
意に出来たりするので、ゾルとした場合強固に
結合した構造となりやすく、ゾルの乾燥工程で
全く割れたり、クラツクの入つたりすることが
なく、さらに焼結においても割れやクラツクの
ない大型の石英ガラスをつくることができる。
As described above, the sol obtained by hydrolyzing alkoxysilane with a basic catalyst and the sol obtained by hydrolyzing it with an acidic catalyst are uniformly mixed and then gelled. By adjusting the particle size of the silica that makes up the sol, it is possible to arbitrarily increase or decrease the particle size of the silica, and by adjusting the amount of sol that has been hydrolyzed by an acidic catalyst to be mixed. Since the decomposed sol can have any combination of particle sizes from large to small, when it is made into a sol, it tends to form a strongly bonded structure, and the sol does not break at all or have cracks in it during the drying process. Furthermore, it is possible to produce large quartz glass without cracks or cracks even during sintering.

(2) 原料がすべてアルコキシシランであるので、
精製できるとともに、液体の操作であるので製
造工程中に容器等から不純物が溶出して来るの
を容易に防止することができ、ゲルの収縮過
程、乾燥過程においても、不純物に汚染させる
のも、容器の工夫で簡単に防止できるので純度
の高い大型の割れのない石英ガラスの製造がで
きる。
(2) All raw materials are alkoxysilanes, so
Not only can it be purified, but since it is a liquid operation, it can easily prevent impurities from eluting from the container etc. during the manufacturing process, and it can also prevent contamination with impurities during the shrinking and drying processes of the gel. This can be easily prevented by modifying the container, making it possible to produce large, crack-free quartz glass with high purity.

本製造法により製造した石英ガラスは、純度が
よいので、密度、屈折率、ビツカース硬度、熱膨
張率などは、溶融性の石英ガラスより秀れていて
も劣ることのない大型の石英ガラスを得ることが
できる。
Since the quartz glass produced by this production method has good purity, it is possible to obtain large quartz glass that is superior to, but not inferior to, meltable quartz glass in terms of density, refractive index, Vickers hardness, coefficient of thermal expansion, etc. be able to.

Claims (1)

【特許請求の範囲】[Claims] 1 ゾル―ゲル法を用いる石英ガラスの製造にお
いて、アルコキシシランを塩基を触媒に用いて加
水分解したゾルと、酸を触媒に用いて加水分解し
たゾルとを均一に混合した後ゲル化させることを
特徴とする石英ガラスの製造法。
1. In the production of quartz glass using the sol-gel method, a sol obtained by hydrolyzing alkoxysilane using a base as a catalyst and a sol obtained by hydrolyzing using an acid as a catalyst are uniformly mixed and then gelled. Characteristic manufacturing method of quartz glass.
JP21800782A 1982-12-13 1982-12-13 Manufacture of quartz glass Granted JPS59107938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21800782A JPS59107938A (en) 1982-12-13 1982-12-13 Manufacture of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21800782A JPS59107938A (en) 1982-12-13 1982-12-13 Manufacture of quartz glass

Publications (2)

Publication Number Publication Date
JPS59107938A JPS59107938A (en) 1984-06-22
JPS643811B2 true JPS643811B2 (en) 1989-01-23

Family

ID=16713162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21800782A Granted JPS59107938A (en) 1982-12-13 1982-12-13 Manufacture of quartz glass

Country Status (1)

Country Link
JP (1) JPS59107938A (en)

Also Published As

Publication number Publication date
JPS59107938A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
JP2939889B2 (en) Manufacturing method of airgel monolith
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
JPS59116135A (en) Manufacture of quartz glass
JP3431197B2 (en) Method for producing porous silica body by sol-gel method
JPS643811B2 (en)
JPS643812B2 (en)
JPH01183421A (en) Production of quartz glass
JPH0124734B2 (en)
JPH02145442A (en) Production of glass
JP3582093B2 (en) Method for producing silica glass
JPS62252330A (en) Production of glass
JPS62226821A (en) Production of glass
JPH0328380B2 (en)
JPS632820A (en) Production of glass
JPS61186227A (en) Production of quartz glass
JPH0798665B2 (en) Silica glass manufacturing method
JPS61256928A (en) Production of glass
JPS63117917A (en) Production of glass
JPS6186429A (en) Preparation of glass
JPS6330335A (en) Production of quartz glass
JPS62113737A (en) Production of quartz glass
JPH0551539B2 (en)
KR20030022954A (en) A method of preparing transparent silica glass
JPH02217323A (en) Production of quartz glass
JPS62288122A (en) Production of glass body by sol-gel method